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Abstract

Background: This study aims to test the hypothesis whether lowering glycemia
improves mitochondrial function and thereby attenuates apoptotic cell death during
resuscitated murine septic shock.

Methods: Immediately and 6 h after cecal ligation and puncture (CLP), mice
randomly received either vehicle or the anti-diabetic drug EMD008 (100 μg · g−1).
At 15 h post CLP, mice were anesthetized, mechanically ventilated, instrumented and
rendered normo- or hyperglycemic (target glycemia 100 ± 20 and 180 ± 50 mg · dL−1,
respectively) by infusing stable, non-radioactive isotope-labeled 13C6-glucose. Target
hemodynamics was achieved by colloid fluid resuscitation and continuous i.v.
noradrenaline, and mechanical ventilation was titrated according to blood gases and
pulmonary compliance measurements. Gluconeogenesis and glucose oxidation
were derived from blood and expiratory glucose and 13CO2 isotope enrichments,
respectively; mathematical modeling allowed analyzing isotope data for glucose
uptake as a function of glycemia. Postmortem liver tissue was analyzed for HO-1,
AMPK, caspase-3, and Bax (western blotting) expression as well as for mitochondrial
respiratory activity (high-resolution respirometry).

Results: Hyperglycemia lowered mitochondrial respiratory capacity; EMD008
treatment was associated with increased mitochondrial respiration. Hyperglycemia
decreased AMPK phosphorylation, and EMD008 attenuated both this effect as well
as the expression of activated caspase-3 and Bax. During hyperglycemia EMD008
increased HO-1 expression. During hyperglycemia, maximal mitochondrial oxidative
phosphorylation rate was directly related to HO-1 expression, while it was unrelated
to AMPK activation. According to the mathematical modeling, EMD008 increased the
slope of glucose uptake plotted as a function of glycemia.

Conclusions: During resuscitated, polymicrobial, murine septic shock, glycemic
control either by reducing glucose infusion rates or EMD008 improved glucose
uptake and thereby liver tissue mitochondrial respiratory activity. EMD008 effects
were more pronounced during hyperglycemia and coincided with attenuated
markers of apoptosis. The effects of glucose control were at least in part due to the
up-regulation of HO-1 and activation of AMPK.

Keywords: Gluconeogenesis; Glucose uptake; Glucose oxidation; Mitochondrial
respiration; Apoptosis; AMPK; HO-1
2014 Vogt et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
icense (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
rovided the original work is properly credited.

mailto:josef.vogt@uni-ulm.de
http://creativecommons.org/licenses/by/2.0


Vogt et al. Intensive Care Medicine Experimental 2014, 2:19 Page 2 of 14
http://www.icm-experimental.com/content/2/1/19
Background
Hyperglycemia is the hallmark of sepsis-induced metabolic stress [1,2] and is caused by

both inhibition of insulin-mediated glucose uptake [2], i.e., insulin resistance [1-3], in-

sufficient insulin secretion [4], as well as increased hepatic glucose production from

glycogenolysis and gluconeogenesis [2]. It is well-established that sepsis-induced hyper-

glycemia is associated with oxidative stress [5,6], which causes mitochondrial dysfunc-

tion and organ damage in the kidney [7,8], the heart [8], and the liver [8] when present

over prolonged time. Maintaining normoglycemia by insulin control at different nutri-

tional intake levels protected against such mitochondrial and organ damage [7,8]. These

studies indicated that glycemia-independent effects of insulin appeared to be marginal

in this context: blood glucose control with insulin did not enhance the protective effect

of normoglycemia per se, and combining hyperglycemia and hyperinsulinemia was as-

sociated with the most pronounced mitochondrial damage and organ injury [8]. More-

over, insulin has marked immunologic effects [2], e.g., by inhibition of glycogen synthase

kinase-3β [9,10]. Finally, tight blood glucose control with insulin may lead to episodes of

deleterious hypoglycemia [11,12]. Metformin, a first line-defense drug for the treatment

of type 2 diabetes may theoretically circumvent the undesired side effects of insulin [13].

Metformin attenuated both the LPS-induced hyper-inflammatory response after partial

hepatectomy [14] and oxidative stress due to mild inhibition of the mitochondrial com-

plex I [15], decreases hepatic gluconeogenesis [16], and improves whole-body glucose oxi-

dation during hyperglycemia [17]. Metformin also stabilizes mitochondrial functioning by

reducing the transition pore opening, which protects against ischemia- [18], oxidant-

[19,20], or hyperglycemia-induced [21] cell death. Finally, it stimulates mitochondrial bio-

genesis via PG1α signaling [22], which in turn coincided with survival in patients with

sepsis [23]. However, metformin use is limited by its rare but serious side effect, lactic

acidosis, which could develop in this context due to the frequent renal impairment associ-

ated with septic shock [24-26]. Since we recently demonstrated acute kidney injury during

murine septic shock [27], we therefore tested the hypothesis whether lowering glycemia

using EMD008 would allow improving mitochondrial function and thereby attenuate

apoptotic cell death. EMD008 was chosen because it lowers ATP/ADP ratios similar to

metformin, which should activate AMPK and thereby improve hepatic and skeletal

muscle glucose utilization [28] and uptake. EMD008 alleviates glucotoxic stimulation of

apoptosis without or induction of hypoglycemia. In contrast to metformin, these effects

are not based on an inhibition of mitochondrial complex I and the reduction of mitochon-

drial respiration and cytosolic NADH/NAD+ ratio is less pronounced, reducing the risk of

lactic acidosis (all findings pertaining to EMD008 are personal communications of XL).

Septic shock with normotensive, hyperdynamic hemodynamics resulting from fluid resus-

citation and continuous i.v. noradrenaline was investigated in order to exclude any sys-

temic hemodynamic effect on metabolism: in fact, the above-mentioned data originate

from long-term experiments in awake, spontaneous breathing animals presenting with

lower-organ O2 supply than in healthy control animals [7,8].

Methods
Anesthesia, surgical instrumentation, and experimental protocol

The study protocol was approved by the University Animal Care Committee and

the federal authorities for animal research of the Regierungspräsidium Tübingen,
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Baden-Württemberg. Male C57BL/6 J mice (body weight 23 to 29 g, age 10 to 16 weeks)

were used for the experiments, which were performed in adherence to the National Insti-

tutes of Health Guidelines on the Use of Laboratory Animals. The animals, which did not

undergo mechanical ventilation and surgical instrumentation, served as controls for tissue

immunoblotting and electrophoretic mobility shift assay (EMSA). The anesthesia, cecal

ligation and puncture (CLP) procedure and the surgical instrumentation have been de-

scribed in detail previously [27,29]. Mice were anesthetized with sevoflurane and received

s.c. buprenorphine together with acetated Ringer's solution containing glucose (4 or

12 mg · g−1 for normoglycemic and hyperglycemic animals). A midline laparotomy was

performed to identify and ligate the cecum followed by a single puncture (18-gauge nee-

dle). After squeezing to expel stool, the cecum was returned into the abdominal cavity.

Postoperatively, water and food were provided ad libitum. After 6 h, mice received a sec-

ond s.c. injection including buprenorphine, acetated Ringer's solution containing glucose

as described above together with ceftriaxone and clindamycin (each with 30 μg · g−1). Fif-

teen hours post CLP, mice were anesthetized with sevoflurane followed by i.p. ketamine

(120 μg · g−1), midazolam (125 μg · g−1), and fentanyl (0.25 μg · g−1). After placement of the

animal on the procedure bench equipped with a heating pad and a lamp, a rectal

temperature probe was inserted. The anterior neck was incised to expose the trachea, the

right internal jugular vein, and the right carotid artery. The trachea was intubated, and

the lungs were mechanically ventilated with a pressure-controlled, lung-protective ventila-

tion strategy using a small animal ventilator (FlexiVentTM, Scireq®, Montreal, Canada)

[27,29,30]. After a lung recruitment maneuver, respirator settings were FiO2 0.5, tidal vol-

ume 6 to 8 μL · g−1 (titrated to maintain arterial PCO2 at 30 to 40 mmHg), respiratory rate

160 breaths · min−1, inspiratory/expiratory time ratio 1:2, and PEEP 5 cm H2O. Catheters

were inserted into the jugular vein, the carotid artery, and the bladder. Anesthesia was

maintained with continuous i.v. ketamine, fentanyl and midazolam, titrated to reach deep

sedation and analgesia as documented by complete tolerance against noxious stimuli.

Normotensive hemodynamics (i.e., mean arterial pressure > 55 mmHg) were achieved by

i.v. hydroxyethyl starch (maximum infusion rate 20 μL · g−1 · h−1) in a balanced electrolyte

solution (Tetraspan 6%, Braun, Melsungen, Germany), and, if needed, together with

continuous i.v. norepinephrine. Animals were randomly assigned to injection of ve-

hicle (0.9% saline) or EMD008 (100 μg · g−1) twice s.c., immediately and 6 h after

the CLP procedure and i.v. after insertion of the jugular vein catheter. In addition,

animals received either 1 or 2 mg · g−1 · h−1 continuous i.v. glucose to achieve a

normo- (target glycemia 100 ± 20 mg · dL−1; vehicle n = 8, EMD008 n = 7) or hyper-

glycemic (target glycemia 180 ± 50 mg · dL−1; vehicle n = 10, EMD008 n = 11) condi-

tions, respectively. Infused glucose 50% was given as stable, non-radioactive-labeled

1,2,3,4,5,6-13C6-glucose. After 5 h, the animals were killed through blood withdrawal via

the vena cava inferior.

Cell extracts, immunoblots, and comet assay

Immediately postmortem, the liver was removed, snap-frozen, and stored at −80°C.
Frozen tissue was homogenized and lysed in lysing buffer 100 mM Tris pH 7.5;

500 mM NaCl; 6 mM EDTA; 6 mM EGTA; 2% Triton-X-100; 1% NP 40; 20% glycerol;

protease inhibitors (β-glycerolphosphat 2 mM; DTT 4 mM; leupeptin 20 μM; pNPP

(p-nitrophenylphosphate) 4 mM; natriumorthovanadate 0.2 mM). To assess the expression
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of AMPK-α, p(Thr172)-AMPK-α, activated caspase-3, and heme oxygenase-1 (HO-1)

equal total protein aliquots (20 μg) were separated by SDS-PAGE and transferred

by western blotting. After blocking, the gel membranes were incubated with primary anti-

bodies (anti-AMPK-α; anti-p(Thr172)-AMPK- α; anti-Bax; anti-cleaved caspase-3 (Cell

Signaling, Danvers, MA, USA); anti-HO-1 (Abcam, Cambridge, NY, USA)). Actin, with a

primary antibody from Santa Cruz, Dallas, TX, USA, was used as loading control.

The primary antibodies were detected using horseradish peroxidase-conjugated secondary

antibodies (Cell Signaling, Danvers, MA, USA or Santa Cruz, Dallas, TX, USA). The

membranes were subjected to chemiluminescence using SuperSignal West Femto Max-

imum Sensitivity Substrate (Thermo Fisher Scientific, Waltham, MA, USA). Exposed

films were scanned, and intensity of immunoreactivity was measured using NIH ImageJ

software (http://rsb.info.nih.gov/nih-image). Protein expressions are presented as x-fold

increase over control values. These control values were taken from samples of two

healthy, native animals, which were co-separated on each gel. AMPK stimulation is

expressed as the ratio of p(Thr172)-AMPK-α/AMPK-α.

Single-cell gel electrophoresis allowed assessing the oxidative deoxyribonucleic acid

(DNA) damage (‘tail moment’ in the alkaline version of the comet assay) [27,31]. Immedi-

ate postmortem biopsies were placed in buffer containing Na-ethylenediaminetetraacetic

acid and minced to obtain a cell suspension. Two agarose gel slides were prepared from

each biopsy. The mean tail moment of 100 nuclei analyzed per slide was used for each

animal.
Glucose metabolism

For the measurement of blood glucose concentrations and 13C6-glucose tracer enrich-

ment, plasma samples were spiked with 6,6-2H2-glucose for concentration determin-

ation, with an amount targeted to achieve a 2H2-tracer mole fraction of 50%. The

spiked samples were derivatized with N-methyl-bis(trifluoroacetamide) (MBTFA, abcr,

Karlsruhe, Germany) to obtain the trifluoroacetyl-glucose derivative [31]. The latter

was analyzed by GC/MS under electron impact determination, and the signals at (m/z)

319, 321, and 325 were recorded for the 2H2- and
13C6-tracer mole fraction determin-

ation. Expiratory gas, 1 ml, was continuously collected as an aliquot of 60 to 80 respira-

tory cycles from the expiratory branch to determine both expiratory CO2 concentration

and 13CO2 tracer enrichment using GC/MS and measuring the masses m/z 44 and m/z

45. CO2 production rates were calculated as the product of tidal volume, respiratory

rate, and CO2 concentration. During steady-state conditions, the glucose rate of ap-

pearance (Ra) is derived from the arterial plasma isotope enrichment (atom percentage

excess or APE) according to Equation 1:

Ra ¼ F=APEpl ð1Þ

where APEpl is the isotope enrichment in the plasma, and F is the infusion rate of the

labeled glucose [32]. Endogenous glucose production is the difference between Ra and

the total exogenous glucose infusion, 2 · F. Since glycogenolysis most likely was hardly

present any longer [33], endogenous glucose production is assumed to equal gluconeo-

genesis (GNG).

http://rsb.info.nih.gov/nih-image
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Mitochondrial respiration

The activity of the mitochondrial respiratory chain was measured in immediate post-

mortem homogenized liver samples with disrupted cell membranes and intact mitochon-

dria using ‘high-resolution respirometry’ (Oxygraph-2 k respirometer; OROBOROS

Instruments Corp, Innsbruck, Austria) [31,34]. Data reported are maximal oxidative phos-

phorylation, i.e., O2 consumption after addition of substrates of complexes I and II

(pyruvate 10 mM, malate 5 mM + glutamate 10 mM, and succinate 10 mM) and

ADP (5 mM) and maximal O2 consumption in the uncoupled state, i.e., after 4-

(trifluoromethoxy) phenylhydrazone (FCCP), respectively.

Tracer data evaluation

The 1,2,3,4,5,6-13C6-glucose plasma and mixed expiratory 13CO2 tracer isotope enrich-

ment data allowed for calculating the flow rates of gluconeogenesis and glucose oxida-

tion. During steady state conditions, whole-body glucose uptake (uptake) equals the

sum of gluconeogenesis (GNG) and exogenous glucose infusion. In order to determine

the relation between glucose uptake and glycemia as well as a possible effect of

EMD008, the measured flux data were analyzed using a mathematical model based on

the assumption that these flow rates are directly closely linked to the plasma glucose

availability (conc) and the AMPK activation (ampk). The latter was integrated into that

model because AMPK is a crucial regulator of cellular glucose disposal [28] that also

contributes to the glycemic effect of metformin [35]. A potential link between flow

rates and the two controlling factors, glycemia and AMPK activation, was explored by

regression analysis. Since all the variables involved in the regression are determined

with a certain measurement error, an error in all variables approach was used adjusting

all measured flow rates and controlling factors as close as possible to their correspond-

ing measurement values, satisfying the following Equation 2:

Glucose uptake ¼ GNGþ glucose infusion ¼ k0 þ k1 � concþ k2 � ampk ð2Þ

where the coefficients k1 and k2 quantify the impact of the glucose concentration and

AMPK activation, respectively. In analogy, an equation was defined to express gluco-

neogenesis as a function of the controlling factors. An impact is established if the re-

gression estimate for the corresponding coefficient is significantly different from 0.

Hyperglycemic and normoglycemic animals were analyzed with the same set of coeffi-

cients, assuming that the sensitivity of flow rates to changes in the control processes re-

mains the same for all conditions. Vehicle and EMD008-treated animals were analyzed

with both distinct and the same sets of coefficients to explore whether AMPK activity

alone is sufficient to explain the EMD008 effect. Details of the regression approach are

given in the Additional file 1.

Statistical analysis

Differences between groups were analyzed with a one-way Kruskal-Wallis analysis of

variance on ranks followed by a post hoc Dunn's test. Differences between EMD008

and vehicle were tested with a student's t test or a Mann-Whitney rank sum as appro-

priate according to data distribution. The regression was performed using the STAN

software package [36], which expands on the Bayesian statistical package WinBUGS

[37] (BUGS = Bayesian statistics using Gibbs sampling). It allows a flexible definition of
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the statistical model and makes no assumption about the distribution of a test statistics

but estimates it using MCMC sampling given the data and eventually prior informa-

tion. It thereby provides reliable estimates of the 95% confidence range for parameters

of interest, which are used here as indicator for significance.

Results
Despite the maximum colloid infusion rate allowed by the protocol, all mice needed

continuous i.v. norepinephrine to maintain target hemodynamics, which were lower in

the normoglycemic EMD008-treated animals (0.009 (0.08 to 0.012) μg · g−1 · h−1) vs. all

other groups (p < 0.05, hyperglycemia, vehicle 0.025 (0.011 to 0.062), hyperglycemia

EMD008 0.030 (0.022 to 0.183), normoglycemia vehicle 0.031 (0.027 to 0.205)). Table 1

summarizes the parameters of systemic and regional macro- and microcirculatory per-

fusion, gas exchange, and acid-base status, without inter-group difference. However, in

the normoglycemia group, EMD008 treatment prevented the progressive fall of arterial

pH present in the other experimental groups. Table 2 summarizes the results of the

metabolic measurements. According to the protocol, blood glucose levels were higher

in the hyperglycemia groups, which coincided with more pronounced hyperlactatemia.

EMD008 lowered blood glucose concentrations in these animals, whereas it had no ef-

fect in the normoglycemic mice. While whole-body CO2 production and direct aerobic

glucose oxidation were comparable between groups, hepatic gluconeogenesis was sig-

nificantly lower in the hyperglycemic animals. In the latter, EMD008 further increased

gluconeogenesis. Table 2 also demonstrates that hyperglycemia lowered both maximal
Table 1 Parameters of macro- and microcirculatory hemodynamics, blood gases, and
acid-base status

Hyperglycemia Normoglycemia

Vehicle EMD008 Vehicle EMD008

Heart rate (beats · min−1) Start 422 (375;510) 446 (379;481) 459 (406;509) 351 (365;392)

End 452 (420;489) 437 (390;456) 495 (478;505) 352 (350;384)

Mean arterial pressure
(mmHg)

Start 62 (60;67) 65 (60;67) 61 (59;67) 71 (64;74)

End 60 (57;64) 58 (53;64) 62 (58;65) 67 (65;75)

Portal venous flow
(mL · min−1)

Start 5.2 (4.3;8.0) 7.2 (5.6;7.8) 9.4 (7.9;11.6) 5.8 (4.5;7.0)

End 5.1 (4.0;6.1) 6.2 (5.4;6.8) 8.9 (8.0;11.8) 5.3 (4.2;6.5)

Liver μ-vascular flow (AU) Start 132 (121;142) 136 (121;160) 135 (118;180) 140 (124;159)

End 124 (105;141) 118 (111;130) 106 (87;115) 111 (101;124)

Liver μ-Hb O2 saturation (%) Start 65 (63;67) 71 (66;73) 67 (63;72) 66 (63;74)

End 65 (63;69) 67 (64;71) 64 (59;65) 67 (62;71)

Arterial PO2 (mmHg) Start 336 (311;363) 350 (345;364) 368 (360;379) 347 (340;354)

End 314 (277;-334) 344 (324;350) 312 (301;322) 328 (323;340)

Arterial PCO2 (mmHg) Start 34 (26;35) 30 (29;33) 28 (27;30) 31 (28;33)

End 35 (32;38) 40 (35;43) 29 (28;31) 30 (29;34)

Arterial pH Start 7.34 (7.31;7.36) 7.32 (7.29;7.36) 7.36 (7.31;7.40) 7.39 (7.33;7.40)

End 7.31 (7.26;7.33)$ 7.20 (7.02;7.30)$ 7.30 (7.25;7.33)$ 7.40 (7.32;7.41)

Arterial base excess
(mmol · L−1)

Start −9.2 (−11.0;−6.3) −9.2 (−9.6;−8.4) −10.0 (−10.3;−7.0) −7.2 (−9.3;−7.0)

End −9.3 (−10.5;−4.6) −13.1 (−17.2;−9.3)$ −11.4 (−12.6;-9.5)$ −7.6 (−9.1;−6.4)

Liver μ-vascular flow and μ-Hb O2 saturation are capillary blood flow and hemoglobin O2 saturation, respectively. All data
are median (quartiles); $p < 0.05 start vs. end within one group.



Table 2 Parameters of glucose metabolism and mitochondrial respiratory activity

Hyperglycemia Normoglycemia

Vehicle EMD008 Vehicle EMD008

Arterial glucose (mg · dL−1) 151 (146;202)# 138 (128;142)#§ 104 (94;120) 99 (71;122)

Arterial lactate (mmol · L−1) 3.2 (2.6;3.5)# 3.8 (3.0;4.8)# 2.1 (1.9;2.5) 1.8 (1.5;1.9)

CO2 production (μL · min−1) 27 (25;32) 29 (27;31) 27 (25;27) 24 (22;27)

Gluconeogenesis (mg · g−1 · h−1) 0.31 (0.26;0.35)# 0.38 (0.33;0.40)#§ 0.40 (0.38;0.45) 0.53 (0.49;0.53)**

Glucose oxidation (% isotope infusion) 63 (57;67) 62 (59;64) 62 (60;64) 63 (59;66)

JO2-OXPHOS (pmol · s−1) 116 (97;122)# 136 (134;160)#§ 150 (136;177) 185 (167–197)§

JO2-ETC (pmol · s−1) 147 (130;159)# 166 (154;194)#* 183 (171;193) 210 (203;238)§

JO2-OXPHOS and JO2-ETC are maximal oxidative phosphorylation at optimal substrate availability and maximal electron
transfer capacity in the uncoupled state, respectively, as O2 consumption rate per 106 cells. All data are median
(quartiles). #p < 0.05 vs. normoglycemia; §p < 0.05 vs. vehicle; *p = 0.064 vs. vehicle; **p = 0.073 vs. vehicle.
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oxidative phosphorylation and maximal electron transfer capacity in the uncoupled

state in liver mitochondria and that EMD008 treatment was associated with increased

mitochondrial respiration, no matter what the glycemia level is. Table 3 summarizes

the immune biology results. Hyperglycemia was associated with decreased phosphory-

lation of AMPK, and EMD008 attenuated this effect. EMD008 significantly attenuated

the expression of Bax during hyperglycemia and that of activated caspase-3 under

normoglycemia. While EMD008 increased HO-1 expression during hyperglycemia, it

had no effect in the normoglycemic animals. Liver tissue tail moment obtained from

the comet assay was comparable in all groups.

Figure 1 shows the relation between mitochondrial respiration and HO-1 expression

or AMPK activation. During hyperglycemia, the maximal mitochondrial oxidative phos-

phorylation rate was directly related to HO-1 expression (p < 0.05) (Figure 1A, left

panel), while there was no relationship during normoglycemia (Figure 1A, right panel).

In contrast, mitochondrial oxidative phosphorylation was unrelated to AMPK acti-

vation, no matter what the glycemia level is (Figure 1B). During hyperglycemia, HO-1

expression was directly related to AMPK activation (p < 0.05) (Figure 1C, left panel),

while no significant relation was present during normoglycemia (Figure 1C, right panel).

Figure 2 summarizes the results of the mathematical modeling of the isotope enrichment

data. Assuming in Equation 1 that AMPK activation was not affected by the level of gly-

cemia, the mathematical modeling demonstrated that EMD008 caused an upward shift of

the linear relationship between glucose disposal and blood glucose concentration without
Table 3 Signal transduction and mediator proteins

Hyperglycemia Normoglycemia

Vehicle EMD008 Vehicle EMD008

Tail moment 0.5 (0.5;0.6) 0.6 (0.5;0.7) 0.5 (0.4;0.6) 0.6 (0.4;0.7)

HO-1 1.6 (1.6;1.7) 2.2 (2.0;2.3)§ 1.7 (1.6;1.8) 1.9 (1.6;2.2)

Bax 1.7 (1.5;1.9)# 1.3 (1.3;1.3)§ 1.3 (1.1;1.3) 1.3 (1.3;1.4)

Caspase-3 1.1 (1.1;1.2) 1.0 (0.9;1.1) 1.1 (1.0;1.3) 0.7 (0.7;0.8)§

AMPK activation 0.6 (0.6-0.7)# 0.8 (0.8;0.9)§ 0.8 (0.8;0.9) 0.8 (0.7;0.8)

Total AMPK 1.0 (0.99;1.05) 1.03 (0.98;1.08) 1.0 (0.98;1.02) 1.06 (0.99-1.08)

AMPK activation is expressed as TH172-phosphorylated AMPK in percentage of total AMPK. All values are expressed as
fold over control values from animals that had not undergone surgery. All data are median (quartiles). #p < 0.05 vs.
normoglycemia; §p < 0.05 vs. vehicle.



Figure 1 (See legend on next page.)
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(See figure on previous page.)
Figure 1 Relationships between maximal mitochondrial oxidative phosphorylation, HO-1 expression, and
AMPK activation. Maximal oxidative phosphorylation plotted as a function of HO-1 expression (A) and of AMPK
activation (B), and HO-1 expression plotted as a function of AMPK activation (C). Hyperglycemic animals (squares)
are shown on the left, normoglycemic mice (circles) on the right panels each; vehicle-treated mice are represented
by open symbols and EMD008-treated animals by black symbols. Overall correlation between mitochondrial
oxidative phosphorylation, HO-1 expression, and AMPK activation was r = 0.15 (p = 0.47) and r = 0.2 (p = 0.31),
respectively. Overall correlation between HO-1 expression and AMPK activation was r = 0.33 (p = 0.098). Due to
technical difficulties, the number of observations was reduced in the normoglycemic groups, which limits the
statistical reliability of the evaluation.
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affecting its slope, i.e., EMD008 treatment increased cellular glucose uptake, no matter

what the actual level of glycemia is (Figure 2A). In turn, when the effect of glycemia on

AMPK activation was taken into account in Equation 1, EMD008 increased the slope of

the relation between glucose disposal and glycemia (Figure 2B), i.e., increased glucose

disposal at a given level of glycemia.
A

B

Figure 2 Results of mathematical modeling of isotope enrichment data presented as glucose
uptake. Lines represent mean and 95% confidence intervals for EMD008- (straight lines) and vehicle-treated
(broken lines) animals. There is a loose correlation between AMPK activation values and glycemia and hence
some of the effects of AMPK activation can be carried over to the glucose variable, when the impact of
AMPK activation is ignored in Equation 2. (A) Regression lines obtained under these conditions and when
different parameters were used for the EMD008 and for control groups. At comparable glucose concentrations,
the predicted uptake is higher for the EMD008 group. When the AMPK effect is considered and one set of
coefficients is used for all groups, then a significant effect of AMPK on glucose uptake can be established. Since
a dependency on two factors is difficult to visualize, the actual values for AMPK used in the term k2 AMPK in
Equation 2 are expressed by a glycemia-dependent term derived from a linear approximate relation between
AMPK activation and glycemia, which allows to express glucose uptake as a function of glycemia alone. (B) An
approximate replacement which demonstrates that EMD008 increased the slope of the relation between
glucose disposal and glycemia [28].



Vogt et al. Intensive Care Medicine Experimental 2014, 2:19 Page 10 of 14
http://www.icm-experimental.com/content/2/1/19
Discussion
This study was to test the hypothesis whether glycemic control using the newly developed

anti-diabetic drug EMD008 would improve glucose uptake and thereby increase the mito-

chondrial respiratory activity of murine resuscitated, polymicrobial septic shock. EMD008

was chosen to reduce blood sugar levels rather than insulin or metformin to avoid any

insulin-induced hypoglycemia and lactic acidosis, respectively. The major findings were as

follows: (i) EMD008 increased both liver tissue oxidative phosphorylation and maximal O2

uptake, (ii) this effect was even more pronounced during normoglycemia, (iii) associated

with attenuated markers of tissue apoptosis, and (iv) associated with an up-regulation of

HO-1 and activation of AMPK.

Hyperglycemia was associated with significantly lower mitochondrial oxidative phosphor-

ylation and maximal O2 consumption in the uncoupled state. Controlling glycemia restored

mitochondrial capacity, and EMD008 further enhanced this effect. Our findings of a

hyperglycemia-induced depression of mitochondrial capacity extends previous reports on

tissue respiration by Vanhorebeek in a long-term, un-resuscitated rabbit model of burn

injury-induced critical illness [7,8], inasmuch as hyperglycemia has similar effects during

the acute phase of noradrenaline-resuscitated murine septic shock. At a first glance,

increased tissue respiration could be induced by the noradrenaline intervention alone as

reported by other authors for liver mitochondrial respiration during long-term porcine

endotoxemia [38]. These authors, however, compared noradrenaline treatment to fluid re-

suscitation alone, whereas in our experiment, all mice received continuous i.v. noradrenaline

to achieve target hemodynamics. Furthermore, we explicitly studied the effect of hypergly-

cemia in comparison to normoglycemia, while glycemia was maintained between 63 and

108 mgmol · dL−1 in that study.

Hyperglycemia per se was associated with significantly higher Bax expression, while

EMD008 attenuated caspase-3 activation during normoglycemia. As a whole, these findings

agree with various previous reports that hyperglycemia causes liver tissue apoptosis [39-42],

which can be prevented by anti-diabetic drugs such as metformin [20,21,43], even during

acute stress states [44]. Attenuation of apoptosis resulting from glucose control per se

[39-42] and/or metformin treatment [20,21,43,44] is mainly referred to decreased oxidative

stress associated with restoration of normoglycemia [7,8]. Metformin reduces oxidative

stress due to inhibition of complex I and a consecutive decrease of mitochondrial O2 uptake

[15,19,21,45]. EMD008 treatment coincided with increased mitochondrial respiration, no

matter what the level of glycemia is. Hence, it exhibited protective effects on mitochondrial

function without reducing mitochondrial O2 consumption. Moreover, the tail moment in

the comet assay, which previously proved to be a sensitive marker of tissue oxidative stress

both in our murine model of resuscitated septic shock [31,46] as well as in hyperglycemic

rats [40,42], did not show any inter-group difference. Consequently, a postulated key mech-

anism of metformin action, namely, complex I inhibition that reduces both ROS production

and mitochondrial O2 consumption, may not contribute to EMD008 effects and other

mechanisms are likely to be involved. Figure 1 demonstrates that at each level of glycemia,

EMD008 treatment coincided with the highest individual values of HO-1 expression.

During hyperglycemia, EMD008 not only significantly increased HO-1 expression when

compared to the vehicle-treated animals, but there also was a significant direct relation

between mitochondrial respiratory capacity and HO-1 expression. Up-regulation of HO-1 is

an adaptive response against oxidative stress-induced mitochondrial dysfunction during
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streptozotocin-induced diabetes [47]. During the transition from acute to chronic 3,5-

diethoxycarbonyl-1,4-dihydrocollidine hepatotoxicity [48], it counteracts mitochondrial dys-

function and energetic failure. Induction of HO-1 induction was associated with increased

release of anti-inflammatory cytokines and hepatic mitochondrial biogenesis in endotoxic

shock [49], which ultimately protected against otherwise lethal Staphylococcus aureus sepsis

[50]. Finally, activation of HO-1 with hemin improved glucose metabolism in diabetic rats

[51] as a result of synergistic interaction between HO-1 and AMPK [52]. In our experi-

ments, during hyperglycemia, HO-1 expression was directly related to AMPK activation,

and the mathematical modeling of the glucose enrichment data depicted in Figure 2

suggests that the EMD008-associated increase in cellular glucose utilization was due to the

higher AMPK activation as well. Hence, it is tempting to speculate that during hypergly-

cemia, the EMD008 effects were at least in part due to AMPK activation. This reasoning

agrees with previous work: In vitro, AMPK activation by HO-1 [53] or metformin [54]

attenuated complement-induced cytotoxicity and TNF-α-induced inflammation, respect-

ively. In turn, activation of AMPK can stimulate HO-1 expression and thereby attenuate

cytokine-mediated cell death [55]. In vivo, in endotoxic mice, the metformin-induced

attenuation of the hyper-inflammatory response ultimately resulting in increased survival

was at least in part due to AMPK activation [56].

The present data link AMPK-activation with HO-1 induction and improved mitochon-

drial respiration under hyperglycemia. The latter implies improved oxidative glucose

utilization, and as a consequence, an improved flow and removal of glycolytic metabolites.

Increased levels of glycolytic metabolites are the primary cause for glucotoxicity [57], and

their increased oxidative disposal should lead to lower metabolite levels and explain the

observed tendency of a reduced glucotoxity. More importantly, if one considers that net

glucose uptake is by part driven by an intracellular/extracellular concentration gradient,

then lower intracellular metabolite levels should lead to a higher glucose uptake. To a

certain extent, improved mitochondrial activity pulls extracellular glucose down the glyco-

lytic pathway. Such a mechanism can explain the link between glucose uptake and AMPK

stimulation and allows an increased glucose uptake without increasing intracellular metab-

olite levels and glucotoxicity. Improved hepatic mitochondrial respiration should improve

the energy state. Various steps of gluconeogenesis require ATP, and it may well be that

under septic conditions the gluconeogenic rate, albeit high, is limited by energy supply and

the improved energy supply supersedes other effects of AMPK or EMD008 that down-

regulate gluconeogenesis under energy-sufficient conditions.
Limitations of the study

All animals received continuous i.v. noradrenaline to achieve hemodynamic targets, but

the noradrenaline infusion rate was significantly reduced by EMD008 during normogly-

cemia. It is unlikely, however, that the improved mitochondrial respiration under these

conditions was only due to the reduced catecholamine administration: under hypergly-

cemic conditions, EMD008 also improved mitochondrial respiratory capacity despite

virtually identical noradrenaline requirements. It could be argued that the higher rate

of gluconeogenesis associated with the EMD008 treatment is in contrast to the reduced

glucose formation expected from the actions of metformin. However, our finding is in

line with previous observations in this model demonstrating that higher rates of hepatic
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gluconeogenesis coinciding with unchanged or even lower catecholamine infusion rates

indicate improved hepatic metabolic performance [27,58].

Conclusions
During resuscitated, polymicrobial, murine septic shock, glycemic control either by

reducing glucose infusion rates or by using the newly developed anti-diabetic drug EMD008

improved glucose uptake and thereby both liver tissue oxidative phosphorylation and

maximal O2 uptake. The EMD008 effects were more pronounced during hyperglycemia

and coincided with attenuated markers of tissue apoptosis. These beneficial effects of

glucose control were at least in part due to up-regulation of HO-1 and activation of AMPK.
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