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Abstract 

Patients on mechanical ventilation may receive intravenous fluids via restrictive or 
liberal fluid management. A clear and objective differentiation between restrictive and 
liberal fluid management strategies is lacking in the literature. The liberal approach 
has been described as involving fluid rates ranging from 1.2 to 12 times higher than 
the restrictive approach. A restrictive fluid management may lead to hypoperfusion 
and distal organ damage, and a liberal fluid strategy may result in endothelial shear 
stress and glycocalyx damage, cardiovascular complications, lung edema, and distal 
organ dysfunction. The association between fluid and mechanical ventilation strategies 
and how they interact toward ventilator-induced lung injury (VILI) could potentiate 
the damage. For instance, the combination of a liberal fluids and pressure-support 
ventilation, but not pressure control ventilation, may lead to further lung damage in 
experimental models of acute lung injury. Moreover, under liberal fluid management, 
the application of high positive end-expiratory pressure (PEEP) or an abrupt decrease 
in PEEP yielded higher endothelial cell damage in the lungs. Nevertheless, the transla-
tional aspects of these findings are scarce. The aim of this narrative review is to provide 
better understanding of the interaction between different fluid and ventilation strate-
gies and how these interactions may affect lung and distal organs. The weaning phase 
of mechanical ventilation and the deresuscitation phase are not explored in this review.

Take‑home message 

Ventilatory management may be affected by restrictive and liberal fluid strategies 
due to physiological interaction between heart–lung, possibly yielding to distal organ 
damage in critical ill patients. Pre-clinical studies evaluated the effects of different fluid 
strategies on ventilator-induced lung injury during assisted ventilation, at different 
PEEP levels, as well as after an abrupt decrease in PEEP.
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Background
Mechanical ventilation (MV) often results in impaired gas exchange, hemodynamic 
instability, and injury to endothelial cells. Intravenous (IV) fluid therapy is often 
required in patients undergoing MV to restore hemodynamics and distal organ perfu-
sion [1, 2]. According to Paracelsus (1493–1541) and previous authors [1]: “Dosis sola 
facit venenum”, all things are poison and it is the dose that makes something poison-
ous. Optimizing tissue perfusion and oxygen delivery while preventing fluid overload is 
a challenge in critically ill patients. Restrictive fluid management [1, 3] can be associated 
with peripheral hypoperfusion and distal organ damage [4–7]. However, a more liberal 
approach could increase mortality because it may lead to endothelial cell damage, lung 
and peripheral tissue edema, increased intra-abdominal pressure, and gastrointestinal 
and renal dysfunction [5, 6, 8–17]. Notwithstanding, the myriad of modes and settings 
for MV, such as positive end-expiratory pressure (PEEP) and tidal volume (Vt), can have 
distinct impacts on cardiovascular physiology, as well as volemic status and fluid bal-
ance [7, 18, 19]. Variations in pleural (Ppl) and transpulmonary (Ptp) pressures caused by 
assisted or controlled MV have been shown to affect the preload and afterload as well 
as capillary transvascular filtration pressures [20–23]. Some experiments have shown 
that mismatch between fluid and ventilatory strategies can worsen ventilator-induced 
lung injury (VILI) as well as reduce cardiac output and tissue perfusion [7, 18, 22]. In 
specific scenarios, such as acute respiratory distress syndrome (ARDS), more than 60% 
of patients are dependent on inotropic drugs to achieve an adequate arterial pressure 
[24] and often require IV fluids as part of hemodynamic support. Although protective 
MV and a restrictive fluid strategy have been suggested for critically ill patients, this 
combination may affect distal organs [25, 26]. However, evidence evaluating the interac-
tion between fluid therapies with different modes of MV is scarce. Most clinical studies 
investigating the impact of restrictive and liberal fluid therapies on organ damage and 
mortality do not provide detailed information concerning the MV strategy or vice versa.

This narrative review aims to provide better understanding of the crosstalk between 
fluids and MV strategies and the impact of this interaction on lung and distal organs. 
The weaning phase of MV and the deresuscitation phase are not explored in this review.

Physiologic rationale: heart–lung interactions and distal organ damage

Because of its location, the heart is inevitably subjected to the mechanical forces of the 
lungs, namely, Ppl and Ptp [27–29]. These forces can have an impact on at least two fac-
tors regulating cardiac output: venous return and the heart’s ability to deal with preload 
during the systolic phase [28, 29]. During spontaneous breathing, Ppl is negative dur-
ing the expiratory phase and even more negative during inspiration [30], favoring sys-
temic venous return in normo- or hypervolemia. During positive pressure ventilation, 
the increase in intrathoracic pressure increases right atrial pressure, reducing systemic 
venous return [27, 29, 31, 32]. The left ventricle, in turn, has its afterload reduced by 
a lower transmural pressure and a transiently increased preload by a higher alveolar 
pressure that squeezes blood toward the left ventricle [29]. Left ventricular afterload is 
reduced due to an increase in pleural pressure during MV, whereas left ventricular trans-
mural pressure tends to decrease because it is the difference between ventricular and 
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pleural pressure. Thus, during MV when  Ppl is positive, transmural pressure decreases. 
However, over time, the transmural pressure may recover due to increased stressed vol-
ume or vessel tone, which in turn can increase the mean systemic filling pressure, favor-
ing venous return [33]. Under protective MV, about 70% ± 27% of airway pressure (Paw) 
is transmitted to juxtacardiac pleura, 37% ± 17% to the pericardium, and 43% ± 11% to 
the vena cava; these numbers can be even higher when chest wall compliance is reduced 
[32]. Organ perfusion pressure is determined by the difference between inflow and out-
flow pressure, therefore a higher intrathoracic pressure during positive pressure ventila-
tion may potentially compromise organ perfusion, ultimately leading to organ damage. 
Because the right ventricle has less contractile reserve than the left ventricle, intratho-
racic pressure and afterload swings during the respiratory cycle have a greater effect on 
the former than on the latter [34]. This concept becomes especially important in ARDS, 
where hypoxic vasoconstriction can increase right ventricular afterload, which may lead 
to right cardiac failure [35].

Pulmonary transvascular filtration pressure is defined as the difference between vas-
cular hydrostatic pressure (Ph) and Ppl. In spontaneous breathing and assisted ventila-
tion (such as pressure-support ventilation [PSV]), a more negative inspiratory Ppl may 
increase transvascular filtration pressure. In the presence of extremely negative Ppl, due 
to intense inspiratory effort against obstructed airways, a sudden increase in pulmo-
nary transvascular filtration pressure and lung edema may occur [36]. The association 
between negative Ppl, resulting from spontaneous breathing (or assisted ventilation), and 
hypervolemia (that may be caused by liberal fluids) increases Ph, thus increasing the risk 
of edema, which can be even worse in the presence of increased vascular permeability 
[37]. These mechanisms are presented in Fig. 1.

The MV mode, whether spontaneous or controlled, can change intrathoracic pressures 
and may lead to changes in hemodynamics [35]. Given the significant hemodynamic 
impact of the heart–lung interactions in critically ill patients, the use of hemodynamic 
tests and indices have been widely endorsed to better predict volume responsiveness 
[38].

Liberal and restrictive fluid management: search for an objective definition

Restrictive versus liberal fluid management have been compared in various settings, 
albeit not clearly defined [5, 7] due to the different terminologies adopted in clinical 
studies. “Conservative” [7, 39–44] and “restrictive” [34, 45–50] are used interchange-
ably without any clearly defined pattern regarding fluid rates. There is an overall lack 
of consensus on this; for example, a “restrictive” approach (6 ml/kg/h) has been com-
pared with a “conservative” approach (12 ml/kg/h) [51]. Higher fluid rates are frequently 
named “liberal”, and older clinical studies use labels such as “standard”, “high volume”, 
and even “aggressive” [11, 52–54]. Experimental and clinical studies have so far used the 
term “liberal” over a remarkably wide range from 1.2 to 12 times the fluid rates referred 
to as restrictive (Additional file 1: Table S1) [10, 45, 46, 48, 55–57].

Impact of restrictive versus liberal fluid management on lung and distal organ damage

Recent surgical and intensive care guidelines—such as Enhanced Recovery from Anes-
thesia and Surgery (ERAS) and UK guidelines for the management of ARDS—support 
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restrictive fluid therapies [6, 58]. Evidence points to a significant association between 
liberal fluids, hypervolemia, and glycocalyx damage (shown by increased plasma syn-
decan-1 [59–62], hyaluronic acid [60], and heparan sulfate [17, 61]). Also, increased 
central venous and capillary hydrostatic pressures may reduce organ perfusion pres-
sure and facilitate lung interstitial edema [2]. In murine models of acute lung injury, 
increased capillary hydrostatic pressure caused by liberal fluids was shown to pro-
mote perivascular lung edema than a restrictive approach [7, 18]. In addition, higher 
fluid rates could even increase the risk of developing ARDS after surgery [63]. Thus, 
the main consequences of liberal fluids may be lung edema, reduced oxygen delivery, 
and distal organ damage.

Organ damage may also be caused by insufficient fluid therapy. For example, an 
excessively restrictive approach can lead to renal hypoperfusion and further func-
tional impairment [6, 34, 64]. The Surviving Sepsis Campaign indicates that there is 
not enough evidence to recommend restrictive fluids in the first 24 h of resuscitation 
in patients with signs of hypoperfusion and volume depletion [4]. The BaSICS study 
showed no difference in 90-day mortality in patients in the intensive care unit (ICU) 
when comparing slower versus faster crystalloid infusion rates [65]. In major abdomi-
nal surgery, restrictive fluids resulted in higher acute kidney injury, need for renal 

Fig. 1 Hemodynamic changes in controlled and assisted mechanical ventilation. In pressure-support 
ventilation, pleural pressure (Ppl) is lowered by inspiratory efforts, leading to higher venous return and lower 
right ventricular (RV) afterload. Increased transmural pressure (caused by the decrease in Ppl from inspiratory 
effort) increases hydrostatic pressure (Ph) in the microvasculature, worsening edema. Increased flow in lung 
vessels may also lead to shear stress, causing further endothelial damage and protein and fluid leak into 
alveolar space. Transvascular filtration pressure (PTvF) is higher in pressure-support ventilation than in pressure 
control ventilation (even at the same transpulmonary pressure (Ptp) given by the difference between alveolar 
pressure (Palv) and Ppl).  Adapted from Vieillard-Baron et al. [20]
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replacement therapy, and surgical-site infection rates than a liberal approach (8.6% 
versus 5.0%, 16.5% versus 13.6%, and 0.3% versus 0.9%, respectively; all p < 0.05) [34].

Even in specific syndromes, such as ARDS, it seems that distinct phenotypes (hyper- 
or hypoinflammatory) may respond differently to restrictive or liberal approaches, as 
demonstrated in the cohort in the Fluids and Catheters Treatment Trial [39]. In this 
study, subphenotype I (mainly trauma, aspiration, or pneumonia) had lower 90-day 
mortality under restrictive fluid management (26% versus 18%), whereas patients with 
subphenotype II (sepsis as a primary risk factor and a lower central venous pressure) 
had lower mortality under a liberal fluid management (40 versus 50%). Thus, fluid ther-
apy should be individualized according to the patient’s specific needs. ERAS guidelines 
strongly recommend avoiding excessively restrictive or liberal fluid regimes during lung 
surgery [66]. ERAS also supports goal-directed fluid therapy with dynamic monitoring 
over a liberal fluid management for renal transplantation [67]. There is no mention of 
the relationship between fluid and MV strategies.

Over the last decades, attempts to improve outcomes by fluid balance have ranged 
from dehydration and negative fluid balance to normovolemia and even moderate 
hypervolemia as primary therapeutic goals [68]. The 2018 European Society of Intensive 
Care Medicine consensus statement on fluid therapy in neurointensive care [69] sug-
gests targeting normovolemia during fluid replacement in patients with a brain injury. It 
also suggests fluid balance, arterial blood pressure, and variables such as cardiac output 
and blood lactate as primary and safety endpoints to titrate fluids.

Impact of assisted versus controlled mechanical ventilation on lung and distal organ 

damage

Some studies have suggested that assisted spontaneous breathing modes such as PSV 
could be associated with a reduction in VILI and length of stay in the ICU, and an 
increase in ventilator-free days in experimental and clinical studies [70–75]. Although 
assisted ventilation can prevent the harmful effects of controlled MV, intense inspira-
tory efforts during assisted ventilation can also dramatically change the intrathoracic 
pressures. This can lead to increased lung perfusion and transvascular filtration pres-
sures and facilitate alveolar edema. Increased inspiratory efforts may lead to patient 
self-inflicted lung injury (P-SILI) and negative pressure edema [76]. This situation could 
be even worse in lungs with endothelial injury. A recent study [77] hypothesized that 
intrapulmonary dyssynchrony (i.e., pendelluft, defined in this study as the percent-
age of the Vt that moves during inspiration from the non-dependent to the dependent 
lung region) could be a leading mechanism for VILI and P-SILI. The authors showed 
that regional pendelluft during BiPAP may reflect local swings in Ppl during spontane-
ous breathing and be associated with an increase in specific inflammatory biomarkers 
in patients with ARDS. On the other hand, muscle paralysis and controlled ventilation 
were shown to be safer than spontaneous breathing in severe acute lung injury in an 
animal model [78].

Protective controlled ventilation (low Vt and moderate-to-high PEEP after recruit-
ment maneuver) is associated with a lower incidence of acute kidney injury [79, 80] and 
reduced pulmonary complications and mortality [6, 66]. However, depending on airway 
pressures, it affects hemodynamics [22]. Higher PEEP and peak inspiratory pressures 
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may be associated with distal organ damage as long as hemodynamics are altered and 
vasopressin secretion is increased [18, 81, 82]. Also, a high PEEP may produce a masking 
effect on the  PaO2/FiO2 ratio due to changes in hemodynamics—namely a reduction in 
cardiac output and a proportional reduction in venous admixture.

Interaction between mechanical ventilation and fluid management

In 1947, researchers first showed a reduction in renal blood flow, glomerular filtration 
rate, and urine output during positive airway pressure [83]. Since then, only a few studies 
have assessed the interaction between fluid and ventilatory strategies. Here, we discuss 
the evidence comparing lung and organ damage under assisted or controlled ventilation 
in restrictive and liberal fluid management.

PSV is a frequently used mode of assisted ventilation in patients who are breath-
ing spontaneously. Intense inspiratory efforts during assisted ventilation could lead 
to hemodynamic impairment [7, 20, 21, 70], higher transpulmonary pressures [78], 
increased lung perfusion, and likely P-SILI. Judicious adjustment of delta pressure dur-
ing PSV [84] or assisted modes and higher PEEP levels [85, 86] can help prevent P-SILI 
and possibly protect patients during assisted ventilation, mainly with liberal fluid man-
agement. The increased transvascular pressure (caused by increased inspiratory efforts 
and liberal fluids) might cause vascular shear stress, ongoing endothelial damage, and 
alveolar edema in patients with high capillary permeability, as observed in sepsis and 
ARDS [17, 24]. The combination of liberal fluids and PSV increased alveolar diffuse 
damage and MMP-9 gene expression and decreased specific biomarkers associated with 
epithelial integrity (occludin, zona occludens-1, and claudin-4) [7]. Although no differ-
ences in kidney morphology were observed, NGAL (neutrophil gelatinase associated 
lipocalin) expression during PSV was lower with a liberal fluids approach compared with 
a restrictive fluids approach.

The effects of controlled ventilation on cardiac output and tissue perfusion par-
tially depend on Vt. In this context, both pressure control ventilation (PCV) and vol-
ume control ventilation (VCV) with the same tidal volume resulted in comparable 
cardiac output during MV. However, PCV may result in higher cardiac outputs when 
lower Vt are used [35, 87, 88]. The reduction in cardiac output observed in VCV par-
tially explains the negative impact of positive pressure ventilation on renal function. 
However, other mechanisms may play a role in the development of kidney injury, 
including redistribution of intrarenal blood flow, hyperactivation of the sympathetic 
nervous system, and the action of inflammatory mediators [89]. In an attempt to 
improve cardiac output, liberal fluids strategy may be advised. First, to improve car-
diac output, the patient must be fluid responsive (if cardiac output response is negli-
gible, fluid should be stopped) [38, 90]; second, stretched alveolar epithelial cells can 
have disrupted tight junctions [23]; in this case, a high hydrostatic pressure could 
worsen lung edema. It has been demonstrated that in VCV, Vt is positively and lin-
early correlated with Ppl. Vascular filtration pressure for an intrathoracic vessel is 
the difference between hydrostatic vascular pressure and Ppl, and researchers have 
shown that superior vena cava transmural pressure decreased during inspiration 
in VCV, whereas right atrium transmural pressure did not [32]. This reduction of 
transmural pressure in intrathoracic vessels could be protective with a liberal fluid 
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management, because it would reduce transvascular filtration and formation of 
edema. Although no clinical studies have investigated this interaction, chloride-rich 
fluids can promote renal vasoconstriction, which could be even worse in the pres-
ence of positive pressure ventilation [90].

It has been shown that PSV in combination with a restrictive fluid strategy resulted 
in less lung epithelial damage in a model of acute lung injury. One likely explana-
tion is that damage to tight junctions, which was identified by a decrease in occludin 
expression, was observed in animals during PSV combined only with a liberal fluid 
strategy but not with a restrictive fluid approach. The interaction between the mode 
of MV and the fluid strategy may have a mechanistic relationship [7]. In addition, 
edema may increase further if tight junction connections, which are constitutive 
in epithelial and endothelial structural cells, are lost during the stretch movements 
produced by tensile stress in PSV.

The choice of PEEP levels should also take into account the volume status. It has 
been shown in clinical studies that a high PEEP level can decrease kidney function 
despite the fluid strategy because it can increase peak inspiratory pressures [18]. 
The combination of high PEEP and liberal fluids worsened lung injury in a murine 
model of ARDS [18]. In addition, an abrupt decrease in PEEP has been shown to 
increase club cell-16 protein, a marker of alveolar epithelial cell damage marker, in 
an experimental model of ARDS. When combined with a liberal fluid management, 
it worsened diffuse alveolar damage and increased the levels of inflammatory and 
endothelial cell damage biomarkers [19]. Table 1 summarizes the main findings from 
pre-clinical studies investigating interactions between MV and fluid management.

Clinical implications

The clinical evidence is scarce and mainly limited to a few experimental studies, there-
fore the effects of interaction between MV and fluid management on organ damage are 
still poorly understood. Thus, it would be reckless to address clinical recommendations 
based on it. Nevertheless, some possible clinical implications from these experimental 
studies should be pointed out. First, whenever restrictive or liberal fluids are strongly 
recommended, caution should be taken when choosing the ventilatory strategy. Espe-
cially in the early phase of resuscitation, when large amounts of fluids are warranted, 
assisted ventilation and intense inspiratory efforts may cause higher transvascular filtra-
tion pressures, vascular edema, and epithelial cell damage, especially with concurrent 
lung and endothelial damage. Experimental data show that despite protective ventila-
tion, high and rapid intravenous fluid boluses can be associated with worsened lung 
injury and respiratory function [91]. In this setting, careful titration of fluid therapy or 
opting for controlled ventilation is probably beneficial. In contrast, whenever a patient 
receives a combined strategy with restrictive fluids and controlled MV, distal organ dam-
age should be closely monitored, especially when high PEEP is used or when decreased 
lung compliance leads to high peak inspiratory pressures. Ventilatory settings should 
also be carefully titrated because the association between higher PEEPs and liberal fluids 
may worsen lung injury, and the association between higher PEEPs and restrictive fluids 
may aggravate distal organ damage.
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Conclusions
The understanding of physiological heart–lung interaction is fundamental to optimize 
fluid strategies and mechanical ventilation setting. Accepted definitions of restrictive 
or liberal fluid strategies do not exist. Both restrictive and liberal fluid strategies may 
lead to hypoperfusion and edema of distal organs, respectively. Assisted ventilation may 
cause self-inflicted lung injury associated with liberal fluid strategies, while controlled 
ventilation may impair hemodynamics, and thus distal organ damage with restrictive 
fluid strategies, especially when high PEEP levels are used. Gradual transitioning of ven-
tilatory patterns is suggested to promote lung protection due to the impact on vascular 
compartment. Optimization of the type and mechanical ventilation setting should con-
sider careful titration of fluid strategies in critically ill patients.

Table 1 Main findings from pre-clinical studies on mechanical ventilation and fluid management 
interactions

PAT/PET pulmonary acceleration time to pulmonary ejection time ratio, PEEP positive end-expiratory pressure, PCV pressure-
controlled ventilation, PSV pressure-support ventilation, VT tidal volume

Rocha et al. [19] Animal model:
Lung injured (intratracheal E. coli LPS) male Wistar rats randomized to receive restrictive 
(10 mL/kg/h) or liberal (30 mL/kg/h) fluids and mechanical ventilation under protective VT 
(6 ml/mg) and an abrupt or gradual PEEP decrease (directly from 9 to 3  cmH2O or the same 
decrease in 30 min)

Main findings:
• Liberal fluids were associated with higher right and left ventricular end-diastolic areas in 
echocardiographic measurements despite PEEP decrease rate
• PAT/PET ratio was higher in abrupt than in gradual PEEP decrease despite fluid management
• Combined liberal fluids and abrupt PEEP decrease yielded more diffuse alveolar damage and 
higher interleukin-6 and endothelial growth factor expression,
• Restrictive fluids and gradual PEEP decrease yielded higher zona occludens-1 expression, 
suggesting epithelial cell preservation
• Abrupt PEEP decrease group showed higher club-16 protein expression regardless of fluid 
management, suggesting higher alveolar epithelial cell damage
• Kidney injury markers were higher in liberal fluid management despite PEEP decrease 
strategy

Carvalho et al. [7] Animal model:
Lung injured (intratracheal E. coli LPS) male Wistar rats randomized to receive restrictive 
(minimum fluids to keep MAP ≥ 70 mmHg) or liberal (~ 4 times fluids received by restrictive 
groups) and protective PCV or PSV ventilation

Main findings:
• In PSV groups, restrictive fluids led to reduced diffuse alveolar damage and lung edema, 
preservation of occludin and claudin-4 and higher expression of zona occludens-1 in lungs 
(suggesting tight junctions’ integrity)
• Liberal fluids groups reduced interleukin-6 and neutrophil gelatinase-associated lipocalin 
expression, regardless of ventilatory strategy

Felix et al. [18] Animal model:
Lung injured (intratracheal E. coli LPS) male Wistar rats randomized to receive restrictive (5 ml/
kg/h) or liberal (40 ml/kg/h) fluids and volume-controlled ventilation under protective VT 
(6 ml/kg)

Main findings:
• Liberal fluids led to a higher transpulmonary plateau pressure than restrictive fluids
• A combination of high PEEP (9  cmH2O) and liberal fluids led to higher inflammatory gene 
expression than low PEEP-liberal fluids and high PEEP-restrictive fluids
• Fluid management did not affect lung mechanical power and heterogeneity index between 
high and low PEEP groups
• Liberal fluids led to higher perivascular edema despite PEEP strategy
• Under liberal fluids, high PEEP was associated with more intense epithelial and extracellular 
matrix damage
• Acute kidney injury biomarkers were higher in high PEEP regardless of fluid management
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ARDS  Acute respiratory distress syndrome
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VILI  Ventilator-induced lung injury
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