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Introduction
Fluid overload occurs in more than two-thirds of criti-
cally ill patients with acute kidney injury (AKI) receiving 
kidney replacement therapy (KRT) and is independently 
associated with morbidity and mortality [1, 2]. Interna-
tional consensus guidelines recommend extracorporeal 
net fluid removal when a life-threatening fluid overload 
occurs in a patient with oliguric AKI refractory to diu-
retics [3–5]. However, the optimal method of net fluid 
removal during KRT remains to be determined, and there 
is global variation in clinical practice [6–10]. Some clini-
cians propose using net fluid balance as a target for the 
fluid removal [11, 12], while others suggest using the pre-
scribed vs. delivered net fluid removal gap [13, 14]. How-
ever, all these methods influence the net fluid removal 

rate (i.e., net ultrafiltration rate [UFNET] rate) one way or 
another during KRT.

Several observational studies show that the UFNET rate 
when adjusted for the patient actual body weight (ABW) 
has a “J” shaped association with mortality in critically ill 
patients with AKI receiving continuous kidney replace-
ment therapy (CKRT) [15–20]. Patients who received 
UFNET rates of 1.01 to 1.75 mL/kg/h had the lowest mor-
tality and KRT dependence compared to patients who 
received slower (< 1.01 mL/kg/h) or faster (> 1.75  mL/
kg/h) rates [15–18]. In addition, UFNET rates > 1.75  mL/
kg/h were associated with an increased risk of cardiac 
arrhythmias requiring treatment [15]. As randomized 
trials have not been conducted, the causality between 
UFNET rate and mortality is unclear.

Definition of net ultrafiltration
During CKRT, the CKRT machine continuously removes 
plasma water from the patient’s intravascular compart-
ment. This process is known as ultrafiltration (UF) [21, 
22]. The ultrafiltration rate (i.e., UF rate) is the rate at 
which plasma water is removed from blood per unit of 
time (mL/h) [23]. The term UF rate connotes only the 
volume removed from the patient’s intravascular com-
partment. It excludes the removal of any obligatory flu-
ids (i.e., dialysate and replacement fluids) administered 
during CKRT [22, 23]. The UFNET rate represents the net 
fluid removed from the intravascular compartment over 
and beyond any intravenous fluids directly infused into 
the patient simultaneously outside the CKRT machine. 
For instance, in an 80-kg patient with a UF rate of 
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160  mL/h who receives 80  mL/h of continuous intrave-
nous infusion, the delivered UFNET rate is 80 mL/h (i.e., 
160 minus 80) or 1.0 mL/kg/h.

Importance of weight‑based net ultrafiltration dosing
First, since UFNET is a form of controlled hypovolemia, it 
represents a form of cardiovascular stress [24, 25]. Dur-
ing UFNET, fluid removal from the intravascular com-
partment is accompanied by vascular refill because of 
fluid shifts from the extravascular into the intravascu-
lar compartment [26]. Vascular refilling depends on not 
only the UFNET rate, but also the degree of fluid overload, 
transcapillary hydrostatic and osmotic pressure gradi-
ents, dialysate sodium concentration, administration of 
colloidal or hypertonic solutions, endothelial glycocalyx 
and basement membrane, extracellular matrix, lymphatic 
flow, and systemic inflammation [22, 26–28]. When 
UFNET is performed at a higher rate than the vascular 
refill rate, the total circulating blood volume declines, 
resulting in intravascular hypovolemia, decreased 
preload, cardiac output, and hypotension [22, 29].

Thus, intravascular volume status must be frequently 
assessed during UFNET using point-of-care ultrasound 
(POCUS) such as venous excess ultrasound score 
(VExUS) or pulse pressure/ stroke volume variation 
(PPV/SVV), especially in obese individuals in whom 
volume status assessment can be challenging [30, 31]. 
Moreover, UFNET must only be performed during the 
stabilization and de-escalation phases of shock when 
the patient is hemodynamically stable and the goal is 
to achieve negative fluid balance. However, UFNET may 
occasionally be helpful during salvage and optimization 
phases when the patient has refractory pulmonary edema 
[5, 32].

Second, observational studies indicate an association 
between UFNET rate and mortality only when the UFNET 
rate is adjusted for patient body weight (i.e., mL/kg/h 
rather than mL/h). For instance, UFNET of 100 mL/h in 
a patient weighing 100 kg and receiving no continuous 
infusions is only 1.0 mL/kg/h. Meanwhile, in a patient 
who weighs only 50 kg, the UFNET rate is 2.0 mL/kg/h, 
suggesting differing cardiovascular stress depending 
upon the patient’s weight for any given UFNET rate. Thus, 
UFNET must be dosed like a drug or effluent dose based 
on the patient’s body weight [33, 34]. Herein, we describe 
a practical method for precise UFNET dosing during 
CKRT.

A practical approach to precision net ultrafiltration dosing
Before commencing UFNET, we suggest discontinuing all 
unnecessary IV fluids and double concentrating medica-
tions to minimize infused volume. We also suggest con-
firming excess intravascular volume status using POCUS 

or other methods of volume assessment. The hourly 
UFNET dosing during CKRT is based on three essential 
steps: (i.) determining patient weight; (ii.) selecting a 
desired UFNET dosing rate range (e.g., 1.0–2.0 mL/kg/h); 
and (iii.) calculating the hourly continuous infusions and 
fluid balance in any given hour.

Step 1: determine the patient body weight
We propose using predicted body weight (PBW) to set 
the UFNET rate during CKRT. PBW is estimated using 
a nomogram based on the patient’s height and sex [35]. 
We selected PBW to standardize the dosing of UFNET for 
any given patient independent of variations in ABW and 
quantify the cardiovascular stress in terms of UFNET dose. 
We also suggest using PBW for the following reasons: (i.) 
PBW is free of confounding by daily variations in patient 
ABW due to fluid balance [36], catabolism from critical 
illness [37], and other measurement errors [36]; (ii.) PBW 
has been shown to approximate ideal medication dosing 
weight in males and females [35]; and (iii.) PBW could be 
precisely determined in the patient before initiating fluid 
removal.

The PBW may be calculated using the following 
equations:

for female patients, and,

for male patients [38].
We recommend not using the patient ABW because 

precise premorbid ABW may not be known in criti-
cally ill patients. Moreover, ABW documented in 
medical records during previous or current hospitali-
zation may not be reliable because of confounding by 
the underlying illness that led to hospitalization (e.g., 
volume depletion from sepsis may result in underes-
timation, and fluid overload from heart failure may 
result in overestimation). Furthermore, using ABW 
will require daily changes in UFNET dosing as weight 
decreases secondary to fluid removal.

Among obese patients, we still recommend using 
PBW because the adipose tissue of obese individuals 
exhibits a substantial reduction in blood vessel den-
sity, disrupted blood flow, and endothelial dysfunc-
tion [39–43]. Thus, the cardiovascular stress during 
UFNET is less likely to vary as adiposity increases. 
Since obesity might be associated with more signifi-
cant fluid overload proportional to the fatty tissue, 
obese patients with severe fluid overload may require 
a prolonged duration of fluid removal for any constant 
UFNET rate based on PBW.

PBW
(

kilograms
)

= 45.5 + 2.3 [height (inches) − 60]

PBW kilograms = 50 + 2.3 [height (inches) − 60]
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Step 2: determine the desired UFNET rate dosing range
We recommend selecting a UFNET rate dosing range 
for the patient. While the optimal UFNET rate is 
unknown, we recommend cautiously using higher 
UFNET rates until more research is available. Higher 
UFNET rates may be used if the risk of not rapidly treat-
ing fluid overload (e.g., severe respiratory distress due 
to cardiogenic pulmonary edema) outweighs the risk 
of complications from higher UFNET rates [15]. In an 
ongoing clinical trial (NCT05306964), study ICUs 
are randomized to restrictive or liberal approaches 
to UFNET [44]. In the restrictive arm, fluid removal is 
between 0.5 and 1.5 mL/kg/h of PBW, and in the lib-
eral arm, between 2.0 and 5.0 mL/kg/h of PBW. In 
both arms, fluid removal starts at 0.5 mL/kg/h and 
gradually increases to maintain between the assigned 
target UFNET rate ranges, as tolerated by the patient 
hemodynamics. The UFNET rates corresponding to 
these dosing ranges have been used widely in clinical 
practice [9].

Step 3: calculate hourly continuous fluid infusion and fluid 
balance
Since the UFNET rate represents the removal of net 
intravascular volume, continuous intravenous patient 
infusions must be accounted for in the calculation. For 
example, in a patient with a PBW of 80 kg, a delivered 
UFNET rate of 1.5 mL/kg/h would be 120 mL/h (80 × 1.5) 
if the patient receives no intravenous fluids. However, 
if the patient receives 80 mL/h of intravenous infusion 
in the current hour, the patient-delivered UFNET rate is 
only 40 mL/h (i.e., 120—80 = 40 mL/h) or 0.5 mL/kg/h. 
The fluids infused may be that of intravenous fluids, 
medications, blood, plasma, and combinations thereof. 
Enteral and oral feedings and gastrointestinal and drain 
losses can also be included in determining the precise 
UFNET rate. However, how much the gastrointestinal 
fluid shifts directly impact circulating intravascular vol-
ume in the same hour and thus influence the delivered 
UFNET dose is complex and depends on several factors 
such as the rate of fluid absorption and loss from the 
gastrointestinal tract, the patient volume status, and 
rate of capillary refill. Since we developed this proto-
col primarily to determine the precise UFNET rate for 
iatrogenic fluid infusions, clinician discretion is recom-
mended on which fluids to include (e.g., chest tube and 
abdominal drains) in the calculations when there are 
complex fluid shifts.  Box  1 shows a case example of a 
hypothetical patient with UFNET dosing based on the 
above method. 

Case study of precision net ultrafiltration rate calculation and 
dosing during CKRT

A 60-year-old female patient is admitted to the emergency 
room in septic shock secondary to ischemic small bowel. 
She is hypotensive and required 5 L of fluid resuscitation 
in the emergency room and initiation of norepinephrine. She 
subsequently underwent an exploratory laparotomy, small 
bowel resection, and abdominal washout and her bowels are 
left in discontinuity. She received another 3 L of fluid bolus dur-
ing the surgery to maintain hemodynamics. At ICU admission, 
her fluid balance was positive for 8 L. 24 h following ICU admis-
sion, she developed oliguric acute kidney injury with urine out-
put of 100 mL in the last 24 h. Her urine analysis shows muddy 
brown casts. Her serum creatinine increased from a baseline 
of 0.8 mg/dL to 2.0 mg/dL. She was therefore started on CKRT 
for oliguric acute kidney injury and fluid management.

Her body weight at hospital admission is 80 kg, and her height 
is 63 inches. She receives a continuous infusion of 60 mL/h 
of intravenous TPN, 4 mL/h of propofol (40 mg/hour), 2 mL/h 
of fentanyl (100 mcg/h), and 18 mL/h of norepinephrine (0.12 
mcg/kg/min).
Precision UFNET rate calculation and delivery during CKRT:

Step 1: Based on the gender-specific nomogram, her predicted 
body weight (PBW) is 52.4 kg

Step 2: Desired UFNET rate = 1.0—2.0 mL/kg/h

Step 3: Continuous intravenous patient infusion = 84 mL/h 
(60 + 4 + 2 + 18)

Based on the above information, her UFNET rate range of 1.0 
to 2.0 mL/kg/h would be between 136.4 mL/h (52.4 + 84) 
and 188.8 (104.8 + 84) mL/h.

CKRT UFNET can be started at a rate of 0.5 mL/kg/h (i.e., 
136.4/2 = 68.2 mL/h) and gradually increased to 188.8 mL/h 
as tolerated by hemodynamics. The net fluid removal rate is then 
continued and varied between 136.4 and 188.8 mL/h as toler-
ated by the patient. If the patient infusion of 84 mL/h changes 
at any time, then the new UFNET rate must be recalculated 
based on the above method to deliver the UFNET rate precisely. 
If the patient has stoma output or other fluid losses, they can be 
incorporated into the calculation. A worksheet ( Additional file 1) 
can be used to calculate the precise net fluid removal rate

Use of clinical decision support system
A clinical decision support system (CDSS) can automate 
the calculation of the UFNET rate and may facilitate easy 
implementation. For example, if one enters the patient’s 
height and sex to determine the PBW, preselects the 
desired UFNET rate range, and enters the continuous infu-
sions and fluid balance per hour, a CDSS can calculate 
the UFNET rate. The recommended UFNET rate can then 
be set on the CKRT machine. The CDSS algorithm may 
be incorporated into a computer (e.g., iPad, laptop, or 
desktop) application (“app”), electronic medical records, 
and eventually into the CKRT machine software. Herein, 
we have developed a  UFNET  rate calculator  worksheet 
(Additional file 1) that helps clinicians to precisely dose 
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and track the delivered UFNET rate during CKRT since 
this information may only be routinely available in some 
electronic health records.

Conclusions
In summary, precision delivery of UFNET dosing during 
CKRT can be achieved based on patient body weight, 
intended rate of net fluid removal, and continuous infu-
sion of intravenous fluids, and hourly fluid balance.
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