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Abstract 

Background  ECPELLA, a combination of veno-arterial (VA) extracorporeal membrane oxygenation (ECMO) 
and Impella, a percutaneous left ventricular (LV) assist device, has emerged as a novel therapeutic option in patients 
with severe cardiogenic shock (CS). Since multiple cardiovascular and pump factors influence the haemodynamic 
effects of ECPELLA, optimising ECPELLA management remains challenging. In this study, we conducted a comprehen-
sive simulation study of ECPELLA haemodynamics. We also simulated global oxygen delivery (DO2) under ECPELLA 
in severe CS and acute respiratory failure as a first step to incorporate global DO2 into our developed cardiovascular 
simulation.

Methods and results  Both the systemic and pulmonary circulations were modelled using a 5-element resistance‒
capacitance network. The four ventricles were represented by time-varying elastances with unidirectional valves. In 
the scenarios of severe LV dysfunction, biventricular dysfunction with normal pulmonary vascular resistance (PVR, 0.8 
Wood units), and biventricular dysfunction with high PVR (6.0 Wood units), we compared the changes in haemody-
namics, pressure–volume relationship (PV loop), and global DO2 under different VA-ECMO flows and Impella support 
levels.

Results  In the simulation, ECPELLA improved total systemic flow with a minimising biventricular pressure–volume 
loop, indicating biventricular unloading in normal PVR conditions. Meanwhile, increased Impella support level in high 
PVR conditions rendered the LV–PV loop smaller and induced LV suction in ECPELLA support conditions. The general 
trend of global DO2 was followed by the changes in total systemic flow. The addition of veno-venous ECMO (VV-
ECMO) augmented the global DO2 increment under ECPELLA total support conditions.

Conclusions  The optimal ECPELLA support increased total systemic flow and achieved both biventricular unloading. 
The VV-ECMO effectively improves global DO2 in total ECPELLA support conditions.
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Background
Despite notable advancements in cardiovascular inten-
sive care, cardiogenic shock (CS) remains associated with 
a high mortality rate [1]. Veno-arterial extracorporeal 
membrane oxygenation (VA-ECMO) has revolutionised 
the management of CS, providing essential global oxygen 
delivery (DO2) and haemodynamic support to patients 
with complicated haemodynamics. However, VA-ECMO 
can also increase left ventricular (LV) afterload, poten-
tially worsening LV dysfunction and pulmonary oedema 
[2]. Recently, ECPELLA, the combination of VA-ECMO 
and Impella, a percutaneous LV assist device (Abiomed 
Inc., Danvers, MA, USA), has emerged as a novel thera-
peutic option to address the limitation of VA-ECMO 
alone strategy [3].

ECPELLA effectively unloads the LV and augments sys-
temic blood flow. However, the haemodynamic effects of 
ECPELLA are complex and influenced by a multitude of 
factors, including the underlying cardiovascular and lung 
condition and the VA-ECMO flow and Impella support 
level settings. Thus, optimising ECPELLA management 
remains challenging [4].

Moreover, 80% of patients with CS develop acute res-
piratory failure (ARF) [5]. In some cases of severe CS 
with ARF, impaired oxygenation in the lung requires 
veno-venous ECMO (VV-ECMO) in addition to other 
mechanical circulatory support (MCS) [6]. Multi-
optional MCS strategies may save the patients with 
severe CS. However, difficulty in accumulating case expe-
rience and case-dependent haemodynamic and respira-
tory alterations limit a comprehensive understanding of 
these treatments.

We conducted a simulation study of ECPELLA haemo-
dynamic management to understand ECPELLA haemo-
dynamics comprehensively, leading to optimal ECPELLA 
management. We have previously reported the haemo-
dynamic mechanisms of several MCSs using an electrical 
cardiovascular model [7]. Simulations allow us to evalu-
ate and visualise the dynamic changes of right atrial pres-
sure (RAP), left atrial pressure (LAP), total systemic flow, 
and biventricular pressure–volume loop (PV loop) at var-
ying VA-ECMO flow, Impella support level, and degree 
of biventricular function, which are difficult to assess in 
clinical practice. We also simulated global DO2 in severe 
CS and ARF with ECPELLA support as a first step to 
incorporate global DO2 management into our developed 
cardiovascular simulation.

Methods
Electrical model
We examined the impact of MCS combination therapies 
on haemodynamics and oxygen delivery in silico using a 

5-element cardiovascular model (Fig.  1). We simulated 
the dynamic cardiovascular system using Simulink® 
(Mathworks, Massachusetts, USA). The systemic and 
pulmonary circulations were modelled using the 5-ele-
ment resistance‒capacitance network model. We approx-
imated four intracardiac valves as unidirectional valves, 
and the flow rate was determined by the pressure gradi-
ent between pre- and post-valve compartments and the 
valve orifice area based on Bernoulli’s theorem [8]. In the 
four cardiac chambers, contractility and relaxation were 
represented by time-varying elastance [9], and stiffness 
was expressed by the end-diastolic pressure–volume 
relation [10]. VA-ECMO was designed to continuously 
remove blood from systemic veins and return to the sys-
temic arteries at continuous flows. Impella was designed 
to withdraw blood from the LV and continuously return 
blood to systemic arteries by the axial pump. We mod-
elled the pump performance of Impella based on the 
head‒capacity (H‒Q) curve described in a previous 

Fig. 1  Circuit diagram of the cardiovascular simulation model. 
VA-ECMO veno-arterial extracorporeal membrane oxygenation, 
LAP left atrial pressure, LVP left ventricular pressure, SAP systemic 
arterial pressure, SCP systemic capillary pressure, SVP systemic 
venous pressure, RAP right atrial pressure, RVP right ventricular 
pressure, PAP pulmonary artery pressure, PCP pulmonary capillary 
pressure, PVP pulmonary venous pressure, ELA time-varying elastance 
of left atrium, DMV mitral valve, RMV resistance of mitral valve, ELV 
time-varying elastance of left ventricle, DAV aortic valve, RAV resistance 
of aortic valve, RSZ0 characteristic impedance of systemic circulation, 
CSA compliance of systemic circulation, RSA resistance of systemic 
artery, CSC compliance of systemic capillary vessels, RSC resistance 
of systemic capillary vessels, CSV compliance of systemic vein, RSV 
resistance of systemic vein, ERA time-varying elastance of right atrium, 
DTV tricuspid valve, RTV resistance of tricuspid valve, ERV time-varying 
elastance of right ventricle, DPAV pulmonary artery valve, RPAV 
resistance of pulmonary artery valve, RPZ0 characteristic impedance 
of pulmonary circulation, CPA compliance of pulmonary artery, 
RPA resistance of pulmonary artery, CPC compliance of pulmonary 
capillary vessels, RPC resistance of pulmonary capillary vessels, CPV 
compliance of pulmonary vein, RPV resistance of pulmonary vein
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report [11] and the company’s published product man-
ual (Instructions for Use and Clinical Reference Manual 
of Impella CP). The flow rate of Impella was determined 
by the Impella rotational speed (P0‒P9) and the pressure 
gradient between the systemic artery and LV (Additional 
files 1 and 2). The approximate H–Q curves (P0–P9) cor-
relate significantly (p < 0.05, Spearman’s rank correlation 
coefficient) with the published H–Q curves (Additional 
file 3).

Setting of parameters and outcomes
To simulate left ventricular failure (LVF) and biventricular 
failure (BVF) without any mechanical circulatory support, 
we adjusted several parameters as follows: LV end-systolic 
elastance (Ees) was set at 0.4  mmHg/ml; right ventricular 
(RV) Ees was varied for 0.2 and 0.5 mmHg/mL; heart rate 
was set to 80 beats per minute (bpm) with reference to sev-
eral clinical studies of CS [12–14], and kept constant for 
simplicity of simulation, and systemic vascular resistance 
(SVR) was set at 11.7 Wood units (WU). Previous studies 
have reported normal values of 1.6 mmHg/ml for LV‒Ees 
and 0.44  mmHg/ml for RV‒Ees, although the values may 
vary depending on species and the measurement method 
[15, 16]. Each Ees in this study referenced studies of cardio-
genic shock models caused by acute myocardial infarction 
or acute pulmonary artery thrombosis, showing that con-
tractility is reduced by 34‒51% from baseline [17, 18]. To 
simulate the conditions of healthy physiology and pulmo-
nary hypertension (PH), we modulated the total pulmonary 
vascular resistance (PVR), setting it to 0.8 WU for healthy 

and 6.0 WU for PH. Pulmonary vascular impedance (Zc) 
was adjusted according to changes in PVR as reported in 
previous studies [19], while systemic parameters and other 
physiological parameters were fixed values based on data 
from healthy subjects (Additional file 1).

We constructed PV loops from the dynamic data 
obtained over time by conducting a simulation for each 
condition (Fig. 2). We calculated the pressure–volume area 
(PVA) [20] by integrating the area enclosed by the end-sys-
tolic pressure–volume relationship (ESPVR), the end-dias-
tolic pressure‒volume relationship (EDPVR), and the PV 
loop (Additional file 4). Additionally, we determined stroke 
work (SW) [20] as the area within the PV loop for a single 
cardiac cycle. We compared the changes in RAP and LAP, 
total systemic flow, PVA, and SW across three pathologi-
cal conditions: left LVF, BVF, and BVF concomitant with 
PH. These conditions were examined under different VA-
ECMO flows and Impella support levels.

Furthermore, we evaluate the effect of multiple MCS 
on global DO2. Global DO2 is determined by cardiac out-
put (CO), haemoglobin concentration, and arterial oxygen 
saturation (SaO2) [21]. Using ECPELLA support, Impella 
delivers blood oxygenated by the patient’s lungs, and VA-
ECMO supplies blood highly oxygenated by artificial lungs. 
Therefore, global DO2 under ECPELLA support is repre-
sented by the following equation:

DO2 =1.34 × 10×Hb× SaO2

× (CO+ Impella flow)+ 1.34

× 10×Hb× 1.0× VA-ECMO flow,

Fig. 2  A Representative plots from one cardiovascular simulation with changing cardiovascular conditions. Our simulation can capture 
complicated haemodynamic changes and generate biventricular pressure–volume loops for each heartbeat. The plot draws haemodynamic 
changes from the normal condition to LVF, BVF, and BVF with PH. LVF left ventricular failure, BVF biventricular failure, PH pulmonary hypertension, 
AP arterial pressure, LVP left ventricle pressure, LAP left atrial pressure, PAP pulmonary artery pressure, RVP right ventricular pressure, RAP right atrial 
pressure, PV loop pressure–volume loop. B Representative plots from one cardiovascular simulation with changing VA-ECMO flows and Impella 
support levels. In biventricular failure and high pulmonary vascular resistance, the combination therapy of VA-ECMO and Impella (ECPELLA) 
increased AP and total systemic flow while decreasing LVP and inducing LV suction with high-flow Impella support. VA-ECMO veno-arterial 
extracorporeal membrane oxygenation, AP arterial pressure, LVP left ventricular pressure, LAP left atrial pressure, PAP pulmonary artery pressure, RVP 
right ventricular pressure, RAP right atrial pressure, PV loop pressure–volume loop
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where Hb (g/dL) is the haemoglobin concentration, SaO2 
(–) is arterial oxygen saturation, and CO (L/min) is car-
diac output.

In clinical practice, excessive blood withdrawal by 
Impella can lead to a significant decrease in LV volume, 
resulting in "LV suction" [22]. In this study, LV suction 
was defined as LAP reaching 0 mmHg. We adjusted the 
simulation to introduce resistance to the Impella flow 
when LAP fell below 0, reducing flow.

Protocols
Protocol 1: impact of ECPELLA on LVF haemodynamics
We examined the effect of VA-ECMO flow and Impella 
support level on haemodynamics in LV dysfunction. VA-
ECMO varied from 0 to 5 L/min in 0.5 L/min steps, and 
Impella also varied in each support stepwise from P0 to 
P9. LV‒Ees was set at 0.4 mmHg/ml. RV systolic function 
and PVR were fixed at normal levels (RV‒Ees, 0.5 mmHg/
mL, PVR, 0.8 WU).

Protocol 2: impact of ECPELLA on BVF haemodynamics
We investigated the impact of VA-ECMO flows and 
Impella support levels on haemodynamics in biventricu-
lar dysfunction. VA-ECMO varied from 0 to 5 L/min in 
0.5 L/min steps, and Impella also varied in each support 
stepwise from P0 to P9. LV‒Ees and RV‒Ees were set at 
0.4 and 0.2  mmHg/mL, respectively. PVR was fixed at 
normal levels (PVR, 0.8 WU).

Protocol 3: impact of ECPELLA on BVF with PH 
haemodynamics
We investigated the impact of VA-ECMO flows and 
Impella support levels on haemodynamics in biven-
tricular dysfunction with pulmonary hypertension. VA-
ECMO varied from 0 to 5 L/min in 0.5 L/min steps, and 
Impella also varied in each support stepwise from P0 to 
P9. LV‒Ees and RV‒Ees were set at 0.4 and 0.2  mmHg/
mL, respectively. PVR was set at 6.0 WU.

Protocol 4: impact of ECEPLLA with/without VV‑ECMO 
on global DO2
We performed haemodynamic simulations in the 
ECPELLA support condition with VV-ECMO. To simu-
late typical clinical scenarios, haemoglobin concentration 
was set at 10 g/dL, which refers to the common clinical 
setting as shown in the recent VV-ECMO study [23], 
with a target SaO2 of 80% as recommended by the Extra-
corporeal Life Support Organization [24]. To simulate 
severe ARF with hypoxemia, SaO2 was set at 40% for the 
native lung and increased to 80% by adding VV-ECMO 
support. The maximum VA-ECMO flow rate was set at 

4 L/min, considering that an increase in venous outflow 
can lead to a reduction in arterial outflow due to the 
inherent limitations of venous circulation in VAV-ECMO 
support [25]. We also validated two different patterns of 
PVR with pulmonary oedema. LV‒Ees and RV‒Ees were 
set at 0.4 and 0.2 mmHg/mL, respectively. PVR were set 
at 0.8 WU (normal PVR) and 6.0 WU (PH).

Data analysis
The fixed step size (fundamental sampling time) in this 
simulation was set at 0.2  ms, and we performed calcu-
lations for 550  s in each simulation. For the first 100  s, 
haemodynamic simulations were conducted without 
Impella support. Then, the Impella support level was 
increased gradually every 50 s, and stable haemodynamic 
values were extracted 2 s before the next alteration when 
the time series data reached a steady state (Additional 
file 5) [26].

Results
Protocol 1: impact of ECPELLA on LVF haemodynamics
As shown in Figs.  3 and 4, an increase in VA-ECMO 
flow decreased CO and increased total systemic flow 
and mean AP. The addition of Impella decreased CO and 
increased total systemic flow and mean AP while main-
taining RAP and reducing LAP. Under total ECPELLA 
support, i.e. zero CO and ECPELLA-dependent circu-
lation, an increase in Impella support level effectively 
increased total systemic flow and mean AP and markedly 
decreased LAP. PV loop analyses are shown in Fig. 4 and 
Additional file  6. In the RV-PV loop, both VA-ECMO 
and Impella rendered the RV-PV loop left downward and 
decreased RV-PVA in each ECPELLA support condi-
tion. In the LV–PV loop, VA-ECMO shifted the LV–PV 
loop downward to the left only in higher Impella support 
conditions (P6). The degree of LV–PV loop shifting and 
LV-PVA reduction by Impella were augmented under 
VA-ECMO support conditions.

Protocol 2: impact of ECPELLA on BVF haemodynamics
Figures  5 and 6 represent the haemodynamic changes 
with ECPELLA in BVF conditions. The general trends 
were the same as in protocol 1. Under total ECPELLA 
support, an increase in Impella support level effectively 
increased total systemic flow and mean AP and markedly 
decreased LAP. PV loop analyses are shown in Fig. 6 and 
Additional file 6. The PV loop changes were similar to the 
results of protocol 1. In higher VA-ECMO conditions, 
the increase in Impella support level markedly shifted 
both the RV- and LV–PV loops downward to the left.
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Protocol 3: impact of ECPELLA on BVF with PH 
haemodynamics
Figures  7 and 8 represent the haemodynamic changes 
with ECPELLA in BVF with PH. Since the PH further 
reduced LV filling, an increase in Impella support level 
excessively reduced LAP, induced LV suction, and lim-
ited the Impella support level (less than 1.6 L/min) in 
each VA-ECMO flow condition. PV loop analyses are 
shown in Fig. 8 and Additional file 6. In the BVF with 
PH under ECPELLA support, an increase in Impella 
support level widened the RV-PV loop but did not 
change RV-EDV compared to the BVF condition 
(protocol 2). Higher Impella support level strikingly 
minimised the LV-PV loop in each VA-ECMO flow 
condition.

Protocol 4: impact of ECEPLLA on global DO2 in the absence 
and presence of VV‑ECMO support
Figure  9 represents global DO2 simulations with low 
SaO2 due to severe ARF. The changes in global DO2 
closely correspond to the changes in systemic flow in the 

ECPELLA support condition. Thus, the total support of 
ECPELLA effectively increased global DO2. The eleva-
tion of SaO2, using VV-ECMO, increased global DO2 and 
augmented the effect of Impella support level on global 
DO2 elevation. In the high PVR condition, the increase in 
global DO2 with ECPELLA support was limited, reflect-
ing the restricted total systemic flow due to LV suction.

Discussion
In this study, we used cardiovascular simulation to dem-
onstrate the impact of VA-ECMO and Impella on haemo-
dynamics in various cardiovascular conditions and the 
effect of VV-ECMO on global DO2 in BVF with severe 
ARF. The major findings of this study were as follows: (1) 
VA-ECMO increases total systemic flow depending on 
the flow rate. Meanwhile, Impella effectively increases 
total systemic flow in total ECPELLA support conditions. 
(2) ECPELLA can provide RV and LV unloading, while an 
appropriate increase in Impella support level may induce 
LV suction, especially in high PVR conditions. (3) The 
addition of VV-ECMO enhances the global DO2 aug-
mentation effect of Impella in BVF with severe ARF.

Fig. 3  Impact of ECPELLA on LVF haemodynamics. Changes in CO (A), total systemic flow (B), mean AP (C), RAP (D), and LAP (E) are shown. Each 
simulation consists of a series of 10 plots (Impella support at P0 ➝ P1 ➝・・・➝P9) corresponding to a single varied setting, from which 11 sets 
of data (VA-ECMO flow at 0➝0.5➝・・・➝5.0 L/min) were used to construct the plots. An increase in VA-ECMO flow decreased CO and increased 
total systemic flow and mean AP. The addition of Impella decreased CO and increased total systemic flow and mean AP, while maintaining RAP 
and reducing LAP. Under total ECPELLA support, i.e. zero CO, an increase in Impella support level effectively increased total systemic flow and mean 
AP, and markedly decreased LAP. LVF left ventricular failure, VA-ECMO veno-arterial extracorporeal membrane oxygenation, CO cardiac output, AP 
arterial pressure, RAP right atrial pressure, LAP left atrial pressure
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The impact of ECPELLA on total systemic flow
We investigated the haemodynamic impacts of VA-
ECMO and Impella support levels in various cardiovascu-
lar conditions. As shown in Fig. 10, VA-ECMO markedly 
increased total systemic flow, and the addition of Impella 
further increased it. Under total ECPELLA support, an 
increase in Impella support level effectively increased 
total systemic flow and markedly decreased LAP (Figs. 3, 
5 and 7). However, especially in the high PVR condition, 
an increase in Impella support level excessively decreased 
LAP and induced LV suction, resulting in limited total 
systemic flow. ECPELLA has been reported to provide 
sufficient systemic perfusion with total LV unloading [27] 
and improve the prognosis for patients through its pow-
erful haemodynamic effects in CS [3]. Impella has been 
reported to have benefits as an LV venting method for LV 
distension by VA-ECMO [28]. Our simulation suggested 
that the efficacy of Impella support in ECPELLA depends 
on adequate LV filling for stable Impella operation. Opti-
mising the LV filling is difficult because VA-ECMO and 
PH reduce RV output. Our simulation enables us to 
understand the optimal haemodynamic management 
of ECPELLA in several cardiovascular and pump flow 
conditions.

The impact of ECPELLA on LV unloading
The earlier LV unloading can recover LV from acute ischae-
mic damage [29]. In addition, we also reported that the 
higher degree of LV unloading by Impella reduces the infarct 
size in a large animal myocardial infarction model [30]. In 
this study, we visualised the RV and LV unloading effects of 
ECPELLA in multiple cardiovascular and pump flow condi-
tions. As shown in Fig. 11, the increase in VA-ECMO flow 
decreased LV end-diastolic pressure (LVEDP) in LVF con-
ditions while increasing it in BVF and BVF with PH condi-
tions. These findings align with our previous research [31], 
demonstrating that LV workload can vary depending on 
the balance between reduced LV preload and elevated LV 
afterload induced by VA-ECMO. ECPELLA shifted the 
LV-PV loop downward to the left in each VA-ECMO flow 
and Impella support level (Figs.  4, 6, 8). In addition, RV 
failure enhances the LV unloading effect by ECPELLA 
(Fig. 11). Those changes are also documented in the clini-
cal reports. Unoki et al. reported that ECPELLA provides 
effective LV unloading and minimises the LP-PV loop 
in clinical simulation studies of acute myocardial infarc-
tion with CS [27]. Bouchez et al. reported that decreased 
RV function or increased PVR shifted the LV–PV loop 
downward to the left under left ventricular assist device 
(LVAD) support [32].

Fig. 4  Impact of ECPELLA on right and left ventricular PV loops on LVF haemodynamics. Three conditions of MCS are shown: Impella alone (A), 
2.0 mL/min of VA-ECMO with Impella (B), and 4.0 mL/min of VA-ECMO with Impella (C). Different conditions are represented by various colours 
(black line: baseline, yellow: supported with Impella P2, red: Impella P6). In the RV-PV loop, both VA-ECMO and Impella rendered the RV-PV loop left 
downward in each ECPELLA support condition. In the LV-PV loop, VA-ECMO shifted the LV-PV loop downward to the left only in the higher Impella 
support conditions (P6). PV loop pressure–volume loop, LVF left ventricular failure, VA-ECMO veno-arterial extracorporeal membrane oxygenation, 
RVP right ventricular pressure, RVV right ventricular volume, LVP left ventricular pressure, LVV left ventricular volume
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A major advantage of this simulation is the visualisa-
tion of the RV-PV loop, which is difficult to estimate 
in the clinical setting. An increase in the Impella sup-
port level shifted the RV-PV loop to the left in the 
normal PVR conditions (Figs. 4, 6). This indicates a sig-
nificant decrease in RV afterload and an increase in 
RV-SV despite an increase in venous return to RV. Since 
LAP may contribute significantly more than PVR to RV 
afterload under normal PVR conditions, LV unloading 
by Impella decreases RV afterload, resulting in increased 
RV-CO. Meanwhile, when PVR was high, Impella wid-
ened the RV–PV loop but did not change RV-PVA and 
end-systolic pressure, indicating increases in RV preload 
and RV–SV without a change in RV afterload. Yourshaw 
et al. reported that Impella progressively improved RAP 
to pulmonary artery wedge pressure ratio and decreased 
RV afterload in 25 patients [33]. Farrar et  al. reported 
that LVAD had a beneficial effect in reducing PAP sec-
ondary to a reduction in LAP, while it could increase 
PAP by increasing RV preload when PVR was fixed [34]. 
Since Impella changes both RV preload and afterload, 
the impact of Impella on RV workload is complicated. 

Further simulation studies considering the clinical situa-
tion should be conducted.

The impact of VV‑ECMO on global DO2 under ECPELLA
In Fig. 9, we showed the impact of VV-ECMO on global 
DO2 in BVF and BVF with PH under ECPELLA. The 
changes in global DO2 closely correspond to the changes 
in systemic flow in the ECPELLA support condition. 
Thus, the total support of ECPELLA effectively increased 
global DO2. The elevation of SaO2 increased global DO2 
and augmented the effect of the Impella support level 
on global DO2 elevation. In shock patients, a significant 
decrease in DO2 below the critical level can lead to tissue 
hypoxia, anaerobic metabolism, organ failure and poor 
outcomes [35]. Although current clinical guidelines for 
shock management do not provide specific recommenda-
tions for global DO2 monitoring, Russell et al. emphasise 
the importance of monitoring key physiological param-
eters to optimise DO2 [36]. DO2-guided strategies in 
cardiopulmonary bypass management have shown the 
potential to prevent postoperative acute kidney injury 
[37]. However, according to Hayes et al., managing high 

Fig. 5  Impact of ECPELLA on BVF haemodynamics. Changes in CO (A), total systemic flow (B), mean AP (C), RAP (D), and LAP (E) are shown. 
An asterisk (*) indicates that the corresponding axis has been inverted to clarify or highlight specific relationships. The general trends were 
the same as in protocol 1. Under total ECPELLA support, an increase in Impella support level effectively increased total systemic flow and mean AP, 
and markedly decreased LAP. BVF biventricular failure, VA-ECMO veno-arterial extracorporeal membrane oxygenation, CO cardiac output, AP arterial 
pressure, RAP right atrial pressure, LAP left atrial pressure
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DO2 levels may not always be beneficial [38]. Thus, we 
need to provide individual correction of global DO2 in 
patients with CS.

As shown in Additional file  7: Fig.  S5, haemoglobin 
concentration is a major contributor to global DO2 under 
ECPELLA conditions. On the other hand, for the best 
support strategy considering the optimal haemoglobin 
concentration, it is crucial to consider not only the global 
DO2 delivery patterns, but also the local DO2 and the 
oxygen demand of each organ. Additionally, in conditions 
where PVR is increased due to hypoxemia, increasing 
venous oxygen saturation (SvO2) with VV-ECMO may 
attenuate hypoxic pulmonary vasoconstriction, reduce 
PVR, and alter haemodynamics under ECPELLA [39]. 
Therefore, in a clinical setting, we should also consider 
the possibility of a more complex effect of VV-ECMO on 
global DO2.

Approaching clinical knowledge gaps through simulation 
studies
Despite the positive impact on haemodynamics provided 
by MCS in CS, the prognosis for survival remains poor 
[12, 40]. It has been reported that patient background, 

such as age, plays a significant role in this issue [41]. In 
addition, the complicated management of multiple MCS 
may also limit the improvement of outcome in patients 
with severe CS. Therefore, the strategies and timing of 
weaning from multiple MCS, including VV-ECMO and 
VAV-ECMO, are still under debate [42, 43]. Our compre-
hensive simulation analysis may allow the optimisation of 
multiple MCS management, including the determination 
of optimal flow settings and the appropriate timing for 
weaning from MCS.

Limitations
This study has several limitations, primarily due to 
cardiovascular mathematical modelling. First, the 
simulation did not consider the variability of cardio-
vascular and respiratory parameters and anatomical 
and dynamic changes in valve structures. In clinical, 
various parameters such as LV contractility, heart rate, 
and vascular resistance can change due to autonomic 
nerve activity through baroreceptor or cardiopulmo-
nary reflexes [44]. We adopted the normal higher heart 
rate (80 bpm) based on several reports of CS [12–14]. 
Meanwhile, Ostadal et  al. and Schrage et  al. reported 

Fig. 6  Impact of ECPELLA on the right and left ventricular PV loops on BVF haemodynamics. Three conditions of MCS are shown: Impella alone 
(A), 2.0 mL/min of VA-ECMO with Impella (B), and 4.0 mL/min of VA-ECMO with Impella (C). Different conditions are represented by various colours 
(black line: baseline, yellow: supported with Impella P2, red: Impella P6). The PV loop changes were similar to the results of protocol 1. In higher 
VA-ECMO conditions, the increase in Impella support level markedly shifted both the RV- and LV-PV loops downward to the left. PV loop pressure–
volume loop, BVF biventricular failure, MCS mechanical circulatory support, VA-ECMO veno-arterial extracorporeal membrane oxygenation, RVP right 
ventricular pressure, RVV right ventricular volume, LVP left ventricular pressure, LVV left ventricular volume
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higher-than-normal HRs during the acute phase of CS 
requiring MCS [45, 46]. To develop a  more clinically 
relevant simulator, it is necessary to incorporate the 
heart rate changes in response to CS condition and its 
impact of cardiovascular parameters. Increased heart 
rate can enhance contractility, known as the force-
frequency relationship [47]. Furthermore, excessive 
tachycardia can lead to insufficient relaxation time, 
potentially causing a reduction in cardiac output, 
referred to as the incomplete relaxation [48]. Anatomi-
cal changes may also affect the haemodynamics in CS 
with Impella support condition. Mitral and tricuspid 
valve regurgitation may occur in patients with heart 
failure [49, 50], and the Impella catheter has been asso-
ciated with the development or worsening of aortic 
valve regurgitation [51].

Second, our simulation does not account for VAV-
ECMO flow diversion, which can dynamically alter 
oxygenation, systemic flow and oxygen delivery. In the 
VAV-ECMO circuit, increased venous outflow may par-
adoxically decrease arterial outflow due to the inherent 

limitations of total pump flow. Increasing blood deliv-
ery to the arterial side can increase systemic flow and 
global DO2, while compromising regional DO2 in vital 
organs such as the heart and brain, represented by 
Harlequin syndrome. On the other hand, increasing 
blood delivery to the venous side can increase SvO2 
and resolve Harlequin syndrome [52], while it may 
alter global DO2 due to increased SvO2, venous can-
nula recirculation and reduced systemic blood flow. 
Therefore, future research should focus on developing 
dynamic models that incorporate ECMO flow diversion 
and regional DO2 distribution to determine the optimal 
VAV-ECMO flow setting.

Third, in recent years, the importance of integrat-
ing micro- and microcirculation management in CS 
patients has been recognised [53]. Thus, various stud-
ies, including methods to assess tissue oxygenation and 
treatments, are being conducted [54, 55]. Incorporating 
the effects of tissue oxygenation and microcirculatory 
changes in the capillary compartment into our simula-
tion is an important next step.

Fig. 7  Impact of ECPELLA on BVF with PH haemodynamics. Changes in CO (A), total systemic flow (B), mean AP (C), RAP (D), and LAP (E) are shown. 
An asterisk (*) indicates that the corresponding axis has been inverted to clarify or highlight specific relationships. Since the PH further reduced 
LV filling, an increase in Impella support level excessively reduced LAP, induced LV suction, and limited the Impella support level (less than 1.6 L/
min) in each VA-ECMO flow condition. BVF biventricular failure, PH pulmonary hypertension, VA-ECMO veno-arterial extracorporeal membrane 
oxygenation, CO cardiac output, AP arterial pressure, RAP right atrial pressure, LAP left atrial pressure
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Fourth, our simulation provided a comprehen-
sive understanding of haemodynamic changes under 
ECPELLA support in various cardiovascular situa-
tions. Currently, the simulation aims to help medi-
cal staff make optimal decisions by predicting and 
demonstrating numerous haemodynamic situations 
under ECPELLA. However, to develop a simula-
tor that provides the best support strategy for each 
patient individually and instantaneously, it is neces-
sary to automatically estimate each patient’s cardio-
vascular parameters from the haemodynamic monitor. 
In addition, we need to consider patient-specific oxy-
gen demands in the whole body and vital organs, as 

well as the individual patient backgrounds such as a 
causal disease of CS and comorbidities. In the future, 
the personalised simulator may be able to optimise CS 
treatments, including drug therapies, transfusions, and 
MCS settings, which are currently based on clinician 
experience.

Conclusions
The optimal ECPELLA support increased total systemic 
flow and achieved RV and LV unloading. In BVF with 
severe ARF, the VV-ECMO effectively improves global 
DO2 in total ECPELLA support. Our simulation provides 
a comprehensive understanding of ECPELLA manage-
ment in patients with severe CS.

Fig. 8  Impact of ECPELLA on right and left ventricular PV loops on BVF with PH haemodynamics. Three conditions of MCS are shown: Impella alone 
(A), 2.0 mL/min of VA-ECMO with Impella (B), and 4.0 mL/min of VA-ECMO with Impella (C). Different conditions are represented by various colours 
(black line: Baseline, yellow: supported with Impella P2, red: Impella P6). In the BVF with PH under ECPELLA support, an increase in Impella support 
level widened the RV-PV loop but did not change RV-EDV compared to the BVF condition (protocol 2). Higher Impella support level strikingly 
minimised the LV-PV loop in each VA-ECMO flow condition. PV loop pressure–volume loop, BVF biventricular failure, PH pulmonary hypertension, 
MCS mechanical circulatory support, VA-ECMO veno-arterial extracorporeal membrane oxygenation, RVP right ventricular pressure, RVV right 
ventricular volume, LVP left ventricular pressure, LVV left ventricular volume
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Fig. 9  Impact of ECPELLA on global DO2 with and without VV-ECMO Support. Upper panels represent the changes of global DO2 without (SaO2: 
40%, A) and with (SaO2: 80%, B) VV-ECMO, and the comparison between the two conditions (C) in BVF supported by ECPELLA. Haemoglobin 
concentration was set at 10 g/dL. Lower panels represent the changes of global DO2 without (SaO2: 40%, D) and with (SaO2: 80%, E) VV-ECMO, 
and the comparison between the two conditions (F) in BVF with PH supported by ECPELLA. Different conditions are represented by different 
colours (light grey line: Impella alone, dark grey line: VA-ECMO with Impella, red line: with VV-ECMO) and markers (round: Impella, triangle: VA-ECMO 
with Impella). The changes in global DO2 closely correspond to the changes in systemic flow in the ECPELLA support condition. The elevation 
of SaO2, by using VV-ECMO, increased global DO2 and augmented the effect of Impella support level on global DO2 elevation. DO2 oxygen delivery, 
VV-ECMO veno-venous membrane oxygenation, VA-ECMO veno-arterial extracorporeal membrane oxygenation, SaO2 arterial oxygen saturation

Fig. 10  Impact of ECPELLA on total systemic flow. Data from protocols 1–3 (Figs. 3, 5 and 7) were used. Upper panels represent the impact 
of VA-ECMO flow changes on total systemic flow in LVF (A), BVF (B), and BVF with PH (C), and the comparison among the three conditions: 
VA-ECMO + Impella P6, VA-ECMO + Impella P2, and VA-ECMO alone. Lower panels represent the impact of Impella support levels on total systemic 
flow in LVF (D), BVF (E), and BVF with PH (F), and the comparison among the three conditions: VA-ECMO 4 L/min + Impella, VA-ECMO 2 L/min + 
Impella, and Impella alone. VA-ECMO markedly increased total systemic flow, and the addition of Impella further increased it. The presence of PH 
significantly limits the flow-supporting effect of VA-ECMO, Impella and ECPELLA. LVF, left ventricular failure; BVF, biventricular failure; PH, pulmonary 
hypertension; VA-ECMO, veno-arterial extracorporeal membrane oxygenation



Page 12 of 15Matsushita et al. Intensive Care Medicine Experimental           (2024) 12:13 

Abbreviations
ARF	� Acute respiratory failure
bpm	� Beats per minute
BVF	� Biventricular failure
CO	� Cardiac output
CS	� Cardiogenic shock
DO2	� Oxygen delivery
EDPVR	� End-diastolic pressure–volume relationship
Ees	� End-systolic elastance
ESPVR	� End-systolic pressure–volume relationship
Hb	� Haemoglobin concentration
H–Q curve	� Head-capacity curve
LAP	� Left atrial pressure
LV	� Left ventricle
LVAD	� Left ventricular assist device
LVEDP	� Left ventricular end-diastolic pressure
LVF	� Left ventricular failure
MCS	� Mechanical circulatory support
PH	� Pulmonary hypertension
PV loop	� Pressure–volume loop
PVA	� Pressure–volume area
PVR	� Pulmonary vascular resistance
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