
REVIEW Open Access

Heart failure supported by veno-arterial
extracorporeal membrane oxygenation
(ECMO): a systematic review of pre-clinical
models
Silver Heinsar1,2†, Sacha Rozencwajg1,3*† , Jacky Suen1*, Gianluigi Li Bassi1, Maximilian Malfertheiner1,4,
Leen Vercaemst5, Lars Mikael Broman6,7, Matthieu Schmidt2, Alain Combes2, Indrek Rätsep3, John F. Fraser1,
Jonathan E. Millar1,8 and on behalf of the European Extracorporeal Life Support Organisation (EuroELSO)
Innovations Workgroup & the National Health Medical Research Council Australia Centre of Research Excellence
for Advanced Cardio-respiratory Therapies Improving Organ Support (NHMRC CREACTIONS)

* Correspondence: sacha.
rozencwajg@aphp.fr; j.suen1@uq.
edu.au
†Sacha Rozencwajg and Silver
Heinsar contributed equally to this
work.
1Critical Care Research Group, The
Prince Charles Hospital, University of
Queensland, Chermside, Brisbane,
Australia
Full list of author information is
available at the end of the article

Abstract

Objectives: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is
increasingly being used to treat patients with refractory severe heart failure. Large
animal models are developed to help understand physiology and build translational
research projects. In order to better understand those experimental models, we
conducted a systematic literature review of animal models combining heart failure
and VA-ECMO.

Studies selection: A systematic review was performed using Medline via PubMed,
EMBASE, and Web of Science, from January 1996 to January 2019. Animal models
combining experimental acute heart failure and ECMO were included. Clinical
studies, abstracts, and studies not employing VA-ECMO were excluded.

Data extraction: Following variables were extracted, relating to four key features: (1)
study design, (2) animals and their peri-experimental care, (3) heart failure models
and characteristics, and (4) ECMO characteristics and management.

Results: Nineteen models of heart failure and VA-ECMO were included in this
review. All were performed in large animals, the majority (n = 13) in pigs. Acute
myocardial infarction (n = 11) with left anterior descending coronary ligation (n = 9)
was the commonest mean of inducing heart failure. Most models employed peripheral
VA-ECMO (n = 14) with limited reporting.

Conclusion: Among models that combined severe heart failure and VA-ECMO, there is
a large heterogeneity in both design and reporting, as well as methods employed for
heart failure. There is a need for standardization of reporting and minimum dataset to
ensure translational research achieve high-quality standards.
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Introduction
Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is a therapeutic op-

tion for critically ill patients with cardiogenic shock, pulmonary embolism, or septic

shock who are refractory to conventional treatments [1–3]. It consists of an extracor-

poreal life support (ECLS) circuit and a membrane lung with a venous drainage and an

arterial return. Advances in technology, miniature ECMO consoles and improved cir-

cuit biocompatibility have exponentially increased the use of VA-ECMO over the last

decade and helped broaden its indications [4, 5]. To further improve outcomes and re-

duce complications associated with the use of VA-ECMO, high-quality clinical research

is required [6].

Animal models constitute a cornerstone of critical care research, especially in the

field of mechanical organ support, as they can provide a basis for understanding physi-

ology and design relevant clinical trials. Although the ultimate goal of animal studies is

to reflect the clinical scenario, the variability in methods used sometimes makes it diffi-

cult to directly translate the results obtained into clinically valuable therapeutic ap-

proaches. Multiple animal models using VA-ECMO have been published over many

years; however, a comprehensive comparison between different models, in terms of

feasibility and methods, is lacking, causing controversy within the field.

Therefore, we conducted a systematic review to summarize distinctive features of

available animal models of heart failure supported by VA-ECMO, and to highlight po-

tential limitations, with the goal of identifying best practices for use in the design of fu-

ture studies.

Methods
This systematic review was performed following PRISMA guidelines [7]. The design was

prepared in accordance with the SYRCLE guidelines [8], and the protocol was published

on the PROSPERO website (https://www2.le.ac.uk/library/find/databases/p/prospero)

under the registration number CRD42018090364.

Inclusion and exclusion criteria

Our review covered animal models of heart failure supported by VA-ECMO with no

restriction to the publication language. This comprised studies of all types which

matched the following PICO approach: (1) population defined as animals with heart

failure; (2) intervention defined as animals treated with VA-ECMO; (3) controls defined

as animals not treated with VA-ECMO (when the study involved more than one

group); and (4) outcomes comprised data reporting quality, characteristics of heart fail-

ure, and ECMO support.

Studies using VA-ECMO in the context of cardiac arrest were excluded, as extracor-

poreal cardiopulmonary resuscitation (ECPR) represents a different clinical scenario

and carries its own definition [9].

Search strategy and data extraction

We used PubMed, Web of Science, and EMBASE to search for animal models of heart

failure on VA-ECMO from January 1st, 1996 to January 1st, 2019. The search con-

tained keywords relevant to cardiac failure and VA extracorporeal membrane
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oxygenation, applying pre-published animal filters when relevant [10, 11]. References

from identified studies and relevant review articles were also searched for additional eli-

gible citations. The full search strategy is provided in the Supplementary materials.

Two independent reviewers (SH and IR) initially screened articles based on their titles

and abstracts. Full-text articles were subsequently independently reviewed (SH and SR)

and data were extracted according to a data extraction form available in the Supple-

mentary materials eTable 1. In case of discrepancies, an independent reviewer was con-

sulted (JM). We only included data that were presented in the reviewed paper itself,

except when the paper relied on a model described elsewhere by the same authors.

Study outcomes

Quality of reporting

Global quality of data reporting was assessed using the ARRIVE guidelines which pro-

vide specific recommendations for methodology and results in animal studies (see Sup-

plementary materials eTables 2 and 3) [12].

To assess the methodology used for acute heart failure models, we compared criteria

used by each study with established guidelines or large international trials, adapted to

fit with animal practice [13–17]. Although not every study was designed to study car-

diogenic shock, specifically, we considered it of matter as it is the clinical situation in

which VA-ECMO is mostly used. We thus considered that a study had defined cardio-

genic shock adequately if (1) it was consistent with the guidelines in force at the time

of the experiment; (2) it used a combination of two criteria present in any guidelines

including at least one clinical criterion; or (3) it used one criterion present in any guide-

lines and successfully induced acute heart failure. When a study failed to meet cardio-

genic shock criteria, it was considered as “acute heart failure without cardiogenic

shock.”

Heart failure models: characteristics and comparison

The data extraction protocol consisted of the following parameters: type of heart failure

induction, methods used to induce heart failure, and criteria used to define cardiogenic

shock (as described above) and complications. Details of the definitions used can be

found in the Supplementary materials eTable 1.

VA-ECMO support characteristics

Parameters included in the data extraction protocol consisted of the type of console/

pump, oxygenator, priming solution, ECMO configuration and access, cannulation

technique and size, anticoagulation drug and target. Details of the definitions used can

be found in the Supplementary materials eTable 1.

Statistical analysis

Data were analyzed using descriptive statistics and reported as number of occurrences

(percentage) or mean ± standard deviation, unless otherwise stated. Given the hetero-

geneous nature of included studies and taking into account that the aim of the review

is to characterize and assess the quality of the models rather than the study outcomes,

no attempt was made at meta-analysis.
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Results
Study selection and animal characteristics

A total of 349 articles were retrieved through the search from PubMed, Web of Sci-

ence, and EMBASE. After removing duplicates, 270 studies were screened by titles and

abstracts of which 21 full-text articles were reviewed to finally include 19 studies in the

systematic review [18–36] (Fig. 1).

The median study population was ten animals per study (from two to 26) and the

majority (12/19, 63%) used porcine models [18, 19]. Animal age was missing in nearly

half of the studies reviewed, while anesthetic and airway management were only re-

ported in 22% and 17% of studies, respectively (details can be found in the Supplemen-

tary materials eTable 4). Housing and husbandry were systematically omitted, and in

12 out of 19 studies, animals’ fasting protocol was not mentioned. Ten studies (53%)

had several groups and could thus be qualified as interventional studies (Table 1).

Quality of reporting

Detailed results regarding the concordance of the applied methodology with the AR-

RIVE checklist can be found in the Supplementary materials eTables 2 and 3.

General quality of reporting was considered mediocre due to the marginal description

of materials and methods and to the heterogeneity in the interventions. As for the de-

scription of the methods used to develop heart failure, four studies did not report any

criteria to define heart failure [20–23]. One study did not present hemodynamic results,

rendering it impossible to assess if the cardiogenic shock was achieved during the ex-

periment, or not [24]. Of the remaining 15 studies, ten (66%) used criteria consistent

with adequate cardiogenic shock definition and seven (47%) reported enough data to

confirm that animals reached cardiogenic shock (the two Esmolol-induced models and

Fig. 1 Flow chart of studies selection
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Table 1 Type of studies and main animal characteristics (sorted by animal type)
Study Year Species Study type Animal

agea
Number Heart failure

model
ECMO
configuration

Group(s)

Sakamoto
et al.

2015 Dogs Other Adult 21 Myocardial
infarction

Vj-Af ECMO with AMI (n = 13)
ECMO without cardiac
failure (n = 8)

Kawashima
et al.

2011 Dogs Physiological Adult 6 Myocardial
infarction

RA-Af –

Yu et al. 2008 Dogs Interventional ND 13 Myocardial
infarction

RA-Af Pulsatile ECMO (n = 7)
Non-pulsatile ECMO
(n = 6)

Segesser
et al.

2008 Ox Physiological ND 5 Pacing Vf and Pb –
ACAR

–

Møller-
Helgestad
et al.

2018 Pigs Interventional ND 14 Myocardial
infarction

Vf-Af ECMO (n = 6)
Impella (n = 6)

Ostadal et al. 2018 Pigs Physiological 4-5
months

16 Myocardial
hypoxia

Vf-Af –

Simonsen
et al.

2018 Pigs Interventional 90 days 12 Carbon
monoxide
poisoning

Vf-Af ECMO (n = 6)
Conventional
treatment (n = 6)

Janak et al. 2017 Pigs Physiological 4-5
months

8 Myocardial
infarction

Vf-Af –

Vanhuyse
et al.

2017 Pigs Interventional ND 12 Myocardial
infarction

Vf-Af ECMO + normothermia
(n = 6)
ECMO + hypothermia
(n = 6)

Esposito et al. 2016 Pigs Interventional Adult 10 Myocardial
infarction

Vf-Af ECMO (n = 4)
TandemHeart (n = 4)

Hala et al. 2016 Pigs Physiological Up to 6
months

5 Pacing Vf-Af –

Itoh et al. 2015 Pigs Interventional ND 14 Pacing RA-AO Pulsatile ECMO (n = 7)
Non-pulsatile ECMO
(n = 7)

Ostadal et al. 2015 Pigs Physiological 4-5
months

5 Myocardial
hypoxia

Vf-Af –

Brehm et al. 2014 Pigs Physiological ND 7 Drug-induced
(Esmolol)

Vf-Af –

Kajimoto
et al.

2014 Pigs Interventional 30-57 days 19 Myocardial
infarction

RA-AO ECMO with AMI (n = 6)
ECMO with AMI and T3
supplementation (n = 6)
ECMO without cardiac
failure (n = 5)

Zhu et al. 2014 Pigs Interventional 4-5
months

24 Myocardial
infarction

Vf-Af ECMO (n = 8)
Control/sham (n = 8)
Drug therapy (n = 8)

Bartoli et al. 2013 Pigs Interventional ND 47 Myocardial
infarction

Vj-AAO
c ECMO vs IABP (n = 10)

ECMO vs PFVAD (n =
10)
ECMO vs CFVAD (n = 6)

Sauren et al. 2007 Sheep Physiological ND 7 Myocardial
infarction

Vf-Af and
Vf-AO

–

Naito et al. 2017 Sheep Physiological Adult 6 Drug-induced
(esmolol)

Vj-AAO
c –

AMI acute myocardial infarction; Af femoral artery; AO aorta; AR right atrium; asc. ascending; CAR carotid artery; CFVAD
continuous-flow ventricular assist device; P pulmonary artery; PFVAD pulsatile-flow ventricular assist device; Vf femoral
vein; Vj jugular vein
aAnimal age is written as per original paper statement
bVenous canula was first inserted into the right atrium through femoral access (as per peripheral VA-ECMO) and then
pushed onto the left pulmonary artery; arterial canula was maintained in the carotid throughout the experiment (as per
pediatric ECMO configuration)
cArterial canula was inserted surgically directly into the abdominal aorta through a graft
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five models of acute myocardial infarction). The last five studies were considered to

have reach acute heart failure but without cardiogenic shock (Table 2).

Heart failure models

Characteristics of heart failure models

Heart failure models are presented in Fig. 2 and their characteristics are summarized in

Table 3. All models but one [25] described acute heart failure. The majority of studies

used an acute myocardial infarction (AMI) model (n = 11) with left anterior descending

(LAD) coronary occlusion, mostly done through ligation. Other models used pacing (n =

3) [22, 25, 26] to induce ventricular fibrillation (VF), esmolol infusion (n = 2) [27, 28],

myocardial hypoxia (n = 2) [29, 30], or carbon monoxide poisoning (n = 1) [31]. The AMI

model was systematically complicated with at least two episodes of irreversible VF leading

to death, ranging from 9 to 50% of the subjects. This model seemed to display more com-

plications than the others (no statistical analysis could be made because of poor

reporting).

VA-ECMO support characteristics

Characteristics of VA-ECMO are summarized in Table 4. Most studies (17/19)

employed peripheral or combined cannulation through percutaneous (n = 6) or a surgi-

cal cut-down (n = 4). However, in nine out of 19 studies, cannulation methods were

not described. Cannula size was omitted in four studies and none reported the cannula

length. Furthermore, and importantly, arterial tip positioning was only confirmed in

three [25, 29, 30] out of the twelve studies which used peripheral return cannulation.

All studies used intravenous infusion of heparin, yet seven of the 19 studies (37%) did

not report any anticoagulation strategy targets. The combination of ECMO consoles,

pumps, and oxygenators across studies was highly diverse. Finally, the priming solution

was described only in six studies with wide variation [18, 21, 22, 24, 25, 32].

Discussion
In this systematic review, we provided a comprehensive overview of available pre-

clinical models of heart failure supported by VA-ECMO. The main findings of pooled

data can be summarized as follows: (1) there was a large heterogeneity in the develop-

ment of heart failure—AMI model with LAD occlusion was preferentially used and ex-

periments were mostly performed on pigs, (2) materials and methods were poorly

reported.

Main findings

Deficiencies in reporting and risks associated

Pre-clinical studies in large animals require consistent and reproducible methods in

order to ensure comparability across studies, and ultimately translation into clinical

studies. Concerns have been raised regarding the reporting of animal experiments as

numerous studies displayed insufficient reporting of methods [37, 38], and our results

are in line with those concerns. For example, animals’ characteristics and conditions

(e.g., age, feeding management, anesthetic management) may impact animal health or

lead to variability in treatment responses [38, 39]. Even more concerning, four studies
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failed to report the definition of heart failure used in their experiment. It was also

found that serious adverse effects, e.g., premature animal death, were poorly described.

It should be taken into account that a limited description of adverse effects poses a ser-

ious threat to the validity of experimental studies and constitutes substantial bias in

post hoc systematic reviews and meta-analyses [40].

Table 2 Criteria used to define cardiogenic shock adapted to animal practice
Clinical criteria Hemodynamic criteria Cardiogenic

shock
adequately
defined?

Cardiogenic
shock
achieved?Arterial

hypotensiona
Pulmonary
congestionb

End-organ
hypoperfusionc

Low
cardiac
outputd

Elevated
filling
pressuree

Dogs

Sakamoto et al. − − − − LAP > 10
mmHg

No N/A

Kawashima et al. − − − − − No N/A

Yu et al. No predefined
criteria

No N/A

Ox

Segesser et al. “pressure
drop”

− − − − No N/A

Pigs

Møller-Helgestad et al. − − SvO2 ≤ 35% + − Yes Yes

Ostadal et al. − − − + − Yes Yes

Simonsen et al. − − − + − Yes Yes

Janak et al. + − − + − Yes No

Vanhuyse et al. + − + + − Yes Yes

Esposito et al. No predefined criteria No N/A

Hala et al. Cardiogenic shock not studied N/A

Itoh et al. No predefined criteria No N/A

Ostadal et al. + − + − − Yes Yes

Brehm et al. + − − − + Yes No

Kajimoto et al. No predefined criteria No N/A

Zhu et al. + − − − − Yes No

Bartoli et al. − − Reduction of
SvO2 by 10%

+ Elevation
of LAP ≥ 5
mmHg

Yes Yes

Sheep

Sauren et al. − − − − − No N/A

Naito et al. MAP
reduction >
20 mmHg

− − + LAP increase
> 10 mmHg

Yes Yes

Data were divided into clinical and hemodynamic variables with “+” indicating the criterion was met and “−” indicating
the criterion was not met. When a criterion was correctly defined but met a different threshold, we considered the
criterion to be met and wrote the precise threshold used in the study. We considered that a study had defined
cardiogenic shock adequately if (i) it was consistent with the guidelines in force at the time of the experiment; (ii) it used
a combination of two criteria present in any guidelines including at least one clinical criterion; or (iii) it used one criterion
in the context of acute heart failure induction. We considered that a study had achieved cardiogenic shock if those
criteria were met during the experiment. Otherwise, it was considered as “acute heart failure without cardiogenic shock”.
LAP left atrial pressure; MAP mean arterial pressure; SvO2 venous saturation of oxygen
aSystolic blood pressure < 90 mmHg or inotrope, mean arterial pressure (MAP) < 65mmHg, or > 20% drop in MAP. Based
on criteria from SHOCK and IABP-SHOCK II Trial and NICE Clinical Guidelines
bCriteria from IABP-SHOCK II trial
cAltered mental status, cold/clammy skin and extremities, urine output < 0.5 mL/kg/h, pH < 7.35, elevated serum
creatinine, lactate > 2.0 mmol/L. SvO2 threshold based on criteria from SHOCK and IABP-SHOCK II Trial, NICE, and ESC
Clinical Guidelines
dCardiac index (CI) ≤ 2.2 L/min/m2 or cardiac output (CO) < 3.5 L/min or > 20% drop in CO. Based on criteria from SHOCK
and IABP-SHOCK II Trials and ESC Clinical Guidelines
ePulmonary capillary wedge pressure (PCWP) ≥ 15mmHg or increased left atrial pressure (LAP). Based on criteria from
SHOCK Trial and ESC Clinical Guidelines
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Heterogeneity in heart failure models

With regard to the development of heart failure, it should be mentioned that the most

common indication of VA-ECMO is cardiogenic shock refractory to medical therapy

[41]. Thus, to translate animal data to clinical practice, the induced heart failure had to

be severe. In our analysis, we used rather broad criteria to define cardiogenic shock,

i.e., features described in three different guidelines and a reduction in mean arterial

pressure and cardiac output. Irrespective of our wide-ranging criteria, seven out of the

18 studies investigating acute heart failure failed to meet those diagnostic criteria and

were considered as “acute heart failure without cardiogenic shock.” Regarding the

models used, one should be careful when using the term “acute myocardial infarction”

as the methods used behind this term were shown to be variable—from sequential

ligation of left circumflex side branches to total proximal irreversible LAD ligation

which may impact the severity and predominance of ventricular dysfunction.

Heterogeneity in ECMO support

There is a growing consensus that a more accurate terminology is needed in the field

of ECLS. As such, it has recently been asserted that “VA-ECMO” should not be applied

as an umbrella term for various situations but should be used only to denote the circu-

latory element of extracorporeal organ support (ECOS) [42]. In the same way, the

Extracorporeal Life Support Organization (ELSO, Ann Arbor, MI, USA) has recently

published an international multidisciplinary standardized nomenclature for definitions

and terminology for ECLS [9].

Fig. 2 Representation of the five heart failure models that were used in our review. From left to right:
ventricular pacing, myocardial hypoxia (through lowering of mechanical ventilation or perfusion of
desaturated blood in the coronary arteries), CO poisoning, myocardial infarction, and drug-induced heart
failure. CO, carbon monoxide; FiO2, inspired fraction of oxygen; Vt, tidal volume. Images were obtained
from https://smart.servier.com and are available under a creative commons license
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In our review, we highlighted the poor reporting of, and the lack of a unified termin-

ology for, even very basic data: access (percutaneous versus surgical), priming solution,

anticoagulation target, or cannula size.

Table 3 Detailed characteristics of heart failure model

Study Heart
failure

Injury model Procedure description Complications

Dogs

Sakamoto et al. Acute Myocardial
infarction

LAD ligation with suture –

Kawashima et al. Acute Myocardial
infarction

LAD ligation (sequential from
distal to proximal every 10 min)

Death from VF
(3 out of 6)

Yu et al. Acute Myocardial
infarction

LAD ligation (7 min) –

Ox

Segesser et al. Acute Pacing External stimulation to induce VF –

Pigs

Møller-Helgestad
et al.

Acute Myocardial
infarction

LMCA injection with alcohol
microspheres

Death from VF
(2 out of 14)

Ostadal et al. Acute Myocardial
hypoxia

Switch mechanical ventilation
to 5 breaths/min, 100 mL VT,
and FiO2 21%

–

Simonsen et al. Acute Carbon
monoxide
poisoning

Carbon monoxide administration Cardiac arrest
(6 out of 12) leading
to death (n = 5)

Janak et al. Acute Myocardial
infarction

LAD and LCx occlusion by balloon
inflation (5 min, echo-guided)

–

Vanhuyse et al. Acute Myocardial
infarction

LAD ligation (proximal) with
tourniquet (60 min)

–

Esposito et al. Acute Myocardial
infarction

LCx occlusion (proximal) by
balloon inflation (30 mins)

Death from VF
(2 out of 10)

Hala et al. Chronic* Pacing Ventricular pacing (200 bpm) –

Itoh et al. Acute Pacing Direct 3.5 V alternate current to
induce VF

–

Ostadal et al. Acute Myocardial
hypoxia

LAD or LCx perfusion with
venous blood

VF (2 out of 5)

Brehm et al. Acute Drug-induced
(Esmolol)

Esmolol bolus bolus at 2 mg/kg
into the LA

–

Kajimoto et al. Acute Myocardial
infarction

LAD ligation with sutures (10 min) Death (2 out of 19)

Zhu et al. Acute Myocardial
infarction

LAD ligation between diagonal
branches

Death (2 out of 24)

Bartoli et al. Acute Myocardial
infarction

LAD ligation (sequential) Death from
arrhythmias
(21 out of 47)

Sheep

Sauren et al. Acute Myocardial
infarction

LCx (or side branches) ligation “Unstable”
(3 out of 7)

Naito et al. Acute Drug-induced
(Esmolol)

Esmolol bolus at 2 mg/kg into
the LA and drip infusion (50 to
500mg/kg/min)

–

bpm beats per minute; LAD left anterior descending coronary; LCx left circumflex coronary; LMCA left main coronary
artery; VF ventricular fibrillation
*A delay of 4 to 8 weeks was respected in order to obtain clinical signs of heart failure
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Propositions for future studies

Choice of animal

Small animals are usually chosen for their accessibility, a lower housing cost,

shorter gestation times, and reduced costs for pharmacological treatment, as com-

pared to larger animal models [43]. Even though we could not identify models

combining heart failure and ECMO, rodent models supported by ECLS or ECMO

have been developed [44–46]. These models should not be abandoned as they can

bring preliminary mechanistic results, particularly at cellular or molecular levels, at

a lower cost.

Nevertheless, in order to study the effects of VA-ECMO on cardiac failure (especially

its physiological impact), considering the currently available technology and the severity

of the condition, large animal models are the most adequate. The choice of specific ani-

mal species to be used should be based on local resources and laboratory experience.

Nevertheless, some specificities are worth mentioning as they might help clinicians and

scientists in their choice. In particular, when exploring upper-body blood flow, despite

similar cerebral vascularization across different species, the left subclavian artery

(LSCA) may be separated from the brachiocephalic trunk at its origin in pigs which

may lead to (i) a different arterial curve between left and right upper-body leg, and (ii)

a different brain vasoreactivity to laminar flow [47]. Vascular access is also to be men-

tioned, as sheep femoral arteries form an abrupt angle with the abdominal aorta, thus

providing difficult percutaneous access. Finally, ovine and non-human primate models

show greater similarity to humans in terms of thrombogenicity mechanisms as com-

pared to dogs or pigs which may impact studies aiming at exploring in vivo impact of

ECMO on coagulation [48, 49].

Heart failure model and reporting

Cardiogenic shock in humans is mostly caused by AMI or severe myocardial ischemia

(anemia, hypoxia); therefore, the most frequently used animal models are developed

through coronary artery occlusions [50]. Nevertheless, as found in our study, these

models may produce severe and unpredictable adverse events, such as untreatable

hemodynamic instability caused by ventricular arrhythmias. In the specific setting of

VA-ECMO research, the extent of ischemic injury should be severe yet controllable in

order to develop a sustainable cardiac failure, unless extensive and terminal heart fail-

ure is being investigated. Up to today, we have found that such models are limited to

the use of esmolol [27, 28] and intra-myocardial injection of ethanol [51]—a recently

described and promising method for which data still need to be reproduced. Other

methods of inducing heart failure have been proposed, in particular, pressure overload

models via cardiac banding-debanding (also known as thoracic aortic compression—

TAC), leading to successful, precise, and reproducible results in small animals [52, 53].

The aim of these models’ is slightly different as they study the consequences of an

“acute on chronic” heart failure. However, they are relevant for the subpopulation of

patients which could undergo ECMO, and the characteristics of precision and reprodu-

cibility meet the criteria we identified to study the consequences of VA-ECMO. These

models would therefore merit further evaluation, as studies on large animals are cur-

rently limited [54].
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VA-ECMO settings and reporting

Unless required by the experiment protocol, we believe VA-ECMO settings and more

generally hemodynamic support should be standardized to ensure comparability and

translation into clinical studies. A clear definition of cardiogenic shock should be pro-

vided, and a strategy to support it (fluid therapy, inotropes, and vasopressors) as well as

hemodynamic targets (MAP above 65mmHg with normalization of arteria lactate) as

per current guidelines. Once VA-ECMO support has been started, cannulation and set-

tings should be as standardized as possible as per latest guidelines or practice: femoral

percutaneous access with arterial tip position confirmation, 60 mL/kg/min of ECMO

blood flow, a membrane fraction of oxygen (FDO2) as low as possible in order to reach

SaO2 of 92% on the right upper limb, with a sweep gas flow to maintain a stable arter-

ial pH. Ventilation strategy under VA-ECMO is still highly debated, and we do not

comment on this since it was not the scope of this review. In Table 5, we propose a

minimum dataset based on the latest guidelines [55].

Limitations

Our study has several limitations. Firstly, data extraction into pre-defined categories

may result in a simplification of the data presented in the studies reviewed. Secondly,

we did not conduct a formal assessment of the risk of bias. Finally, we also excluded

studies before 1996 from our analysis and thus, may have excluded viable models.

Table 5 Proposed minimum reporting dataset for pre-clinical models of heart failure supported by
VA-ECMO

Dataset Example items Notes/criteria proposed

1. Animal Species, age, sex, housing and
husbandry.

Use ARRIVE guidelines [12]

2. Heart failure
model

Method of injury including detailed
surgical/medical procedure, timing
and delay
Heart failure/cardiogenic shock
definition
Heart failure/cardiogenic shock
achievement

Use latest guidelines and/or trials adapted to
fit with animal practice

3. Hemodynamic Hemodynamic targets MAP > 65 mmHg, arterial lactate < 2 mmol/L
Items mandatory to report: LVOT VTI, LVEF,
aortic valve opening, pulse pressure

Hemodynamic support strategy Fluid support (type and volume per kg) and strategy
Vasopressor support (type and dose per kg per min)
and strategy (first line support, second line support)

4. ECMO type ECMO configuration
Method of cannulation

Peripheral (except in post-cardiotomy setting)
Percutaneous femoral access (except in post-
cardiotomy setting)

5. ECMO equipment Pump and oxygenator model
Canula model and size
Placement confirmation
(if peripheral)

Use Maastricht treaty nomenclature [9]

6. ECMO settings Flow targets
Gas exchange targets
Anticoagulation treatment
and target

60-80mL/kg/min
FmO2 minimal, sweep gas flow to maintain
stable pH

ECMO extracorporeal membrane oxygenation; FmO2 membrane fraction of oxygen; LVEF left ventricular ejection fraction;
LVOT left ventricular outflow tract; MAP mean arterial pressure; SvO2 venous saturation of oxygen; VTI velocity-time index
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Conclusion
In this systematic review, an overview of contemporary animal models of heart failure

supported by veno-arterial extracorporeal membrane oxygenation was given. There is a

large heterogeneity in methodology for heart failure induction, as well as ECMO man-

agement reporting. Future studies should aim at minimizing those reporting failures—

most likely through the use of a minimum dataset—in order to standardize these pre-

clinical experiments and help better translation to clinical studies.
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