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Abstract

Background: Recent research has identified an increased rate of mortality associated
with fluid bolus therapy for severe sepsis and septic shock, but the mechanisms are
still not well understood. Fluid resuscitation therapy administered for sepsis and
septic shock targets restoration of the macro-circulation, but the pathogenesis of
sepsis is complex and includes microcirculatory dysfunction.

Objective: The objective of the study is to systematically review data comparing the
effects of different types of fluid resuscitation on the microcirculation in clinically
relevant animal models of lipopolysaccharide-induced sepsis.

Methods: A structured search of PubMed/MEDLINE and EMBASE for relevant
publications from 1 January 1990 to 31 December 2015 was performed, in
accordance with PRISMA guidelines.

Results: The number of published papers on sepsis and the microcirculation has
increased steadily over the last 25 years. We identified 11 experimental animal
studies comparing the effects of different fluid resuscitation regimens on the
microcirculation. Heterogeneity precluded any meta-analysis.

Conclusions: Few animal model studies have been published comparing the
microcirculatory effects of different types of fluid resuscitation for sepsis and septic shock.
Biologically relevant animal model studies remain necessary to enhance understanding
regarding the mechanisms by which fluid resuscitation affects the microcirculation and to
facilitate the transfer of basic science discoveries to clinical applications.

Keywords: Lipopolysaccharide, Sepsis, Septic shock, Fluid resuscitation, Microcirculation,
Intravital fluorescence microscopy, Oxygen extraction, Laser Doppler flowmetry,
Sidestream dark-field videomicroscopy, Laser speckle imaging

Review
Introduction

Sepsis is a syndrome induced by infection that is characterized by physiologic, pathologic,

and biochemical abnormalities [1], thus causing a substantial primary disease burden and

co-morbidity [2]. Treatment guidelines globally recommend correction of haemodynamic

abnormalities via the rapid administration of fluid boluses and blood transfusion to
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restore macro-circulatory parameters such as cardiac output and blood pressure [3–9].

Whilst there is general consensus on the key pillars of sepsis management—such as early

recognition, source control, and timely antibiotic administration—there are a number of

controversial issues surrounding volume resuscitation (type of fluid, dose, and rate).

Treatment guidelines focus upon the normalization of macro-circulatory perturbations,

with less attention to restoring microcirculatory dysfunction, which can only be resusci-

tated in the early period and has been shown to occur early in the disease process [10]

and to persist in the later stages of volume-resuscitated sepsis and septic shock [10–18].

The microcirculation is an elaborate network of blood vessels, comprised of arterioles,

venules, and capillaries that are lined with a dynamic endothelial-glycocalyx layer [19].

This network together forms the largest organ system in the body [20]. Microcirculatory

function of coupling the delivery of metabolic substrates to respiring tissues, relative to

requirements, and the removal of metabolic products, has been shown to be the main

prerequisite for adequate tissue oxygenation and organ function [17]. Sepsis causes

endothelial activation and the breakdown and shedding of the glycocalyx, leading to

microcirculatory dysfunction. Progressive microvascular and organ dysfunction in sepsis

and septic shock have been described extensively in literature [16–18, 21–34], and

impaired microcirculatory function has been shown to be an independent predictor of

mortality [11, 26]. Whilst it has been postulated that resuscitation of sepsis by rapid fluid

administration may worsen microcirculatory dysfunction, there have been reports of

glycocalyx stabilization by fresh frozen plasma (FFP) [35]. Increased microcirculatory flow

during resuscitation for sepsis has been associated with reduced organ failure at 24 h

without substantial differences in global haemodynamics, supporting the hypothesis

that targeting microcirculation distinct from the macro-circulation could potentially

improve organ failure in sepsis [36] and hence have a prognostic role and be the

target of therapeutic interventions [37].

Description of microcirculatory alterations in septic animal models has been done

using several techniques such as intravital microscopy, laser speckle imaging, laser

Doppler flowmetry [32] and videomicroscopic techniques, such as orthogonal

polarization spectroscopy and sidestream dark-field imaging [38]. Intravital microscopy

entails imaging live animals at microscopic resolution [39] via trans-illumination or

epi-illumination and recording pictures by means of low-light level silicon-intensified

or charge-coupled video cameras [40]. It enables the in vivo morphological viewing of

the microcirculation, as well as the quantification of micro-haemodynamic functional

capillary density (FCD), endothelial integrity and cellular interactions when used in

combination with fluorescent markers [40]. Laser speckle is an interference pattern

produced by light reflected or scattered from different parts of a laser-illuminated

surface [41]. The motion of particles in the laser-illuminated medium causes spatial

and temporal fluctuations, producing an interference pattern consisting of bright and

dark areas (i.e., the so-called speckles) visualized on a detector [42]. Laser Doppler

produces an indirect measure of flow by quantifying shift in the Doppler frequency of a

monochromatic laser light signal (helium-neon laser, 632.8 nm) that is scattered by red

blood cells moving through the microcirculation [41, 43]. Light which is backscattered

from moving erythrocytes undergoes a shift in frequency that is proportional to their

velocity in accordance to the Doppler principle [44], hence making it possible to obtain

reproducible measurements of blood flow at a single spot defined by the incident and
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Doppler-shifted reflected light [45]. Sidestream dark-field (SDF) imaging technology is

based on improved orthogonal polarized spectral (OPS) imaging, whereby concentric-

ally placed light-emitting diodes (LEDs) provide pulsed synchronous illumination of the

microcirculation at a central wavelength of 530 nm for optimal absorption by the

haemoglobin in red blood cells, independent of the oxygenation state [38].

Volume resuscitation for treatment of septic shock has been the standard of care

recommended by guidelines following evidence of reduction in persistent hypovolaemia

and improved survival [7, 9, 46, 47]. These guidelines have been mainly based on observa-

tional studies and expert opinion, in the absence of supportive evidence from randomized

controlled trials. Consequently, different types of fluid are used in resuscitation including

crystalloids, colloids and blood transfusion.

Generally, there is a paucity of animal model studies on effects of fluid resuscitation on

the microcirculation. A comparison of crystalloid and colloid in cecal ligation and

puncture-induced sepsis in rodents concluded that crystalloid infusion produced better

microcirculatory function as well as mortality benefit [48], with growing interest in

comparison of fluid types [49, 50] and early versus late resuscitation in experimental

animal models [51, 52]. Clinically, there is still controversy on the choice of resuscitation

fluids. The trial on Early Goal Directed Therapy (EGDT) for treatment of sepsis and

septic shock [47] was found to have no mortality benefit in subsequent trials [53–55].

However, lower mortality in septic patients resuscitated with albumin-containing

solutions had been reported in a meta-analysis [56] but there was no significant mortality

benefit of albumin compared to saline in the Fluid Expansion as Supportive Therapy

(FEAST) randomized controlled trial [57]. A Cochrane meta-analysis comparing colloid

to crystalloid fluid resuscitation, in a heterogeneous group of critically-ill patients, failed

to demonstrate any tangible benefits on mortality [58]. Emerging research data

highlights an urgent need to review volume resuscitation strategies and adjunct

vasopressor use in sepsis and septic shock.

Mechanistic research is therefore essential to define cause and effect. However, whilst

animal research is advocated for investigating mechanisms of disease process and

testing therapeutic interventions, discordant comparisons of treatment effects between

animal experiments and clinical trials have arisen, due to the failure of animal models

to adequately mimic clinical disease [59].

The aim of this review was to identify clinically relevant experimental animal models

that have been used to assess the microcirculatory effects of fluid resuscitation

treatment for lipopolysaccharide (LPS)-induced sepsis. We therefore examined the

evidence available on the effects of fluid resuscitation on the microcirculation in LPS-

induced sepsis and septic shock.

Methods

Search strategy

A systematic search was conducted in two indexed online databases—PubMed/MED-

LINE and EMBASE—for articles describing the microcirculation in sepsis and septic

shock, published from 1 January 1990, through 31 December 2015, in accordance with

PRISMA guidelines [60]. In PubMed/MEDLINE, the search terms used in [MeSH Terms]

or [All Fields] were ‘sepsis’ OR ‘septicaemia’ OR ‘septic shock’ AND ‘microcirculation’. In
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EMBASE, the keywords used were ‘(microcirculation AND sepsis)’, ‘(microcirculation AND

septicaemia)’, and ‘(microcirculation AND septic shock)’.

Selection criteria

All abstracts identified through the searches were compiled in Endnote® (Thomson

Reuters) and screened for relevance, after removing duplicates. Publications were

eligible for inclusion in the review if they were conducted on animal models of LPS-

induced sepsis and septic shock and compared different types of fluid resuscitation,

with or without a control group. Full published manuscripts of studies considered

relevant were retrieved and reviewed. Cited publications within the retrieved articles

were also screened for relevance. We restricted our review to studies assessing the

effects of fluid resuscitation on the microcirculation in sepsis/septic shock and articles

either written in English or translated into English.

Results

A total of 2346 articles were retrieved from our search of published literature. Initial

screening to remove duplicates and studies with no apparent relevance yielded 912 unique

articles (Fig. 1). There has generally been a gradual increase in the number of published

papers on sepsis and the microcirculation over the last 25 years (Fig. 2). After excluding

non-experimental review articles, clinical studies and pre-clinical experiments investigat-

ing therapeutic interventions other than volume resuscitation, 11 studies were found to

be relevant to the assessment of microcirculatory effects of volume resuscitation in animal

models of LPS-induced sepsis. The methods used for quantification of microcirculation

function, type and volume of resuscitation fluid administered and the resultant microcir-

culatory effects in the retrieved studies are presented in Table 1.

Study characteristics

The featured 11 studies involved both small rodent models, included two hamster

studies (n = 58) [61, 62], and two rat studies (n = 57) [52, 63], and large mammal

models, which included three pig (n = 64) [51, 64, 65], two dog (n = 28) [66, 67] and two

sheep studies (n = 27) [15, 68]. In each instance, sepsis was induced by intravascular LPS

infusion post induction of appropriate anaesthesia.

Microcirculatory assessment and outcome

In the small rodent models, microcirculatory function was assessed primarily by intra-

vital fluorescence microscopy [61–63], with one study using laser speckle imaging [52].

Laser Doppler flowmetry and/or videomicroscopic sidestream dark-field (SDF) imaging

were largely used for microcirculatory assessments in the larger mammalian models

[15, 51, 65, 67]. One study utilized indirect quantification of oxygen extraction to assess

microcirculatory function [66]. Six studies reported improved blood flow in the microcir-

culation and reduced extravasation of plasma following fluid resuscitation [61–64, 66, 67].

One study reported improvement of microvascular blood flow and oxygenation with over-

all negative fluid balance in sepsis [65], whilst three studies documented persistent micro-

circulatory dysfunction with volume resuscitation [15, 51, 52]. One study exhibited

improved sublingual and serosal intestinal microcirculation, but persistent dysfunction in

the intestinal mucosal villi within the same sepsis model resuscitated with hydroxyethyl

starch (HES) [68]. None of the studies presented in this review used blood transfusion for

volume resuscitation. Differences in the animal species, size of the study arms, methods
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of microcirculatory assessment, types and volume of fluid resuscitation administered and

the experimental time-points for the induction of sepsis and resuscitation precluded any

quantitative meta-analysis.

Discussion

Preclinical animal research is a necessary adjunct to clinical trials as we seek to improve

our mechanistic understanding of the pathophysiology of sepsis and the consequent

effects of volume resuscitation. Different outcomes in the animal studies presented in this

review reflect a state of equipoise regarding the effectiveness of volume resuscitation on

the microcirculation in the management of sepsis and septic shock.

The aetiology of microcirculatory dysfunction seen during sepsis is multi-factorial,

including increased blood viscosity, reduced red blood cell deformability [69], neutro-

phil activation [70] and impaired vascular auto-regulation [20], leading to inadequate

oxygen delivery to tissues. The mechanical properties of red blood cells are altered by

effects of endotoxin binding directly to the red blood cells [71]. Increased vascular per-

meability occurs as a result of endothelial cell damage. Disruption of the endothelial-

Fig. 1 PRISMA flow diagram for experimental animal models of microcirculatory fluid resuscitation in
septic shock
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glycocalyx barrier exposes endothelial cell surface adhesion molecules that trigger the

activation of mast cells, and the adhesion of platelets and white blood cells, thereby

causing further inflammation [72] and nitric oxide production [73]. Nitric oxide, in

turn, induces the relaxation of vascular smooth muscle, leading to increased blood flow

shear stress and the production of pro-inflammatory cytokines, further worsening

endothelial inflammation. Rapidly administered volume resuscitation therapy in the

setting of a damaged endothelial-glycocalyx barrier alters cardiovascular haemodynam-

ics [51] and may further exacerbate interstitial oedema directly by increasing intra-

vascular hydrostatic pressure and indirectly through osmotic diffusion across the

concentration gradient of leaked solutes.

Three of the studies presented in this review used intravital microscopy to assess the

microcirculation, two demonstrating an improvement with fluid administration [61, 63]

and one an improvement with hydroxyl-ethyl starch but not saline administration [62].

Only one study used laser speckle microcirculatory imaging [52] and showed no

improvement following fluid administration. Three studies presented in this review

used laser Doppler imaging and showed improved microcirculatory reactivity with fluid

administration [64, 65, 67]. Microcirculatory assessment by sidestream dark-field

imaging presented in this review exhibited heterogeneous effects in different tissues in

one study [68], but no improvement in another [51]. Comparisons of different microcircu-

latory imaging techniques have been reported in literature [41, 74–76]. Investigators who

conducted a comparative study on cochlear blood flow concluded that intravital micro-

scopic measurements were more sensitive than laser Doppler measurements [77].

However, comparing the microcirculatory results attained with different methods is a

Fig. 2 Number of unique publications on the microcirculation in sepsis and septic shock retrieved by year
of publication from 1 January, 1990 to 31 December, 2015
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Table 1 Animal model studies assessing effects of volume resuscitation on the microcirculation in lipopolysaccharide-induced sepsis

Author Publication
year

Animal
species

Number
per arm

Methods used for
microcirculation assessment

Type and mean volumes
administered

Principal findings Motivation for study

Maciel
et al. [66]

1998 Dog 7 Quantification of oxygen
extraction:
Microcirculation was assessed
indirectly by quantifying oxygen
extraction in gas analyzers sampling
to measure expired oxygen fraction
and end-tidal carbon dioxide tension

a) 291 ± 62 mL (control
group, isotonic saline 0.9%)

b) 123 ± 12 mL (treatment group,
hypertonic saline 7.5%)

Hypertonic saline
resuscitation increases
oxygen extraction compared
to isotonic saline by improved
microvascular perfusion

Assess whether a solution
of hypertonic saline hydroxyl-
ethyl starch can increase
tissue oxygen extraction in
endotoxic shock

de Carvalho
et al. [61]

1999 Hamster 6 Intravital fluorescence microscopy:
Microcirculation was assessed by
intravital microscopy of cheek pouch
tissue and counting extravasation sites
of fluorescein isothiocyanate-labelled,
FITC dextran

a) No sepsis control; 0.35
mL/100 g body weight for
4 min, 7.5% hypertonic saline

b) and c) LPS groups 1 and 2
(no volume resuscitation controls)

d) HS group; 0.35 mL/100 g body
weight for 15 min prior to LPS

e) HSD group; 0.35 mL/100 g
body weight for 15 min prior
and 4 min after the induction
of LPS

Hypertonic saline with and
without dextran reduce local
and systemic endotoxin-
inducedplasma leakage

Assess effect of hypertonic
saline with and without
dextran on endotoxin-induced
vascular permeability in the
cheek pouch microcirculation
compared to systemically

Zhang
et al. [67]

1999 Dog 7 Laser Doppler perfusion monitoring:
Microcirculation was assessed by laser
Doppler measurements obtained from
ileum and liver microvasculature which
were then used to calculate an arbitrary
red blood cell flux index in 1 mm3 of
tissue in each organ

a) No fluid resuscitation control
group

b) 20 mL/kg/h 0.9% normal saline

Microvascular depression in
endotoxaemia was more
severe in the liver than in
the intestinal mucosa but
increased similarly after initial
resuscitation

Compare alterations in
hepatic and intestinal
mucosal microcirculation
during the acute phase of
blood flow reduction in
endotoxic shock and the
effect of fluid resuscitation

Oi et al.
[64]

2000 Pig (7, 8 and 9) Laser Doppler flowmetry:
Microcirculation was assessed by
intestinal blood flow laser Doppler
measurements expressed in arbitrary
laser Doppler perfusion units, PU

a) No fluid resuscitation control
group

b) 4 mL/kg over 10-min
(0.9% isotonic saline in 6%
dextran 70, ISD)

c) 4 mL/kg over 10-min
(7.5% hypertonic saline
in 6% dextran 70, HSD)

Hypertonic saline improved
intestinal mucosal blood flow
better than isotonic saline and
no resuscitation

Compare effects of
hypertonic saline, isotonic
saline and no resuscitation in
endotoxin shock
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Table 1 Animal model studies assessing effects of volume resuscitation on the microcirculation in lipopolysaccharide-induced sepsis (Continued)

Hoffmann
et al. [62]

2002 Hamster (7, 6 and 8) Intravital fluorescence microscopy:
Microscopy was assessed by
intravital microscopy on dorsal
skin-fold chamber and
computation of;
(a) Functional capillary density, FCD

(i.e. length of all erythrocyte-
perfused nutritive capillaries per
observation area)

(b) Vascular permeability quantified
by extravasation of fluorescein
isothiocyanate-labelled, FITC
dextran

a) No fluid resuscitation control
group

b) 16 mL/kg HES
c) 66 mL/kg 0.9% isotonic saline

Synthetic hydroxyethyl starch
(HES) preserved the functional
capillary density (FCD) compared
to saline and no resuscitation

Assess and compare effects
of different volume support
administered in endotoxin-
induced microcirculatory
disorders

Anning
et al. [63]

2004 Rat (5, 6 and 7) Intravital fluorescence microscopy:
Microcirculation was assessed by
intravital microscopy on an
exteriorised loop of intestine and
its associated mesentry and
computation of;
(a) Measurements of the rolling

velocity of all leucocytes
entering a microvessel and
leucocyte flux (i.e. the number
of rolling leucocytes) were
defined as adherent if stationary
for >30 s

(b) Vascular permeability quantified
by extravasation of fluorescein
isothiocyanate-labelled bovine serum
albumin (FITC-BSA)

a) No fluid resuscitation control
group

b) 16 mL/kg/h (0.9% saline)
c) 16 mL/kg/h (5% albumin)

Lipopolysaccharide-induced
albumin flux, leucocyte rolling
and adhesion in the
microcirculation was reduced
by both 0.9% saline and 5%
human albumin solutions

Assess effect of fluid
administration on
lipopolysaccharide-induced
changes in mesenteric
microcirculation

Dubin
et al. [68]

2008 Sheep 7 Sidestream dark-field imaging:
Microcirculation was assessed by
the following measurements
obtained from sublingual mucosa
and intestinal mucosa and serosa
(three different regions within each

6% HESa Hydroxyethyl starch fluid
resuscitation restored
microcirculation in the
sublingual and intestinal serosa
but not in the intestinal mucosa

Test hypothesis that persistent
villi hypoperfusion explains
intramucosal acidosis after
resuscitation for
endotoxaemic shock
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Table 1 Animal model studies assessing effects of volume resuscitation on the microcirculation in lipopolysaccharide-induced sepsis (Continued)

site and each image was divided into
four quadrants)
(a) Microvascular flow index, MFI

[i.e. based on the diameters,
blood capillaries were classified
as small (10–25 μm), medium
(26–50 μm) or large (51–100 μm)
and flow was scored as no flow (0),
intermittent flow (1), sluggish flow (2),
continuous flow (3) or hyperdynamic
flow (4). MFI calculated as the sum of
each quadrant score divided by the
number of quadrants in which the vessel
type is visible]

(b) Percentage of perfused villi, PV%
[i.e. the number of villi in each video
were counted and semi-quantitatively
classified as perfused, heterogeneously
perfused or unperfused; PV% was
calculated as number of perfused villi
divided by the total number of villi]

Legrand
et al. [52]

2011 Rat (5 and 7) Laser speckle imaging:
Microcirculation was assessed by the
following measurements obtained
from the renal cortex
(a) Microvascular perfusion histograms

based on laser speckle imaging
perfusion maps

(b) Microvascular oxygen tension
histograms based on phosphorimetry

a) Early resuscitation group
40 mL/kg in 300 min (HES),
administered as 20 mL/kg/h
in the first hour and 5 mL/kg/h
for the remaining duration of
the protocol
b) Late resuscitation group
30 mL/kg in 300 min (HES),
administered as 20 mL/kg/h
in the first hour and 5 mL/kg/h
for the remaining duration of
the protocol

Despite immediate
hydroxyethyl starch fluid
resuscitation being better
than delayed resuscitation,
overall prevention of renal
macrovascular hypoperfusion
did not fully prevent renal
microcirculatory dysfunction

Test hypothesis that
prevention of endotoxaemia-
induced hypotension by im
mediate fluid resuscitation
would prevent development
of renal microcirculatory
dysfunction

Andersson
et al. [15]

2012 Sheep (5 and 8) Laser Doppler flowmetry and sidestream
dark-field videomicroscopy:
Microcirculation was assessed by the
following measurements obtained from

a) LPS group
519 ± (SD) 342 mL (HES)

Microcirculatory dysfunction
persisted in fluid resuscitated
endotoxaemic shock despite
increased regional blood flow

Test hypothesis that in
hyperdynamic endotoxaemic
shock, intestinal
microcirculatory dysfunction
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Table 1 Animal model studies assessing effects of volume resuscitation on the microcirculation in lipopolysaccharide-induced sepsis (Continued)

five sites in the ileal mucosa, with each
site divided into 4 quadrants at
each time-point.
(a) Microvascular flow index, MFI

[i.e. average flow of all quadrants
scored as no flow (0), intermittent
flow (1), sluggish flow (2) or
continuous flow (3)]

(b) Percentage of perfused villi, PV%
[i.e. the number of villi in each video
were counted and semi-quantitatively
classified as perfused, heterogeneously
perfused or unperfused; PV% was
calculated as number of perfused villi
divided by the total number of villi]

(c) Heterogeneity index, HI [i.e. highest
flow velocity minus lowest flow
velocity divided by the mean MFI]

will be present despite
increased regional blood flow

Duburcq
et al. [65]

2014 Pig 5 Laser Doppler flowmetry:
Microcirculation was assessed on the
skin blood flow using laser Doppler
measurements expressed in arbitrary
perfusion units, PU [i.e. peak flow was
defined as the highest flow signal
obtained post-pneumatic occlusion
of blood flow to the legs. Duration of
the flow signal was also recorded]

a) 0.9% sodium chloride
group 5 mL/kg/h

b) 8.4% hypertonic sodium
bicarbonate 5 mL/kg/h

c) 11.2% hypertonic sodium
lactate 5 mL/kg/h

Hypertonic sodium lactate
solution improves microvascular
reactivity with a negative fluid
balance

Investigate effects of
hypertonic sodium lactate
compared to sodium chloride
on the microcirculation in
endotoxic shock

Lopez
et al. [51]

2015 Pig – Sidestream dark-field videomicroscopy:
Microcirculation was assessed by the
following measurements obtained
from the average of 12 quadrants
(i.e. three videos of sublingual mucosa,
four quadrants each);
(a) Microvascular density, MVD

[i.e. number of vessels per mm2

in sublingual mucosa]

a) LPS group 8 mL/kg/h (saline)
b) Early resuscitation protocol, ERP

250 mL/h for 2 h (Haemacell)
c) Sham 8 mL/kg/h (saline)

Early resuscitation restored
macro-haemodynamic
parameters but microcirculatory
alterations persisted

Assess systemic and
microcirculatory correlation
of early resuscitation for
endotoxic shock
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Table 1 Animal model studies assessing effects of volume resuscitation on the microcirculation in lipopolysaccharide-induced sepsis (Continued)

(b) Microvascular flow index, MFI
[i.e. average flow of individual
vessels scored as no flow (0),
intermittent flow (1), sluggish
flow (2) or continuous flow (3)]

(c) Heterogeneity flow index, HFI
[i.e. highest MFI minus lowest
MFI divided by mean MFI]

(d) Proportion of perfused vessels, PPV
[i.e. total number of vessels minus
number of vessels with flow = 0 or 1
divided by total number of vessels]

(e) Perfused vessel density, PVD
[i.e. MVD multiplied by PPV]

aVolume of resuscitation fluid administered not described
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significant challenge. We considered some of these, including videomicroscopic

techniques, whilst offering direct visualization of the microcirculation, the tissue

contact element is largely uncontrolled and may cause pressure-induced artefacts.

On the other hand, laser techniques are susceptible to motion artefacts, so that

combining techniques might enhance the accuracy of microcirculatory assessments

[76]. Only one study presented in this review used a combination of techniques to

assess the microcirculation (i.e., laser Doppler flowmetry and sidestream dark-field

imaging) and reported persistent acidosis, microcirculatory and mitochondrial

dysfunction despite resuscitation with hydroxyethyl starch (HES) fluid [15]. Routine

microcirculation assessment is rarely performed owing to heterogeneity of micro-

vascular beds in different organs and complexity of assessment techniques. There

was significant heterogeneity in the type and volume of resuscitation fluids used in

the studies presented in this review. Clinically, substantial controversy still sur-

rounds the choice of fluid for resuscitation. The Saline versus Albumin Fluid

Evaluation (SAFE) study in adults similarly failed to identify any significant differ-

ence in the sepsis sub-group of patients [78], despite a lower unadjusted relative

risk of death for albumin versus saline compared with non-septic patients [79].

The Crystalloid versus Hydroxyethyl Starch Trial (CHEST) revealed an increased

rate of renal replacement therapy and adverse events (pruritus, rash) in intensive

care unit patients resuscitated using colloid (6% hydroxyethyl starch, HES) com-

pared to crystalloid (0.9% saline), with no significant difference in the 90-day

mortality between the two groups [80]. For paediatric sepsis, the evidence base for

fluid resuscitation upon definitive choices of fluids for resuscitation in severe

infection and shock remains very weak [81], with most studies providing low qual-

ity of evidence or focusing on malaria and dengue. The FEAST trial documented a

45% relative (95% confidence interval, CI 13–86%) increase in 48-h mortality

compared to control, with no significant difference between the saline and albumin

bolus arms [57]. A subsequent systematic review formally assessing the evidence

for bolus fluid resuscitation included 13 studies which met the inclusion criteria (4

general shock, 4 malaria, 4 dengue and 1 severe malnutrition). None were conducted in

high-income countries and the only study to include a control arm (i.e. no fluid bolus

arm; FEAST trial), found at 48 h a lower mortality in controls compared to those receiv-

ing saline or colloid boluses (relative risk for sepsis 0.69, 95% CI 0.54–0.89 and for malaria

0.64, 95% CI 0.46–0.91, respectively) [82]. Similarly, other studies have reported higher

rates of morbidity and mortality with positive fluid balance in septic shock [83–89] and

one retrospective pilot study reported good prognosis in patients who achieved a negative

fluid balance within the first 3 days of septic shock [90]. Previous research showing transi-

ent pulmonary arterial hypertension that was induced by transfusion with donor blood,

which had been stored for 35–42 days, is suggestive of a two-hit hypothesis that can be

extrapolated to sepsis (first-hit) and volume resuscitation (second-hit) [91].

The pathogenesis of sepsis is complex, and evidence of higher rates of mortality with

volume resuscitation therapy has led to the development of a two-hit hypothesis,

highlighting the need for further mechanistic studies. Similarly, the heterogeneity in

monitoring targets to guide resuscitation in septic shock has been recently highlighted

[53–55]. Novel approaches and consensus in monitoring targets are required to

preserve and evaluate the microcirculation in order to improve the treatment of sepsis.
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Conclusions
Microcirculatory resuscitation is an important therapeutic goal, as restoration of the

macro-circulation alone fails to improve microvascular function. Transferring wet-

bench discoveries to the clinical setting requires biologically relevant animal model

studies to understand both the mechanisms by which fluid resuscitation affects the

microcirculation and the role of the endothelial-glycocalyx in sepsis. One important

priority for mechanistic research in sepsis is to compare the microcirculatory indices

and outcomes achieved with different resuscitation strategies. Further research with

defined therapeutic end-points and standardized fluid and microcirculatory assessment

protocol is required as it remains unclear whether the heterogeneity that was seen

was a result of the model used, resuscitation fluids used or the microcirculatory

assessment techniques.
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