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Abstract 

Background: Definition of temporal serum proteome profiles after out‑of‑hospital 
cardiac arrest may identify biological processes associated with severe hypoxia–ischae‑
mia and reperfusion. It may further explore intervention effects for new mechanistic 
insights, identify candidate prognostic protein biomarkers and potential therapeutic 
targets. This pilot study aimed to investigate serum proteome profiles from uncon‑
scious patients admitted to hospital after out‑of‑hospital cardiac arrest according to 
temperature treatment and neurological outcome.

Methods: Serum samples at 24, 48, and 72 h after cardiac arrest at three centres 
included in the Target Temperature Management after out‑of‑hospital cardiac arrest 
trial underwent data‑independent acquisition mass spectrometry analysis (DIA‑MS) to 
find changes in serum protein concentrations associated with neurological outcome at 
6‑month follow‑up and targeted temperature management (TTM) at 33 °C as com‑
pared to 36 °C. Neurological outcome was defined according to Cerebral Performance 
Category (CPC) scale as “good” (CPC 1–2, good cerebral performance or moderate 
disability) or “poor” (CPC 3–5, severe disability, unresponsive wakefulness syndrome, or 
death).

Results: Of 78 included patients [mean age 66 ± 12 years, 62 (80.0%) male], 37 (47.4%) 
were randomised to TTM at 36 °C. Six‑month outcome was poor in 47 (60.3%) patients. 
The DIA‑MS analysis identified and quantified 403 unique human proteins. Differential 
protein abundance testing comparing poor to good outcome showed 19 elevated 
proteins in patients with poor outcome  (log2‑fold change (FC) range 0.28–1.17) and 
16 reduced proteins  (log2(FC) between − 0.22 and − 0.68), involved in inflammatory/
immune responses and apoptotic signalling pathways for poor outcome and proteoly‑
sis for good outcome. Analysis according to level of TTM showed a significant protein 
abundance difference for six proteins [five elevated proteins in TTM 36 °C  (log2(FC) 
between 0.33 and 0.88), one reduced protein  (log2(FC) − 0.6)] mainly involved in 
inflammatory/immune responses only at 48 h after cardiac arrest.

Conclusions: Serum proteome profiling revealed an increase in inflammatory/
immune responses and apoptosis in patients with poor outcome. In patients with 
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good outcome, an increase in proteolysis was observed, whereas TTM‑level only 
had a modest effect on the proteome profiles. Further validation of the differentially 
abundant proteins in response to neurological outcome is necessary to validate novel 
biomarker candidates that may predict prognosis after cardiac arrest.

Keywords: Out‑of‑hospital cardiac arrest, Heart arrest, Proteomics, Prognostication, 
Temperature control, Hypothermia, Targeted temperature management

Background
Adverse outcome in cardiac arrest patients who initially achieve return of spontaneous 
circulation (ROSC) is largely due to cerebral and cardiac dysfunction induced by the 
prolonged whole-body ischaemia and subsequent reperfusion injury [1, 2]. Oxygen debt, 
cell death, and formation of free radicals during ischaemia–reperfusion induce endothe-
lial toxicity and a generalised activation of immunological and coagulation pathways 
[3–5]. Due to limited energy supplies and high metabolism, the brain is particularly vul-
nerable to ischaemia–reperfusion, contributing significantly to the mortality and mor-
bidity after out-of-hospital cardiac arrest (OHCA) [2, 6].

Whole body hypothermia was introduced in post-resuscitation care when trials sug-
gested neuroprotective effects [7, 8]. Preclinical data indicate that hypothermia exerts 
neuroprotection through diverse mechanisms, such as lowered cell metabolism, dimin-
ished excitotoxicity, reduced inflammation, modified gene expression, and diminished 
apoptosis if applied prior to, during, or early after cardiac arrest [9]. However, the Target 
Temperature Management after out-of-hospital cardiac arrest (TTM) trial showed no 
benefit of a target temperature of 33 °C as compared to 36 °C in adult patients in need 
of intensive care when reaching the target temperature (< 34 °C) within 4–6 h after the 
arrest [10]. This sparked a debate about the optimal target temperature for temperature 
control as well as the optimal timing for the intervention. Recent systematic reviews 
indicate that TTM to hypothermic temperatures post cardiac arrest does not confer 
benefit in terms of mortality and functional outcome and recent guidelines recommend 
only actively preventing fever [11–13]. Proteomic profiles comparing different levels of 
TTM could help give a mechanistic understanding of the clinical results.

Multi-modal neuroprognostication is of critical importance to guide decisions on level 
of intensive care after cardiac arrest, and blood biomarkers have emerged as an impor-
tant component. Serial measurements of the protein neuron-specific enolase are recom-
mended in clinical guidelines, with elevated and increasing values indicative of neuronal 
damage and poor prognosis [14]. The proteins neurofilament light chain, serum tau and 
glial fibrillary acidic protein may provide even better neuroprognostication but are not 
yet routinely in use [15–17]. A systematic identification and validation of other protein 
biomarkers may facilitate a more accurate and earlier neurological prognostication.

Continuous advances in proteomic research have established mass spectrometry 
(MS)-based quantitative proteomic profiling as an analytical tool in cardiovascular med-
icine [18]. Through application of liquid chromatography and tandem mass spectrome-
try (LC–MS/MS) capabilities, large numbers of proteins can be identified and quantified 
in detail. Findings from recent proteomic studies in OHCA patients suggest differences 
in proteome profiles according to both neurological outcome and temperature manage-
ment [19–23]. Compared to the previous proteomics studies, we included patients from 
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multiple centres and provide a randomised large pilot cohort with serum samples from 
multiple time points. The aim of this pilot study was to use the quantitative capabilities 
of LC–MS/MS-based proteomics to explore differences in protein abundance in relation 
to the temperature intervention and neurological outcome. In addition, we wanted to 
use proteomics to describe biological processes after OHCA and TTM, to discover pos-
sible novel biomarkers and new therapeutic targets.

Methods
The TTM-trial prospectively included unconscious patients after OHCA with a pre-
sumed cardiac cause of arrest and randomised them to TTM at either 33  °C or 36  °C 
(NCT01020916). The trial design and main outcomes have been published [10, 24]. 
Serum samples from the three participating sites in Scania region of Sweden included in 
the TTM trial were used for this study. Serum samples were collected at 24, 48, and 72 h 
after ROSC, pre-analytically processed on site, aliquoted, and frozen to − 80 °C before 
shipment to the Integrated BioBank of Luxembourg as published [25]. Neurological out-
come was assessed by a face-to-face follow-up visit six months after OHCA reported 
according to the Cerebral Performance Category (CPC) scale as “good” (CPC 1–2, good 
cerebral performance or moderate cerebral disability) or “poor” (CPC 3–5, severe cer-
ebral disability, unresponsive wakefulness syndrome, or death) [10, 26, 27]. The trial was 
approved by the Regional Ethical Review Board in Lund, Sweden 2009/228, 2011/117. 
LC–MS/MS analysis was performed November 2021.

Mass spectrometry analysis

Serum samples for de novo sequencing were prepared as described in Additional file 4: 
Material S1. All peptide analyses were performed on a Q Exactive HF-X Orbitrap mass 
spectrometer (Thermo Fisher Scientific) connected to EASY-nLC 1200 UHPLC system 
with a trap column (PepMap100 C18 3 µm; 75 µm ×  2 cm; Thermo Fisher Scientific) 
and EASY-Spray column (ES803, column temperature 45 °C; Thermo Fisher Scientific). 
Data-independent acquisition (DIA) was performed with 44 variable windows. Solvent 
A was used as a stationary phase (0.1% formic acid (FA), and solvent B (mobile phase; 
0.1% FA, 80% acetonitrile) was used to run a non-linear gradient from 5 to 38% over 
90 min at a flow rate of 350 nl/min. Full MS scans were performed at 60,000 @ 200 m/z 
between mass range 350–1650 m/z.

Data‑independent acquisition and data analysis

Data-independent acquisition search was performed using Spectronaut version 
14.10.201222.47784 on OS Windows 10 64bit. The search mode was set to library free 
(directDIA) using the reviewed human reference UniProt proteome database (accessed 
on November 2019) with isoforms with standard BGS factory settings where both pre-
cursor and protein identification q-value cutoff was set to 1%.

Outcomes and stratifications

The main outcome for the statistical analysis was differential protein abundance at 24, 48, 
and 72 h after ROSC expressed as  log2-fold changes (FC). Differentially abundant proteins 
were stratified according to neurological outcome (poor outcome versus good outcome) 
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and allocation to temperature group (33  °C versus 36  °C) [10]. Generated  log2(FC) for 
the differentially abundant proteins were referred to throughout the text as ‘elevated’ or 
‘reduced’, indicating the direction of abundance in respective stratification comparisons.

Statistical analyses

Demographic data were analysed using independent samples t-test, Pearson Chi-square 
test, or Mann–Whitney U test as appropriate, conducted using SPSS version 28.0 (SPSS, 
Chicago, IL). All proteomics analyses were performed using the R software: A Language 
and Environment for Statistical Computing [28].

Acquired data from the DIA analysis were analysed for patterns in missingness using the 
mice package to identify any samples of proteins. Proteins missing in more than 30% of the 
samples were filtered out to not increase the multiple testing burden and to increase the 
chance of plausible candidate protein replication (Additional file 4: Fig. S1). Data LOESS 
(locally weighted regression) normalisation was performed using the limma package to 
remove systematic effects occurring due to technical differences between assays [29].

Principal component analyses (PCA) were used to perform exploratory analyses of the 
proteomics data [30]. The likely differentially abundant proteins were extracted from a lin-
ear model fit using the toptable function. Benjamini–Hochberg and Benjamini–Yekutieli 
linear step-up procedures were applied to control the false discovery rate (FDR) and the 
expected proportion of false discoveries among the rejected hypotheses. The analyses code 
is available at GiThub repository [31].

Individual protein descriptions with their biological functions were annotated using 
Uniprot database (accessed on 2022-10-23) and their accordant studies (Additional file 4: 
Table S1) [32].

For production of the heat maps, significantly differentially regulated proteins (adjusted 
p-value < 0.05) at any time point for respective predictor variable were extracted from the 
normalised data. Plots of respective  log2(FC) were plotted in a heat map. Proteins with a 
 log2(FC) > 1 or <− 1 were considered of high abundance.

Biological functions of the differentially abundant proteins were analysed with Metas-
cape using Gene Ontology (GO) and pathway investigation [33]. Gene Ontology refers to 
a controlled vocabulary composed of “GO terms” describing molecular actions, biological 
processes, and cellular location of gene products [34]. Analyses therefore included molecu-
lar function of gene products, biological processes in which those functions occur, and cel-
lular component categories for the proteins acquired through the DIA-MS and statistical 
analyses.

Interaction analysis was performed to identify proteins associated with both neurological 
outcome and temperature treatment using the following formula:

Results
Patients

Serum samples from 78/80 eligible patients were included in the analysis (Fig.  1). 
Demographic data of the study population were stratified according to good outcome 
[31 patients (40%)] and poor neurological outcome [47 patients (60%)] evaluated at 6 

Log2(ProteinIntensity) ∼ TemperatureCategory+CPCcategory+TemperatureCategory×CPCcategory.
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months, and TTM allocation at 33 °C and 36 °C (Table 1). The two patients with miss-
ing data were allocated to the temperature treatment of 36 °C, had poor outcome, and 
comparable characteristics with the included patients (Additional file 4: Table S2). The 
number of samples available at 24, 48, and 72 h were 73, 69, and 61, respectively.

Identification of temporal serum protein profiles

Initial data included 628 unique human proteins and 203 patient serum samples. Pro-
teins missing in more than 30% of samples were filtered out, generating a list of 403 
quantified unique human proteins used for the statistical analysis (Fig. 1). Normalised 
protein–patient data, detailed protein list, and clinical variable list are presented in 
Additional file 1: S1.

Comparison of protein composition according to neurological outcome

Neurological outcome was associated with 29 unique statistically changed proteins at 
24 h, six proteins at 48 h, and eight proteins at 72 h after ROSC (Fig. 2a, Additional file 2: 
S2). Serum abundances were elevated for 19 proteins  (log2(FC) range 0.28–1.17) and 
reduced for 16 proteins  (log2(FC) range between − 0.22 and − 0.68) when comparing 
poor outcome to good outcome. The statistical significance and  log2(FC) value is pre-
sented in the volcano plots in Fig. 2b–d. Three significantly elevated proteins in patients 

Patients included in the biobank study for the 
TTM trial from Scania, Sweden n = 80

Total number of samples n = 203

Patients with missing clinical 
information* n = 2

Patients n = 78

Samples taken at 24 hours 
after ROSC n = 73  

Samples taken at 48 hours 
after ROSC n = 69  

Samples taken at 72 hours 
after ROSC n = 61  

Mass Spectrometry Analysis

Proteins used for the statistical analysis 
n = 403

Unique human proteins identified 
n = 628

Proteins missing in >30% 
of samples filtered out

Fig. 1 Flowchart of the patients and serum samples included in the study. *One patient was mislabeled 
between the mass spectrometry‑ and clinical data sheet; included 3 samples. A second patient was 
incorrectly identified between the mass spectrometry‑ and clinical data sheet; included 3 samples. TTM 
Target Temperature Management after out‑of‑hospital cardiac arrest trial
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with poor outcome with a  log2(FC) <− 1 were noted; ribonuclease pancreatic (RNASE1) 
at 24 h, insulin-like growth factor-binding protein 2 (IGFBP2) at 48 h, and immunoglob-
ulin heavy variable 3–23 (IGHV3-23) at 72 h.

Among the statistically enhanced proteins in patients with poor outcome, comple-
ment component 7 (C7) and IGFBP2 were present at all three time points. Insulin-like 

Table 1 Demographic characteristics of the study population stratified according to neurological 
outcome and temperature treatment

a Results are reported as numbers [/total number] (percentages), median (interquartile range), or mean (± standard 
deviation) as appropriate. COPD chronic obstructive pulmonary disease; TIA transient ischaemic attack; ROSC return of 
spontaneous circulation
b Scores on the Glasgow Coma Scale range from 3 to 15, with lower scores indicating reduced level of consciousness
c Circulatory shock was defined as a systolic blood pressure of less than 90 mm Hg for more than 30 min or end-organ 
hypoperfusion (cool extremities, urine output < 30 ml per hour, and a heart rate of < 60 beats per minute)
d Missing values. ‘First measured body temperature’ was missing data for 2 patients and ‘Glasgow Coma Scale score’ was 
missing data for 8 patients; ‘Serum pH’ and ‘Serum lactate’ were missing data for 6 patients

Characteristica Good outcome
(N = 31)

Poor outcome
(N = 47)

33 °C group (N = 41) 36 °C group
(N = 37)

Demographic characteristics

 Age in years 62 ± 11 69 ± 12 64 ± 13 68 ± 11

 Male sex 27 (87) 35 (75) 36 (88) 26 (70)

Medical history

 Chronic heart failure 1/28 (4) 4/44 (9) 1/39 (3) 4/33 (12)

 Previous acute myocardial infarc‑
tion

5/28 (18) 9/44 (21) 8/39 (21) 6/33 (18)

 Ischaemic heart disease 5/28 (18) 12/44 (27) 9/39 (23) 8/33 (24)

 Previous cardiac arrhythmia 5/28 (18) 12/44 (27) 8/39 (21) 9/33 (27)

 Arterial hypertension 13/28 (46) 21/44 (48) 19/39 (49) 15/33 (46)

 Previous TIA or stroke 1/28 (4) 9/44 (21) 4/39 (10) 6/33 (18)

 Diabetes mellitus 1/28 (4) 9/44 (21) 3/39 (8) 7/33 (21)

 Asthma or COPD 4/28 (14) 7/44 (16) 2/39 (5) 9/33 (27)

 Previous percutaneous coronary 
intervention

2/28 (7) 5/44 (11) 4/39 (10) 3/33 (9)

 Previous coronary‑artery bypass 
grafting

0/28 (0) 5/44 (11) 5/39 (13) 0/33 (0)

Characteristics of the cardiac arrest

 Bystander witnessed cardiac arrest 28 (90) 45 (96) 37 (90) 36 (97)

 Shockable rhythm 27 (87) 23 (49) 28 (68) 22 (59)

 Minutes from cardiac arrest to 
ROSC

23 (15–33) 35 (23–50) 30 (20–43) 30 (19–48)

Clinical characteristics on admission

 First measured body temperature 
in °Cd

35.9 ± 0.8 35.9 ± 0.9 35.7 ± 0.9 36.0 ± 0.8

 Glasgow Coma Scale  scoreb,d 5 (4–6) 3 (3–3) 3 (3–5) 3 (3–5)

 Corneal reflex bilaterally present 16/26 (62) 8/44 (18) 14/38 (37) 10/32 (31)

 Pupillary reflex bilaterally present 27/30 (90) 19/47 (40) 24/40 (60) 22/37 (60)

 Serum  pHd 7.3 ± 0.1 7.1 ± 0.2 7.2 ± 0.1 7.1 ± 0.2

 Serum lactate in mmol/literd 6.2 ± 3.7 9.2 ± 4.2 7.5 ± 4.1 8.7 ± 4.5

 Circulatory  shockc 2/28 (7) 7/44 (16) 4/39 (10) 5/33 (15)

 ST‑segment elevation in acute 
myocardial infarction

11/28 (39) 12/44 (27) 12/39 (31) 11/33 (33)

Allocation to 33 °C 20 (65) 21 (45) 41 (100) 0 (0)

Poor outcome (CPC 3–5) at 6 months 0 (0) 47 (100) 21 (51) 26 (70)
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growth factor-binding protein 4 (IGFBP4), a regulator of insulin growth factor, was pre-
sent at 24 and 72 h. None of the reduced proteins were statistically significant at all three 
time points but inter-alpha-trypsin inhibitor heavy chain H1 (ITIH1) was significantly 
reduced at both 24 and 48 h. In addition, vitamin K-dependent protein Z (PROZ) and 
afamin (AFM) were mutually reduced at 24 and 72 h.

Among the Gene Ontology (GO) terms for biological processes enriched for the ele-
vated proteins in patients with poor outcome, the terms ‘positive regulation of immune 
response’, ‘amyloid fibre formation, ‘metal ion homeostasis’, and ‘regulation of apoptotic 
signalling pathway’ were notable (Fig. 3). Elevated proteins are physiologically expressed 
in various tissues, such as endocrine gland, occipital lobe, bone marrow, liver, pancreas, 
and the hematopoietic system. According to the cellular component, most of the ele-
vated proteins can be physiologically found in endomembrane system, vesicles, secre-
tory granules, and as blood microparticles. For the reduced proteins in patients with 
poor outcome, notable GO terms were ‘glycerolipid metabolic process’, ‘complement and 
coagulation cascades’, ‘regulation of inflammatory response’, and ‘regulation of proteoly-
sis’ (Fig. 3). Molecular functions of the reduced proteins include endopeptidase inhibi-
tor activity, serine-type endopeptidase activity, and apolipoprotein binding. According 
to cellular component, proteins reduced in poor outcome are physiologically secreted in 
extracellular exosomes, secretory granule lumen, and as blood microparticles. In addi-
tion, analysis of tissue expression revealed bone marrow, liver, and endocrine glands as 
potential tissues. The full list of enriched biological processes according to neurological 
outcome is presented in Additional file 4: Table S3a, b.

Comparison of protein composition according to level of TTM

Comparison of the temperature groups 33° and 36 °C yielded significantly altered pro-
tein levels for six proteins at 48 h, with no significantly different protein levels at 24 or 

Fig. 2 Proteomic analysis results for protein abundance according to neurological outcome. a Heatmap 
of the significantly abundant proteins at 24, 48 and 72 h after return of spontaneous circulation for poor 
vs. good neurological outcome. Positive  log2‑fold change (FC) indicates elevated proteins (red colour) in 
patients with poor outcome when compared with good outcome patients. Negative  log2(FC) indicates 
reduced proteins (blue colour) in poor outcome compared with good outcome patients. b‑d Volcano 
plots for the differential abundance of proteins for neurological outcome at 24 h (b), 48 h (c) and 72 h 
(d), respectively. Positive  log2(FC) indicates good outcome, negative  log2(FC) indicates poor outcome. 
Statistically significant proteins (adjusted p‑value ≤ 0.05) and regulated proteins (absolute  log2(FC) > 1) are 
labelled in red. Proteins with a significant adjusted p‑value with a  log2(FC) between − 1 and 1 are labelled in 
yellow, and statistically non‑significant proteins with an absolute  log2(FC) < − 1 or > 1 are labelled in green. 
Individual protein descriptions with their biological functions are presented in Additional file 4: Table S1. 
AFM afamin; AGT  angiotensinogen; ASL argininosuccinate lyase; B2M beta‑2‑microglobulin; C3 complement 
C3; C7 complement component C7; CCL14 C–C motif chemokine 14; CFD complement factor D; CHGA 
chromogranin‑A; CHI3L1 chitinase‑3‑like protein 1; CST3 cystatin‑C; EFEMP1‑EGF containing fibulin‑like 
extracellular matrix protein 1; FETUB fetuin‑B; FGA fibrinogen alpha chain; FGB fibrinogen beta chain; FGG 
fibrinogen gamma chain; GPLD1 phosphatidylinositol‑glycan‑specific phospholipase D; GSN gelsolin; IGFBP2 
insulin‑like growth factor‑binding protein 2; IGFBP4 insulin‑like growth factor‑binding protein 4; IGHV3-13 
immunoglobulin heavy variable 3‑13; IGHV3-23 immunoglobulin heavy variable 3‑23; ITIH1 inter‑alpha‑trypsin 
inhibitor heavy chain H1; ITIH2 inter‑alpha‑trypsin inhibitor heavy chain H2; ITIH3 inter‑alpha‑trypsin inhibitor 
heavy chain H3; KLKB1 plasma kallikrein; LCN2 neutrophil gelatinase‑associated lipocalin; LPA apolipoprotein 
(a); NIBAN protein Niban 3; PEPD Xaa‑Pro dipeptidase; PLA2G7 platelet‑activating factor acetylhydrolase; 
PLG plasminogen; PROS vitamin K‑dependent protein S; RNASE1 ribonuclease pancreatic; SBSN suprabasin; 
SERPINA3 alpha‑1‑antichymotrypsin; SERPINA4 kallistatin; SFTPB pulmonary surfactant‑associated protein B; 
TNXB tenascin‑X; UBB/UBC polyubiquitin‑B/polyubiquitin‑C

(See figure on next page.)
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72 h (Fig. 4a, Additional file 3: S3). When comparing the 36 °C group to the 33 °C group, 
serum concentrations for five proteins were elevated  (log2(FC) range 0.33–0.88) and 
one was reduced  (log2(FC) − 0.6) as presented in the volcano plots in Fig. 4b. The five 
enhanced proteins in the 36  °C group were angiogenin (ANG), proprotein convertase 
subtilisin/kexin type 9 (PCSK9), inter-alpha-trypsin inhibitor heavy chain family mem-
ber 4 (ITIH4), ficolin-2 (FCN2), and collagen alpha-1(VI) chain (COL6A1). Among 
the GO terms for the proteins elevated in the 36  °C group, terms ‘humoral immune 
response, ‘opsonisation’, and ‘cholesterol homeostasis’ were notable. These proteins can 
be physiologically found in the extracellular space and are predominantly expressed in 
the liver with a few exceptions; ANG has previously been detected in spinal cord neu-
rons, and PCSK9 is also expressed in Schwann cells and found in cerebrospinal fluid [35, 
36]. The reduced protein in the 36 °C group was mannan-binding lectin serine protease 
1 (MASP1), a plasma protein primarily secreted by the liver, involved in ‘cell surface 

Fig. 2 (See legend on previous page.)
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Fig. 3 Biological processes for the differentially abundant proteins associated with neurological outcome. 
Proteins enhanced for neurological outcome were annotated by selected gene ontology terms for biological 
process. The average  log2‑fold change for all proteins included in each term is plotted to show the direction 
of average change for poor outcome (in red) as compared to good outcome (in blue)

Fig. 4 Proteomic analysis results for protein abundance according to temperature treatment of 36 °C 
to 33 °C. a Heatmap of the significantly differentially abundant proteins for comparison of temperature 
treatment of 36 °C to 33 °C at 24, 48 and 72 h after return of spontaneous circulation. Positive  log2‑fold 
change (FC) indicates elevated proteins (red colour) in patients treated at target temperature 36 °C compared 
to 33 °C. Negative  log2(FC) indicates proteins reduced (blue colour) in patients treated at target temperature 
36 °C versus 33 °C. b Volcano plots for the differential abundance of proteins between temperature treatment 
at 24, 48, and 72 h. Positive  log2(FC) indicates treatment with 36 °C, negative  log2(FC) indicates treatment 
with 33 °C. Proteins with a significant adjusted p‑value, and with a  log2(FC) between − 1 and 1 are labelled in 
yellow, and statistically non‑significant proteins with an absolute  log2(FC) <  − 1 or > 1 are labelled in green. 
Individual protein descriptions with their biological functions are presented in Additional file 4: Table S1. ANG 
angiogenin; COL6A collagen alpha‑1(VI) chain; CPB1 carboxypeptidase B; FCN2 Ficolin‑2; ICAM1 intercellular 
adhesion molecule 1; IGLV7-43 immunoglobulin lambda variable 7–43; ITIH4 inter‑alpha‑trypsin inhibitor 
heavy chain family member 4; MASP1 isoform 2 of mannan‑binding lectin serine protease 1; PCSK9 proprotein 
convertase subtilisin/kexin type 9
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pattern recognition receptor signalling pathway’ and ‘complement activation via lectin 
pathway’ [37]. MASP1 is physiologically located in the extracellular space and its main 
molecular function is peptidase activity [38].

Cross‑comparison between neurological outcome and level of TTM

Interaction analysis between neurological outcome and temperature treatment detected 
only significant differences in abundance of extracellular superoxide dismutase (EC-
SOD). EC-SOD, a predominantly extracellular antioxidant enzyme, was enhanced in 
patients with poor outcome in the 36 °C group as compared to patients with good out-
come in the 36  °C group (pinteraction < 0.001, adjusted p = 0.17 for the 48-h time point, 
Fig. 5) [39]. No significant differences in EC-SOD regulation according to neurological 
outcome could be seen in patients in the 33 °C group.

Discussion
This pilot study analysed changes in proteomic profiles of OHCA-patients according 
to neurological outcome and targeted temperature management (TTM). Comparison 
of poor and good outcome yielded differences in 35 proteins at 24, 48, and 72 h after 
cardiac arrest, while TTM at 33 °C or 36 °C was associated with statistically significant 
changes in regulation of six proteins only at 48 h. Interaction analysis between neuro-
logical outcome and level of TTM showed a significant association for higher levels of 
the antioxidant EC-SOD in poor outcome patients in the 36 °C group.

Fig. 5 Interaction plot for Extracellular superoxide dismutase (EC‑SOD) levels according to neurological 
outcome and temperature treatment. Results are displayed for 24, 48, and 72 h after return of spontaneous 
circulation. EC‑SOD levels were significantly increased in poor outcome patients treated with a targeted 
temperature of 36 °C at 48 h compared to patients with good outcome, indicating an antioxidative response. 
No statistically significant differences could be seen between good and poor outcome in patients treated 
with targeted temperature of 33 °C. CPC Cerebral Performance Category
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Proteomics represents the large-scale analysis of proteomes that can be used for 
explorative and unbiased discovery of temporal serum proteome profile differences 
between study groups. Such analysis has the potential to discover novel biomarkers, as 
the unbiased nature of the analysis assists identification of proteins that might other-
wise not have been considered relevant in the clinical situation. Identified candidate pro-
teins should then be tested prospectively. In this study, comparison of proteomic profiles 
between patients with poor and good outcome demonstrated proteins involved in e.g., 
inflammatory/immune responses, apoptosis, metal ion homeostasis, and proteolysis. 
Many of the significantly abundant proteins were enhanced in patients with poor out-
come, suggesting a lower abundance of proteins associated with, for example, apoptosis 
in patients with good outcome. In comparison to previous proteomic studies in OHCA 
patients, our study reveals contrasting proteomic profiles according to neurological out-
come [19–22].

Previously described neurological biomarkers for cardiac arrest, such as neuron-spe-
cific enolase, neurofilament light chain, and total-tau were not detected in the current 
analysis, most likely due to their low concentration in serum, which falls below the detec-
tion limit of the MS-analysis [40]. As serum albumin and immunoglobulins account for 
a large proportion of serum protein concentration, this can prevent detection and iden-
tification of less abundant proteins in serum [41]. Conversely, depletion of serum albu-
min from samples can lead to subsequent removal of low-abundant biomarkers that may 
bind to albumin as carrier protein [40, 42]. By using fractionation techniques combined 
with intermittent depletion of high-abundant proteins followed by targeted MS analysis 
such as parallel reaction monitoring MS, the neurological brain injury markers might be 
identified in future studies [43].

The prognostic biomarkers studied in patients after cardiac arrest focus on neurologi-
cal outcome prediction due to the high mortality risk following hypoxic brain injury [6, 
44]. However, the substantial mortality in resuscitated patients after OHCA can also 
depend on, e.g., the post-ischaemic cardiac dysfunction [1]. Although CPC score has 
been defined as a functional outcome highly associated with severe brain injury, other 
factors may have importance for the outcome, such as frailty prior to arrest, death due to 
a non-neurological cause, presumed wishes of patients, or regional differences in rating 
quality of life with sustained disabilities [45]. It is therefore of interest to analyse broader 
serum proteomic changes in combination with clinical variables in OHCA patients to 
better define the distinct phenotypes of the cardiac arrest population and reasons for 
death after resuscitation. We identified several proteins of interest as potential bio-
markers, such as IGFBP2, PROZ, NIBAN, kallistatin and angiotensinogen [21]. Angio-
tensinogen, a component of the renin–angiotensin system (RAS), is mainly produced 
by astrocytes and at low levels in neurons within the brain [46–48]. As cardiac arrest-
induced brain injury causes disruption in the blood–brain barrier, leakage of brain-spe-
cific proteins can be measured in serum and plasma samples [3]. Hyperactivation of RAS 
in the nigrostriatal system has been proposed to exacerbate oxidative stress and micro-
glial inflammatory response, which could subsequently be inhibited by RAS-inhibitors 
[48]. The proteins identified in our study should be validated in larger and prospectively 
collected materials before any candidate prognostic markers could be suggested.
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Comparison of proteomic profiles between patients treated with a target tempera-
ture of 33 °C and 36 °C revealed a small fraction of proteins involved in inflammatory/
immune responses, vascularisation, cholesterol homeostasis, and neuronal apoptotic 
processes [49–51]. According to the TTM-trial, temperature intervention and rewarm-
ing to normothermia concluded at 36 h after ROSC, while changes in protein abundance 
in this pilot study were only significant for the 48-h time point, indicating no significant 
changes during temperature intervention at the 24-h time point [10, 24]. The majority of 
proteins were enhanced in the 36 °C group, suggesting a decrease in e.g., local inflamma-
tory response in the 33 °C group after rewarming. Previous analyses of serum samples 
from the TTM-trial have demonstrated that TTM at 33  °C compared with 36  °C does 
not significantly influence specific mediators of inflammatory response, such as interleu-
kins, tumour necrosis factor-α, C-reactive protein, and procalcitonin [52, 53]. None of 
these mediators were significantly altered in our pilot study.

We found decreased levels of PCSK9 in the 33  °C group compared to the normo-
thermia group. As PCSK9 is a regulator of neuronal apoptosis and its inhibition in rat 
models was associated with reduced brain inflammation in cardiac ischaemia–reperfu-
sion injury, the decreased levels of PCSK9 could suggest a theoretical neuroprotective 
pathway in hypothermia [54–56]. Although hypothermia has been previously shown 
in animal models to have a role in neuroprotection, large recent trials in humans show 
no difference in long-term neurological outcome as opposed to normothermia [57–59]. 
Furthermore, the low number of differentially regulated proteins between the tempera-
ture groups (total number of regulated proteins N = 6), suggests minimal changes during 
and after temperature intervention, supporting the clinical conclusion of the TTM-trial 
that showed no significant differences in mortality or neurological outcome [10].

EC-SOD is an antioxidant enzyme that neutralises reactive oxygen species from det-
rimental effects of systemic ischaemia–reperfusion response in post-cardiac arrest syn-
drome [3, 39, 60].

EC-SOD is not brain-specific, but within the brain, EC-SOD is predominantly local-
ised in neurons in the hippocampus, thalamus and hypothalamus and is expressed in 
response to hypoxia [61, 62]. We found enhanced EC-SOD regulation in poor outcome 
patients treated at 36 °C but not at 33 °C, possibly suggesting an active protection pro-
cess against hypoxia in the higher temperature group [63, 64]. Previous studies indicate 
contrasting results, while animal studies found decreased levels of free radicals in hypo-
thermia, OHCA patients treated with mild hypothermia showed significantly decreased 
cytosolic/mitochondrial SOD enzyme activity and a significant increase in reactive oxy-
gen species compared to healthy volunteers [60, 65, 66].

Strengths and limitations

To our knowledge, this is the largest sample cohort used to date for a quantitative LC–
MS/MS-analysis in OHCA patients and the first with samples from a randomised trial. 
Prospectively collected serial measurements allowed sequential analyses of changes in 
protein abundance over time. The structured follow-up at six months and a conserva-
tive approach to neurological prognostication is a strength of the TTM-trial [10]. 
Data analysis was performed using DIA, allowing less stochastic analysis compared to 
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data-dependent acquisition (DDA). Furthermore, the generated DIA files can be retro-
spectively analysed against another assay library for further exploration.

TTM was initiated within two hours after OHCA and thus this study cannot exclude 
that protein abundance according to level of TTM and the associated biological func-
tions could be altered by initiating induction of hypothermia at an earlier time point 
[10]. As systematic serum sampling was applied during the initial trial, we cannot 
exclude that this sampling method is not necessarily reflective of brain-specific pathol-
ogy as compared to cerebrospinal fluid [10]. Usage of serum instead of plasma samples 
may have altered or limited the number of proteins discovered by DIA-MS analysis, 
although previous studies suggest better reproducibility of serum samples by MS-anal-
ysis [67]. Sample collection for the TTM-trial was performed a decade ago, which could 
have affected quantity, quality, and reactivity in protein samples [68]. Serum samples 
might be affected by repeated freeze–thaw cycles, resulting in degradation of proteins 
and creation of insoluble precipitates, whereas confirmation of previous measurements 
could be indicated [69]. Additionally, the freezing process of serum can cause precipita-
tion and possible denaturation of proteins and we cannot exclude that this may have had 
an influence on our results.

Limitations further include that sample preparation and the sub sequential MS-
analysis were performed in separate batches at different time points, resulting in batch 
effect as sample preparation was performed manually. By facilitating liquid handlers for 
performing sample preparation steps this error may be removed in the future studies. 
Proteome profiles might have been affected by non-cerebral causes of death, such as 
multi-organ failure and haemodynamic failure, thus substantial confounding cannot be 
excluded in the poor vs. good outcome groups. We have not examined the influence of 
any other possible confounders on our results. As proteins missing in more than 30% of 
the samples were filtered out, biologically interesting proteins were potentially removed, 
which could be avoided in future larger studies by restricting protein filtration to a later 
stage of data analysis. Reproducibility of proteomic analysis in biological samples is chal-
lenging due to varying sensitivity of applied methods and data-dependent statistical 
sampling, warranting validation studies using replication in an independent cohort or 
different methods [70].

Conclusions
Liquid chromatography and tandem mass spectrometry identified protein profiles 
associated with neurological outcome. Poor outcome patients demonstrated increased 
responses in inflammatory, immunity regulating, and apoptotic proteins, whilst good 
outcome patients more often had increased proteolysis. Temperature management had 
little effect on protein abundance. Further validation is necessary in search for novel bio-
markers that may correlate with prognosis after cardiac arrest.
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