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Abstract 

Background Reinforcement learning (RL) holds great promise for intensive care medicine given the abundant 
availability of data and frequent sequential decision‑making. But despite the emergence of promising algorithms, 
RL driven bedside clinical decision support is still far from reality. Major challenges include trust and safety. To help 
address these issues, we introduce cross off‑policy evaluation and policy restriction and show how detailed policy 
analysis may increase clinical interpretability. As an example, we apply these in the setting of RL to optimise ventilator 
settings in intubated covid‑19 patients.

Methods With data from the Dutch ICU Data Warehouse and using an exhaustive hyperparameter grid search, we 
identified an optimal set of Dueling Double‑Deep Q Network RL models. The state space comprised ventilator, medi‑
cation, and clinical data. The action space focused on positive end‑expiratory pressure (peep) and fraction of inspired 
oxygen (FiO2) concentration. We used gas exchange indices as interim rewards, and mortality and state duration 
as final rewards. We designed a novel evaluation method called cross off‑policy evaluation (OPE) to assess the efficacy 
of models under varying weightings between the interim and terminal reward components. In addition, we imple‑
mented policy restriction to prevent potentially hazardous model actions. We introduce delta‑Q to compare physician 
versus policy action quality and in‑depth policy inspection using visualisations.

Results We created trajectories for 1118 intensive care unit (ICU) admissions and trained 69,120 models using 8 
model architectures with 128 hyperparameter combinations. For each model, policy restrictions were applied. In 
the first evaluation step, 17,182/138,240 policies had good performance, but cross‑OPE revealed suboptimal per‑
formance for 44% of those by varying the reward function used for evaluation. Clinical policy inspection facilitated 
assessment of action decisions for individual patients, including identification of action space regions that may ben‑
efit most from optimisation.

Conclusion Cross‑OPE can serve as a robust evaluation framework for safe RL model implementation by identifying 
policies with good generalisability. Policy restriction helps prevent potentially unsafe model recommendations. Finally, 
the novel delta‑Q metric can be used to operationalise RL models in clinical practice. Our findings offer a promising 
pathway towards application of RL in intensive care medicine and beyond.
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Introduction
The practice of intensive care medicine involves frequent 
and fast decision-making. To do so, intensive care profes-
sionals have access to large amounts of data as intensive 
care unit (ICU) patients are continuously monitored. 
Given the often sequential nature of the decision-making 
process, reinforcement learning (RL) [1] may be a par-
ticularly well-suited machine learning method to solve 
treatment challenges in the ICU. In RL, an agent interacts 
with an environment, and receives rewards or penalties 
based on the actions it takes. The agent’s goal is to learn 
a policy that maximises the cumulative reward over time.

RL has enormous potential to improve critical care 
decision-making by providing a framework for learn-
ing from past experience and adapting to changing 
conditions. RL can be used to model the patient’s con-
dition and the potential outcomes of different treatment 
options, which can aid in the identification of high-risk 
patients, predict the risk of certain outcomes and find 
the best treatment pathway for a given patient. However, 
the majority of these models have been used to generate 
hypotheses and the use of RL models as bedside decision 
support aids is still a long way off. Open questions relate 
to model selection, evaluation metrics, and safe applica-
tion in a clinical setting [2].

RL models are typically developed and evaluated using 
a single reward function. A reward function represents 
the goals of treatment and determines the agent’s behav-
iour in the RL model. However, small changes in the 
reward function can have profound effects on the devel-
oped policies from these trained models [3]. Additionally, 
the reward signal may differ between patient populations 
or even individual patients due to operational differences 
in local guidelines as well as the availability of data used 
in the reward function. If a model uses a poorly defined 
reward function, it may generate policies that are not 
applicable to different patient groups or do not align with 
varying definitions of successful clinical outcomes.

Further, off-policy evaluation in RL is the process 
of evaluating the performance of a policy on histori-
cal actions with the environment rather than direct 
interaction of an RL algorithm with patients. Sparse 
reward signals, such as mortality, is a common chal-
lenge in off-policy evaluation as it limits the quality of 
the evaluation because there may be few or no rewards 
to base the evaluation on. This problem can be miti-
gated by adding a more frequently occurring signal 
to the reward such as incremental improvements of 

intermediary treatment goals such as restoration of 
organ function. This adds a new level of complexity as 
the different components of the reward function must 
now be weighed against each other. Additionally, if the 
action recommended by the model only occurs infre-
quently the quality of the off-policy evaluation degrades 
severely and can suffer from extreme bias and variance.

Lastly, RL algorithms can be difficult for healthcare 
providers to interpret and understand, reducing their 
acceptability. Current research into RL in the ICU 
mainly focuses on developing policies that are able to 
achieve better outcomes in terms of patient survival. 
However, RL can also be used as an analysis tool to 
evaluate the performance of past treatment strate-
gies and gain insights into which strategies were most 
effective. This can be particularly useful for identifying 
patterns in patient care that are associated with better 
outcomes.

To address these challenges, particularly in regard to 
safe RL model deployment, we introduce the concept of 
cross off-policy evaluation. This is based on reward shap-
ing, typically involves altering the reward function to 
guide the agent towards the desired outcome. Expand-
ing on this, our approach evaluates models based on 
their performance under different weightings of reward 
components within a singular reward function. The 
premise being that a truly robust policy should exhibit 
its applicability across various reward structures. This 
ability to generalise is not just an indication of a model’s 
robustness, but also a critical prerequisite for safe model 
deployment, ensuring that the model remains effective 
even when circumstances or priorities shift. We not only 
highlight the potential for this method to identify mod-
els that do not generalise effectively, but also showcase 
how it can be used to identify models that generalise 
well through the process of elimination. This provides a 
framework for model evaluation when the ideal reward is 
difficult to capture in a single number.

We also introduce a method of policy restriction that 
uses historical actions and the ordinal nature of the 
action space. This approach helps ensure that recom-
mended actions align with previous treatment steps, thus 
promoting consistency in policy behaviour. In so doing, 
the strategy helps to mitigate the risk of unpredictable 
policy actions, enhancing the reliability of model deploy-
ment and contributing to a safer model operation.

Finally, we present different types of policy analy-
sis and show how they can be applied to improve the 
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interpretability from a clinical perspective. We illus-
trate our proposed solutions by applying them to the 
development and evaluation of RL models to optimise 
mechanical ventilation settings for critically ill patients 
with severe COVID-19 from the Dutch ICU Data 
Warehouse (DDW).

Methods
Clinical context
In this paper we focused on COVID-19 patients that 
required mechanical ventilation in the ICU to main-
tain adequate oxygenation and decarboxylation. Impor-
tant ventilator parameters include respiratory rate, tidal 
volume, peak pressure, plateau pressure, positive end- 
expiratory pressure (PEEP) and fraction of inspired oxy-
gen (FiO2). For most of these parameters, the ventilator 
mode determines whether they are controlled by the 
healthcare, controlled by the patient or only monitored. 
However, regardless of ventilator mode, PEEP and FiO2 
are always controlled by healthcare professionals rather 
than only monitored. There is no consensus on optimal 
values for PEEP and FiO2 [4, 5]. If PEEP is too low, the 
lung may collapse causing decreased compliance and 
hypoxemia due to shunting. Overzealous application of 
PEEP may lead to reduced preload and hence reduced 
cardiac output, decreased compliance, increased dead-
space ventilation causing hypercarbia and acidosis [6]. 
Similarly, if FiO2 is too low, hypoxia will ensue which will 
ultimately lead to organ failure and death. However, an 
FIO2 that is too high is associated with oxygen toxicity 
to the long and other organs [7]. Personalisation of PEEP 
and FiO2 may therefore be a valuable strategy. Some 
recent clinical trials in this direction have shown prom-
ising results [8, 9]. However, their approaches are labour 
intensive and require particular expertise in respira-
tory physiology as well as additional monitoring devices. 
Therefore, RL should be promising in this setting. To the 
best of our knowledge, no previous attempts have been 
made to use RL to optimise mechanical ventilation set-
tings in COVID-19. There have been a limited number 
of attempts to use RL for optimising ventilator settings 
in patients with respiratory failure for reasons other than 
COVID-19. Prasad et  al.’s application of Fitted Q-itera-
tion focuses on optimising weaning protocols in ICUs, 
with the clinical goal of reducing reintubation occur-
rences and regulating patient physiological stability [10]. 
Peine et  al. developed a RL-based model called VentAI 
to minimise 90-day mortality by optimising ventilatory 
settings, specifically tidal volume (TV), PEEP and FiO2, 
which are among the most commonly used settings on 
a ventilator under controlled ventilation [11]. Kondrup 
et  al. proposed DeepVent, a Conservative Q-Learning 
algorithm (CQL), using a similar setup to Peine et al. and 

evaluated using Fitted Q Evaluation (FQE) [12]. Addi-
tionally, they introduced an intermediate reward func-
tion component based on the modified Apache II score.

Data extraction and preprocessing
The data for this study were sourced from the DDW, a 
database compiling information on critically ill COVID-
19 patients from 25 ICUs in the Netherlands [13]. The 
DDW encompasses data on 3464 patients, covering two 
distinct periods of the pandemic in the Netherlands, 
often referred to as "wave 1" and "wave 2". These terms 
denote the first and the second major surge of COVID-19 
cases, respectively, each of which saw a dramatic increase 
in infections. This database boasts more than 200 million 
individual clinical data points. At the time of this study, 
a snapshot of the DWWH, containing 3051 patients 
rather than the full 3464 were used for this experiment. 
The overall ICU mortality was 24.4%. Respiratory and 
haemodynamic parameters were among the most com-
monly recorded, including ventilation mode, prone posi-
tion and ventilator settings. Medications administration 
and daily fluid balance were available for most patients. 
Lab records were widely available. Clinical features were 
derived using time aggregations applied at 4, 6, h, 24  h 
time intervals. A list of all available data parameters and 
features is available in Additional file  1: Appendix SA. 
Patient admissions were selected based on length of ICU 
stay, use of invasive mechanical ventilation, and data 
availability, for reasons described in Fig. 1.

Reinforcement learning problem definition
RL is a computational approach where a computer pro-
gram, known as an ’agent’, learns to make decisions by 
interacting with an environment, in this case, represented 
by ICU patient data. The goal of the agent is to maximise 
a ’reward’, which in the ICU context, translates to optimal 
patient treatment outcomes. RL involves the agent inter-
acting with the environment through ’states’, which are 
snapshots of aggregated patient data over specific time 
intervals, and ’actions’, the medical interventions or treat-
ment decisions. A ’trajectory’ pertains to the sequential 
events and decisions made throughout the entire course 
of a single patient’s admission, encompassing the com-
plete set of states and the corresponding actions executed 
during that individual’s stay in the ICU.

Q-learning, an off-policy algorithm in RL, learns opti-
mal decision strategies even from suboptimal actions. In 
the ICU, this means it can learn effective treatment strat-
egies by analysing both optimal and non-optimal medical 
decisions made by healthcare professionals. This ability 
is crucial as it allows for learning from a wide range of 
historical real-world ICU scenarios without the need for 
experimental interventions on patients. In Q-learning, a 
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function known as Q(s, a) estimates the utility of taking a 
particular action (a) in a given state (s), and then follow-
ing the optimal strategy thereafter.

This section outlines the specific components of our 
model: the state space, action space, and reward struc-
ture, integral to our RL approach.

The state space defines the range of all possible con-
ditions that an ICU patient can experience, as repre-
sented by a comprehensive combination of key clinical 
indicators and measurements. We used one-hour time 

steps and combined ventilator sensor data, medication 
records, clinical scores, and laboratory results into one 
state space. Missing values were imputed using the carry-
forward method, up to clinical cut-offs; see Additional 
file 1: Appendix SA for the full list of features.

The action space defines the set of all possible inter-
ventions and treatment adjustments that the RL model 
can select from, specifically centred around the settings 
of positive end-expiratory pressure (PEEP) and fraction 
of inspired oxygen (FiO2). Figure  2 shows the distribu-
tion of actions in the dataset. We used bins of PEEP and 
FiO2 based on clinical cut-offs, and specified one action 
for non-ventilation (NV) to allow for the entire ICU 
admission to be used as a trajectory for training RL mod-
els. Our decision to focus the action space on PEEP and 
FiO2, diverging from the broader dimensions of previous 
studies [peine `22] [Prassad `17], is strategic. It makes the 
RL model simpler, reducing the need for extensive train-
ing data and computational resources. Concentrating on 
these key ventilatory parameters allows for direct control, 
facilitating more straightforward and broadly applicable 
decision-making. It is worth noting that factors like tidal 
volume, ventilation mode, and others are incorporated 
into the state space, ensuring that the model still consid-
ers their influence while keeping the action space con-
cise. This approach guarantees the model’s adaptability to 
diverse ICU conditions while maintaining its capacity to 
provide clear, actionable guidance essential for effective 
patient care.

In the context of our RL approach, a "reward" serves as 
a quantitative measure of the quality of patient care, with 
multiple rewards provided throughout a single patient 
trajectory. In this study, the reward function encompasses 
various short-term treatment goals, including oxygena-
tion and ventilation as well as long-term treatment goals 
such as mortality, length of stay, and discharge destina-
tion, collectively guiding the agent towards optimising 
patient treatment outcomes. For the intermediate reward, 
we included the P/F-ratio, the ratio of arterial partial 
pressure of oxygen (PaO2) to inspired oxygen concen-
tration (FiO2), as a measure of oxygenation [14, 15]. The 
PF-ratio is also used to classify the severity of ARDS [16] 
and is confirmed as a risk factor for mortality in COVID-
19 patients [17]. However, optimal P/F targets are not 
well-defined [18, 19]. We also included dead space, using 
Enghoff’s modification of Bohr’s equation [20] to esti-
mate dead-space ventilation [18] from partial pressure of 
carbon dioxide (PaCO2) and the end-tidal carbon diox-
ide (ETCO2) levels: Vd/Vt = [PaCO2 – ETCO2] / PaCO2. 
Removal of CO2 is a primary goal of mechanical ventila-
tion [21] and dead space is correlated with mortality in 
ARDS patients [22–25]. As exact targets are ill-defined, 
we primarily used changes between measurements as a 

Fig. 1 Patient selection flowchart
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delta target in the intermediate reward formulation. We 
defined a terminal reward component based on several 
factors. First, we included mortality, but also included 
the length of stay and the patient’s discharge destination 
after the hospital admission. The primary objective is to 
improve the quality of life, which is conventionally meas-
ured using Quality-Adjusted Life Years [26]. However, 
due to insufficient post-discharge data, we employed the 
length of stay (LOS) in the ICU as a surrogate measure 
for quality of life. This choice was made to approximate 
the impact of healthcare interventions on patients’ well-
being. The exact formula for the reward function is pro-
vided in Additional file 2: Appendix SB.

Policy formulation
In RL models, while the primary goal is to learn opti-
mal policies, these models inherently do not prescribe 

a specific action as optimal. The common practice is 
to employ a "greedy" policy, selecting actions with the 
highest expected reward. However, this approach might 
not always be suitable, particularly for unstable ARDS 
patients, where a significant deviation from previous 
actions could be detrimental. To mitigate this issue, 
we propose a policy restriction that confines the model 
to similar actions, allowing for one step up or down in 
either PEEP or FiO2. Illustrated in Fig. 2, our approach 
restricts the agent like a chess piece, with move-
ments similar to a chessboard. The agent’s deviations 
are akin to a king’s movements, and the RL policy’s 
advice on stopping mechanical ventilation is likewise 
constrained. We term this approach the "king-knight" 
policy that allows for structured flexibility, particularly 
when a patient is not on mechanical ventilation, where 
any action is permissible.

Fig. 2 Action space density distribution of the historical actions of physicians in the dataset and illustration of the RL king‑knight policy restriction. 
The red box shows under which actions the RL policy may recommend cessation of mechanical ventilation and the yellow box shows what actions 
a policy may next recommend if the current action (the small green box) is PEEP 6–10 cmH2O with FiO2 40–60%. NV stands for Non‑invasively 
ventilated
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Model architecture, training and off‑policy evaluation
The model architecture used in this paper is a Dueling 
Double-Deep Q Network (DDQN) [27, 28] as used in 
previous work [29]. We used an extensive hyperparam-
eter grid to find a set of optimal model and training set-
tings, including a variable amount of hidden layers (3 to 
5) and nodes (32, 64, 128) per layer. Two learning rate 
(LR) decay (ReduceLRonPlateau and STEPLR) were 
explored for training. Training was performed using 
Prioritised Experience Replay [30] and all models were 
implemented with PyTorch [31]. We used the MAGIC 
[32]OPE estimator to assess policy performance. We 
defined the physician behavioural policy using K-nearest 
neighbour as in previous work [29].

Experimental setup
Given the unknown optional trade-off between interme-
diate and terminal rewards, our study involved training 
models using a diverse range of six weightings encom-
passing both reward components. To assess the gen-
eralisability of policies, we introduced cross off-policy 
evaluation, where policies trained under a specific set 

of reward weights were evaluated on the remaining five 
sets of reward weights. In our experiments, this weight-
ing factor is varied across a set of predefined values: 
[0.25, 0.5, 1, 2, 4, 8]. This evaluation methodology neces-
sitates that each individual reward component, namely 
the intermediate and terminal reward, inherently reflects 
clinically desirable outcomes in isolation. The experi-
mental setup and methodology employed are depicted in 
Fig. 3. Best performing models were selected for further 
clinical policy inspection.

Policy evaluation and clinical policy inspection
To assess RL policies, the Off-Policy Policy Evaluation 
(OPE) method is utilised. OPE allows for the appraisal of 
a proposed AI policy by estimating its performance using 
real-world, historical ICU data, thus measuring its poten-
tial impact and effectiveness in past patient care scenar-
ios without the need for actual policy execution.

To evaluate policies in a rigorous manner, we pro-
pose the introduction of a novel metric termed "delta-
Q". Firstly, the Q-value, or q(s,a), represents the output 
of our model for a given state-action pair, indicating the 

Fig. 3 Experiment design with a framework for off‑policy evaluation and model and policy selection through cross‑OPE evaluation and clinical 
policy inspection
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expected utility of an action in a specific state. Delta-Q, 
on the other hand, is defined as the difference between 
the Q-value generated by our model and the Q-value rep-
resenting the physician’s action. Essentially, it measures 
the discrepancy in action quality between the AI’s deci-
sion and the physician’s choice. A delta-Q of zero implies 
that the model’s decision aligns with the physician’s, 
while a positive delta-Q suggests that the model’s action 
might lead to improved treatment outcomes compared to 
historical decisions. By examining delta-Q values across 
all state-action pairs, we can identify specific areas of 
treatment that warrant further clinical scrutiny. Notably, 
delta-Q can be employed at both the dataset level and 
individual patient trajectories, enabling comprehensive 
analysis.

We also extend upon previous work on clinical policy 
inspection [29] and propose several model and policy vis-
ualisations for clinical validation and operationalisation. 
Due to the black-box nature of deep learning algorithms, 
we aim to provide clinical insight into policy behaviour 
for individual patients. For example, we can use delta-Q 
as a metric for alignment between physician and policy 
actions. Sudden changes in delta-Q, due to changes in 
state or physician action, over the course of the admis-
sions can be used as a clinical alert. This allows physicians 
to evaluate model behaviour on a case-by-case basis and 
align with the clinical context in which the trained model 
and policy will be used.

Results
We extracted 1118 ICU admission from the DDW to cre-
ate trajectories. 70% of trajectories were used for training 
and 30% for testing. The average duration of an admis-
sion was 12.8 days, resulting in a total of 34 years of data 
for training and 7.8 years for testing. Missing values were 
filled using the last value carry-forward method [33] 
and patients with excessive missing data were excluded, 
as shown in Fig. 1. A total of 158 features were used in 
the final state space. We trained 69,120 models using 8 
model architectures and explored 18 hyperparameters. 
The total training time for this experiment was approxi-
mately 7 days on a virtual machine with 32 cores, 32 GB 
RAM, and 2 Nvidia 3070 Ti GPUs. Training was done 
using cuda [34].

Model and policy performance
For each model, we evaluated two policies, "greedy" and 
"king-knight", using the MAGIC OPE estimator. A total 
of 69,120 models were trained from which 138,240 poli-
cies were evaluated. From these, a set of 17,182 policies 
were selected and further evaluated using cross-OPE 
evaluation, as defined in the second evaluation round, see 
Fig. 3. Only 9.635 (56%) of cross-OPE evaluated models 

passed this evaluation phase. The results of this evalua-
tion are shown in Fig.  4. Despite the successful perfor-
mance of the models in the initial evaluation phase, a 
considerable number failed to exhibit comparable results 
during the cross-OPE evaluation utilising an alternate 
reward function shape. This may indicate the possibility 
of overfitting or the development of a policy that lacks 
generalisability. A final selection of top 100 models was 
based on cross-OPE performance and further explored in 
the clinical policy evaluation.

Model evaluation
We used the Q-value distribution of the state-action pairs 
of the dataset to investigate how the model ranks differ-
ent actions on average. Figure 5 provides an example of 
a model with policies that had good quantitative (top ten 
percentile and only positive OPE and cross-OPE results) 
results, but shows a bias against one specific action, 
’PEEP 10–14 and FiO2 80–100%.’ Although the policies 
show clinically reasonable action recommendations, the 
bias in this model could disqualify it from clinical imple-
mentation, highlighting that OPE results alone are insuf-
ficient for a robust model and policy evaluation.

Policy evaluation
Figure  6 presents the delta-Q surface plot for a policy 
applied across the dataset, highlighting areas need-
ing optimisation. The delta-Q is lower for actions in the 
’PEEP 14 + cmH20 and FiO2 80–100%’ range, and higher 
in the lower PEEP (0–6 cmH20, 6–10 cmH20) and lower 
FiO2 (21–40%, 40–60%) ranges, indicating these as criti-
cal improvement areas. This trend is consistent across 
models that passed the OPE and cross-OPE evaluations, 
directing physicians to prioritise these ranges in mechan-
ical ventilation strategies for COVID ARDS patients.

Inherent to our safety-restricted policy design, clini-
cal decisions can be more optimal than the RL-derived 
policy, as the safety-restricted policy limits the selection 
to less aggressive choices, barring potentially optimal but 
riskier actions. This includes situations where transition-
ing from a lower PEEP and FiO2 setting to a significantly 
higher one cannot be advised by the safety-restricted 
policy. These instances where the AI and clinical policy 
differ significantly are spread across the action space, sug-
gesting a nuanced understanding of policy performance 
and indicating a need for future research, particularly in 
time series analysis. Figure 7’s action distribution analy-
sis for subgroups further reveals that the optimal policy 
typically favours treatments with higher FiO2 and PEEP 
values, though not in combination, reflecting a complex 
balance in treatment decision-making.
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Clinical policy inspection and RL model application
We introduce a method for applying RL to individual 
patient cases, exemplified in the log-Delta-Q trajectory 
3D analysis, as presented in Fig. 8. This figure displays 
a 3D graph of PEEP, FiO2, and time, with log-Delta-
Q values shown through varying hues. In specific 
instances, abrupt shifts in hue on the graph can signal 
physicians to reassess the patient’s condition, suggest-
ing potential changes in clinical state that might not be 
obvious through standard indicators. This method can 
assist physicians in prioritising their attention, aiding 
them in determining which patients may need more 
immediate and focused care.

Discussion and conclusion
In this study, we proposed a method to assess RL model 
performance using cross-OPE, which allows for assess-
ment of generalisability of trained policies. We also intro-
duced a novel policy filter, "king-knight", that restricts 
model recommendations to actions similar to those taken 
by physicians. Additionally, we proposed to operational-
ise the application of RL in ICU settings by implementing 
delta-Q based clinical alerts. These alerts prompt physi-
cians to reassess treatment plans, particularly PEEP/FiO2 
settings, in response to changes in patient or ventilator 
parameters. Additionally, Fig. 8 provides a graphical rep-
resentation to aid physicians in tracking patient progress, 

Fig. 4 The histograms illustrate the evaluation outcomes with a detailing the Off‑Policy Evaluation (OPE) for policies with positive OPE returns 
and b presenting the cross‑OPE results. The vertical axis shows the density distribution, indicating data spread. The horizontal axis measures 
the relative performance or value of the target policy against the behaviour policy, using different reward functions without a specific unit. The 
"reward function version" corresponds to a series of weight factors: [0.25, 0.5, 1, 2, 4, 8], which are assigned to versions 1 through 6, respectively
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Fig. 5 Distribution of Q‑values for all state‑action pairs within the historical dataset. The x‑axis denotes the Q‑values, and the y‑axis represents their 
frequency. The plot reveals a pronounced shift to the left in the Q‑value distribution for ’PEEP 10–14 and FiO2 80–100%’, implying a lower expected 
reward. A policy based on this model will likely infrequently suggest ’PEEP 10–14 and FiO2 80–100%’. Each curve in the plot is labelled according 
to the corresponding ’PEEP’ and ’FiO2’ action pair, as specified in the legend

Fig. 6 Displayed are three aggregate surface plots over the dataset: the first for physician‑chosen actions, the second for policy‑recommended 
actions, and the third, Delta‑Q, which is calculated by subtracting physician Q‑values from policy Q‑values. The Delta‑Q plot indicates smaller 
differences in high (14 +) PEEP and FIO2 (80–100%) settings, suggesting this action aligns closely with the policy’s guidance. In contrast, larger 
Delta‑Q values in lower PEEP and FIO2 ranges suggest greater divergence, indicating that these areas may have more room for optimisation 
in alignment with policy recommendations
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identifying unusual action choices, and exploring poten-
tial alternative treatment strategies. This approach may 
enhance real-time decision-making but also fosters 
a deeper understanding of patient-specific responses 
within the RL model’s action space.

It is crucial to conduct a thorough clinical evaluation 
of trained RL models and policies before deployment in 
real-world settings. We showed how the use of off-policy 
evaluation alone may not be sufficient and may not iden-
tify models with clinically unexplainable behaviour. If 
a model’s behaviour is not understandable or is at odds 

with clinical practice, it may not be trusted by physicians 
and could potentially lead to unsafe or suboptimal treat-
ment decisions. Therefore, it is important to use a combi-
nation of methods, such as cross-OPE and clinical policy 
inspection, to ensure that the trained models and poli-
cies align with clinical expectations and have the desired 
performance.

It is important to note that there are limitations to these 
methods. One important caveat is that the proposed 
method relies heavily on domain expertise to define the 
components of the reward function and performing a 

Fig. 7 Comparison of action distributions between physician decisions and the optimal policy, segmented by patient outcome. The upper pair 
of heatmaps delineates the frequency of actions taken for survivors, contrasting actual physician choices with those suggested by the optimal 
policy. The lower pair of heatmaps mirrors this analysis for non‑survivors. Across both sets, the x‑axis categorises the level of PEEP and FiO2, 
while the y‑axis sorts by FiO2 percentage. The NV label stands for non‑invasively ventilated. The colour gradient represents the count of actions, 
with darker shades indicating higher frequencies
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clinical evaluation is labour intensive and time consum-
ing. Nonetheless, to ensure the safe deployment of RL 
models in clinical practice, we believe that despite the 
added labour and time required this step is essential for 
the safe and effective deployment of RL models in the 
healthcare setting. Additionally, it should be mentioned 
that our novel approaches to model evaluation can miti-
gate but not completely solve challenges related to off-
policy evaluation.

One limitation of this study is that it intentionally sim-
plifies the action space, focusing primarily on optimis-
ing two key ventilatory settings. While this decision was 
made to make the model more efficient and interpretable, 
it raises the question of whether solely fine-tuning these 
parameters would significantly improve treatment out-
comes without simultaneously optimising other crucial 
aspects of patient care, e.g. sedation, muscle blockers, 
haemodynamic stability or appropriate anticoagulation 
therapy. Additionally, it is important to note that this 
question may remain unanswered without empirical 
evidence, suggesting that an initial deployment of a sim-
pler model may be practical, followed by iterative refine-
ments to incorporate additional complexities as needed 
to enhance treatment efficacy.

Our proposed method also opens up new avenues 
for exploration, particularly in refining model selection 
through physician–patient consultations. Integrating 
patient preferences, like prioritising survival or qual-
ity of life, into the RL model’s reward function is key 
to selecting a fitting reward function and correspond-
ing optimal model, ensuring treatment advice aligns 
with each patient’s specific preferences, thus enhancing 
patient-centric decision-making. The use of cross-OPE 
can assist researchers and physicians in creating mod-
els that perform well across a range of patient prefer-
ences. While there are limitations to these methods, 

they represent a step forward in the application of RL 
in healthcare, with the potential to improve treatment 
outcomes for critically ill patients.

Upcoming studies should focus on validating these 
methods across various clinical settings and adjusting 
RL models to align with evolving treatment standards. 
When planning for future localised applications of 
these models, it is also important to consider the cen-
tre-effect [35] variations in resources, practice patterns, 
and patient demographics may profoundly influence 
performance.

In conclusion, we have shown how cross-OPE can serve 
as a robust evaluation framework to identify policies with 
good generalisability. In addition, we demonstrated that 
policy restriction can help prevent potentially unsafe 
model recommendations. Finally, the novel delta-Q met-
ric can be used to operationalise RL models in clinical 
practice. Our findings offer a promising pathway towards 
application of RL in intensive care medicine and beyond.
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