Open Access

0985. Open lung ventilation improves conditions for right ventricle performance by decreasing pulmonary vascular wave reflections in an experimental model of ARDS

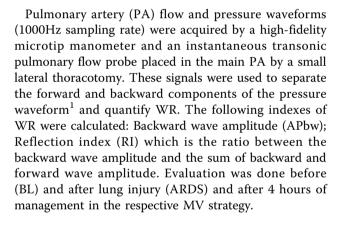
A Santos^{1,2,3*}, E Gomez Peñalver², JB Borges¹, J Retamal¹, MI Monge García⁴, G Tusman⁵, A Larsson^{1,6}, G Hedenstierna¹, F Suarez-Sipmann^{1,6}

From ESICM LIVES 2014 Barcelona, Spain. 27 September - 1 October 2014

Introduction

Impaired right ventricle (RV) function is associated with worse outcome in ARDS. Pulmonary artery pressure waveform analysis provides information about phenomena that affect RV performance. In particular, pulmonary vascular wave reflection (WR) is directly related with RV stress. We hypothesised that open lung ventilation (OLV), compared with conventional ARDS-net ventilation (CV), would improve conditions for RV performance in an ARDS model. This hypothesis was tested by measuring pulmonary vascular wave reflection (WR).

Objectives


To evaluate the effect of two mechanical ventilation (MV) strategies on WR in an experimental model of ARDS.

Methods

8 anesthetized and muscle relaxed pigs were submitted to a two-hit lung injury model combining repeated lung lavages with injurious MV. After lung injury was induced, animals were randomized (4 pigs in each group) to one of two strategies of MV: OLV, PEEP 2cmH2O above the PEEP corresponding with the maximal dynamic compliance in a decreasing PEEP trial after a recruitment manoeuvre; or CV, PEEP adjusted according to the ARDSnetwork table. In both groups tidal volume was 6ml/ kg, respiratory rate to maintain PaCO2 between 55-65 mmHg and FIO2 to maintain PaO2 55-80 mmHg.

¹Uppsala University, Hedenstierna Laboratory, Surgical Sciences Department, Uppsala, Sweden

Full list of author information is available at the end of the article

Results

We did not find any significant changes by induction of ARDS but both APbw (5.28 ± 1.35 vs 10.85 ± 2.16 mmHg, p=0.021) and RI (0.28 ± 0.04 vs 0.39 ± 0.04 , p=0.021) were lower in OLV comparing with CV.

Conclusions

In this experimental ARDS-model OLV decreased WR in the pulmonary vascular system comparing with CV, indicated that OLV could reduce the stress on the RV and improve conditions for RV performance.

Grant acknowledgment

This study is part of a project awarded by the ECCRN of the ESICM (Basic Science Award 2012).

Authors' details

¹Uppsala University, Hedenstierna Laboratory, Surgical Sciences Department, Uppsala, Sweden. ²Fundación Jiménez Diaz, Intensive Care Medicine, Madrid,

© 2014 Santos et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Spain. ³Instituto de Investigación Sanitaria, IIS-FJD, Madrid, Spain. ⁴Hospital del SAS de Jerez, Intensive Care Medicine, Jerez de la Frontera, Spain. ⁵Hospital Pirvado de Comunidad, Anesthesiology, Mar del Plata, Argentina. ⁶Uppsala University Hospital, Anesthesiology and Critical Care Medicine, Uppsala, Sweden.

Published: 26 September 2014

Reference

 Laxminarayan S: The calculation of forward and backward waves in the arterial system. Med Biol Eng Comput 1979, 17(1):130.

doi:10.1186/2197-425X-2-S1-P70

Cite this article as: Santos *et al.*: 0985. Open lung ventilation improves conditions for right ventricle performance by decreasing pulmonary vascular wave reflections in an experimental model of ARDS. *Intensive Care Medicine Experimental* 2014 2(Suppl 1):P70.

Submit your manuscript to a SpringerOpen[™] journal and benefit from:

- ► Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com