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Abstract

Background: Mechanical ventilation (MV) can cause ventilator-induced lung injury
(VILI). The innate immune response mediates this iatrogenic inflammatory condition.
The receptor for advanced glycation end products (RAGE) is a multiligand receptor
that can amplify immune and inflammatory responses. We hypothesized that RAGE
signaling contributes to the pro-inflammatory state induced by MV.

Methods: RAGE expression was analyzed in lung brush and lavage cells obtained
from ventilated patients and lung tissue of ventilated mice. Healthy wild-type (WT)
and RAGE knockout (KO) mice were ventilated with relatively low (approximately
7.5 ml/kg) or high (approximately 15 ml/kg) tidal volume. Positive end-expiratory
pressure was set at 2 cm H2O during both MV strategies. Also, WT and RAGE KO mice
with lipopolysaccharide (LPS)-induced lung injury were ventilated with the above
described ventilation strategies. In separate experiments, the contribution of soluble
RAGE, a RAGE isoform that may function as a decoy receptor, in ventilated RAGE KO
mice was investigated. Lung wet-to-dry ratio, cell and neutrophil influx, cytokine and
chemokine concentrations, total protein levels, soluble RAGE, and high-mobility
group box 1 (HMGB1) presence in lung lavage fluid were analyzed.

Results: MV was associated with increased RAGE mRNA levels in both human lung
brush samples and lung tissue of healthy mice. In healthy high tidal volume-
ventilated mice, RAGE deficiency limited inflammatory cell influx. Other VILI parameters
were not affected. In our second set of experiments where we compared RAGE KO and
WT mice in a 2-hit model, we observed higher pulmonary cytokine and chemokine
levels in RAGE KO mice undergoing LPS/high tidal volume MV as compared to WT
mice. Third, in WT mice undergoing the LPS/high tidal volume MV, we observed
HMGB1 presence in lung lavage fluid. Moreover, MV increased levels of soluble RAGE in
lung lavage fluid, with the highest levels found in LPS/high tidal volume-ventilated
mice. Administration of soluble RAGE to LPS/high tidal volume-ventilated RAGE KO
mice attenuated the production of inflammatory mediators.

Conclusions: RAGE was not a crucial contributor to the pro-inflammatory state induced
by MV. However, the presence of sRAGE limited the production of pro-inflammatory
mediators in our 2-hit model of LPS and high tidal volume MV.
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Background
Mechanical ventilation (MV) is a crucial intervention in the management of the critic-

ally ill but can aggravate lung injury, also known as ventilator-associated lung injury

(VALI) in patients and termed ventilator-induced lung injury (VILI) in animal models

[1-5]. The exact molecular mechanisms involved in VILI pathogenesis are incompletely

understood, but accumulating evidence indicates that MV triggers an inflammatory re-

sponse in which innate immunity plays a central role [6-11].

Pattern recognition receptors (PRRs) are activated by bacterial products and by

damage-associated molecular patterns (DAMPs), which are endogenous molecules re-

leased during tissue injury [12]. DAMPs are present in the alveolar compartment dur-

ing (injurious) MV indicating the potential significance of the DAMP/receptor axis in

VILI [7]. The role of some PRRs in VILI has been investigated: VILI is in part mediated

by toll-like receptor (TLR) 4 signaling [9,10]. More recently, the importance of the

inflammasome pathway was identified [6,8]. Less is known about the role of the recep-

tor for advanced glycation end products (RAGE) in VILI.

RAGE is highly expressed in the lungs, primarily on the basolateral membrane of al-

veolar type I cells [13] and recognizes a variety of molecules including alarmins such as

S100 proteins and high-mobility group box 1 (HMGB1) [14,15]. Soluble RAGE

(sRAGE) is a RAGE isoform that lacks the transmembrane and cytosolic part. sRAGE

levels can be used as biomarker for alveolar epithelial type I cell injury [16,17]. sRAGE

itself may also influence inflammation as it can compete with cell-surface RAGE for lig-

and engagement [17]. Studies indicated that RAGE ligands are present in the pulmon-

ary compartment during MV: (1) Long-term MV in patients without acute lung injury

increased HMGB1 levels in bronchoalveolar lavage fluid (BALF) [18], (2) 4 h of injuri-

ous MV in rabbits induced a fivefold increase of HMGB1 levels in BALF and blocking

HMGB1 attenuated VILI [19], and (3) S100A12 and S100A8/A9, members of the S100

family of proteins, are found in BALF of patients with acute respiratory distress syn-

drome (ARDS) [20,21]. RAGE-ligand interaction activates intracellular pathways and

induces pro-inflammatory cytokines, proteases, and oxidative stress [17].

We hypothesized that RAGE signaling contributes to the pro-inflammatory state in-

duced by MV. For this, we analyzed the expression of RAGE mRNA in lung brush cells

and BALF cells obtained from ventilated patients. In addition, we ventilated wild-type

(WT) and RAGE knockout (KO) mice, healthy and with lipopolysaccharide (LPS)-in-

duced lung injury, to study the role of RAGE in VILI. Furthermore, the contribution of

soluble RAGE was investigated. To establish the presence of VILI, we analyzed alveolar

capillary permeability and the pulmonary inflammatory response.
Methods
A more detailed description of the methods is provided in Additional file 1.
Patients

Samples obtained from a previous trial in which patients were randomized to two

ventilation strategies during elective surgery were used [22]. The Medical Ethics Com-

mittee of the University of Amsterdam approved the study protocol, and informed con-

sent was obtained from all patients [22]. mRNA expression levels of RAGE and
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hypoxanthine-guanine phosphoribosyl transferase (HPRT) in lung brush samples and

BALF cells were determined. Analysis included samples in which RAGE and HPRT

were both measurable at both time points allowing paired measurements. The previous

trial was not powered to find differences in mRNA levels between the two ventilation

groups. We therefore combined the samples from both ventilation strategies.

Mice

The Animal Care and Use Committee of the Academic Medical Center approved all ex-

periments. Eight- to ten-week-old male RAGE KO mice were generated as described

previously [23], backcrossed ten times to a C57Bl/6 background, and bred in the animal

facility of the Academic Medical Center (Amsterdam, the Netherlands). C57BL/6 age

matched WT mice were purchased from Harlan Laboratories B.V. (Horst, the

Netherlands).

Design

To obtain a first insight into the role of RAGE in MV-induced inflammation and injury

in lungs without pre-existing injury, we randomized healthy WT and RAGE KO mice

to 5 h of MV or to a non-ventilated control group. Mice of the MV group were

pressure-controlled ventilated with either an inspiratory pressure of 10 cm H2O

(VT ~ 7.5 ml/kg) (LVT) or an inspiratory pressure of 18 cm H2O (VT ~ 15 ml/kg)

(HVT) (n = 6 to 9/group). Respiratory rate was set at 110 breaths/min in the LVT

group and 70 breaths/min in the HVT group, positive end-expiratory pressure was

set at 2 cm H2O during both MV strategies. The physiological characteristics of

the VILI model used were published in detail previously [24].

Since it has been shown that lungs with pre-existing injury are more susceptible to

the effects of MV [25,26], we randomized in a second set of experiments WT and KO

mice with pre-injured lungs (induced by inhalation of 5 μg LPS (Escherichia coli L4130,

Sigma Aldrich, St. Louis, MO, USA) 1 h before randomization) to the above described

ventilation strategies or spontaneously breathing for 5 h.

In a third set of experiments, we analyzed the presence of sRAGE and HMGB1 in

our VILI models. In addition, KO mice with LPS-induced lung injury received 50 μg

murine sRAGE or vehicle (saline) intratracheally at the start of HVT MV. Recombinant

murine his-tagged sRAGE was a kind gift from P. Nawroth. Sample harvesting and pro-

cessing were done as described previously [8,24].

Assays

Total protein was determined using Bradford Protein Assay Kit (OZ Biosciences,

Marseille, France). Interleukin (IL)-6, keratinocyte-derived chemokine (KC), macro-

phage inflammatory protein (MIP)-2, IL-1β, and tumor necrosis factor (TNF)-α levels

were measured by enzyme-linked immunosorbent assay (ELISA) (R&D Systems Inc.,

Minneapolis, MN, USA). sRAGE was measured by Mouse RAGE Duo set ELISA (R&D

Systems Inc.) as described before [27]. HMGB1 levels were analyzed by Western blot.

Proteins were separated using polyacrylamide gel electrophoresis (Criterion Bis-Tris

Precast Gel, Carlsbad, CA, USA); to detect HMGB1, a rabbit polyclonal antibody was

used (Abcam Biochemicals, Cambridge, UK). Lung tissue homogenate was used to

analyze RAGE and HPRT mRNA levels. Methods were used as described previously
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[8]. RAGE was stained on paraffin-embedded lung tissue. For this, we used goat anti-

mouse RAGE polyclonal antibodies (Neuromics, Edina, MN, USA). Alveolar and bron-

chial epithelium and vascular endothelium were scored for RAGE presence on a scale 0

(negative) to 3 (very intense); total RAGE staining score represents the sum of all

scores.

Statistical analysis

Data represent mean ± SEM. Human samples were analyzed by paired t test or Wilcoxon

signed-rank test. One-way analysis of variance with Bonferroni or a Kruskall-Wallis test

with Mann-Whitney U as post hoc analysis was used to analyze multiple groups. To com-

pare two groups, a t test or Mann-Whitney U test was used. p < 0.05 was considered sta-

tistically significant.

Results
RAGE expression in human lung brush cells is enhanced during MV

Baseline characteristics, peri-operative parameters and characteristics of the patients in-

cluded in this study were described in detail previously [22]. BALF cells consisted for

more than 99% of macrophages. RAGE mRNA expression levels in these cells (n = 31

pairs) tended to be higher after 5 h of MV, but this did not reach statistical significance

(p = 0.12) (Figure 1). In lung brush samples, RAGE mRNA levels were increased after

5 h of MV (n = 15 pairs) (Figure 1). In separate analysis of the two ventilation strat-

egies, no significant differences were found.

MV enhanced RAGE expression in healthy murine lungs

To study if MV in healthy mice increases pulmonary RAGE as well, we determined

relative RAGE mRNA expression levels in lung tissue homogenates. Both LVT and

HVT ventilation strategies significantly increased RAGE mRNA expression in lung tis-

sue when compared to non-ventilated controls (Figure 2). In addition, we analyzed the

expression of RAGE on lung immunohistochemical stainings. Whereas RAGE KO
Figure 1 RAGE gene expression in ventilated patients. Relative mRNA expression levels of the receptor
for advanced glycation end products (RAGE) in human bronchoalveolar lavage fluid cells (A) (n = 31 pairs)
and lung brush samples (B) (n = 15 pairs). Samples were obtained from patients at baseline and after 5 h of
mechanical ventilation (MV). Gene expression was normalized to the house-keeping gene hypoxanthine-
guanine phosphoribosyl transferase (HPRT). Data represent mean (SEM), *p < 0.05.



Figure 2 RAGE expression in 1-hit VILI. Expression of the receptor of advanced glycation end products
(RAGE) in wild-type mice ventilated for 5 h with low tidal volumes (LVT ~ 7.5 ml/kg) or high tidal volumes
(HVT ~ 15 ml/kg). Non-ventilated mice (C) served as control. RAGE gene expression was measured in lung
homogenates and normalized to the house-keeping gene hypoxanthine-guanine phosphoribosyl transferase
(HPRT) (n = 5 for controls, n = 7 ventilated mice/group) (A). Total scores for RAGE expression by
immunohistochemical staining of lung tissue (n = 6 for controls, n = 9 ventilated mice/group)
(B to E). Representative view of a lung from non-ventilated control mouse (B), absence of RAGE positivity in the
lung of a RAGE KO mouse (C), the lung of a LVT-ventilated mouse (D), and increased RAGE expression in the
lung of a HVT-ventilated mouse (E). Data represent mean (SEM), *p < 0.05, ***p < 0.001 vs LVT and C, staining
magnification ×200.
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lungs did not show any positive staining, healthy non-ventilated control mice abun-

dantly expressed RAGE in their lungs, predominantly in the alveolar epithelium

(Figure 2). The total score for RAGE staining was not affected by LVT ventilation but

increased in HVT MV. This was mainly due to de novo expression of RAGE on bron-

chial epithelial cells and endothelium.
Neutrophil influx into the alveolar compartment is attenuated in RAGE KO mice in 1-hit VILI

In our 1-hit VILI model, we observed that WT mice subjected to HVT MV demon-

strated a marked increase in lung wet-to-dry ratio and total protein level in BALF as

compared controls (Figure 3). Further BALF examination demonstrated that both ven-

tilation strategies induced cell influx into the alveolar compartment, with higher levels

in HVT-ventilated mice. Differential cell counts revealed an increased number of neu-

trophils, reaching statistical significance for HVT-ventilated mice. In addition, HVT MV

significantly increased the levels of IL-6, KC, and IL-1β. LVT MV elevated the levels of

IL-1β and MIP-2 (Table 1). TNF-α was undetectable. When comparing RAGE KO and

WT mice, we observed no significant differences regarding alveolar barrier dysfunction.

However, RAGE KO mice demonstrated a significantly lower total cell count and neu-

trophil influx in BALF after 5 h of HVT MV as compared to WT mice (Figure 3). No

differences in concentrations of these inflammatory mediators were found between

RAGE KO and WT mice (Table 1).
RAGE KO mice have elevated levels of pro-inflammatory mediators in 2-hit VILI

MV enhanced LPS-induced lung injury in our 2-hit VILI model, most clearly demon-

strated in HVT-ventilated mice (Figure 4). When comparing RAGE KO and WT mice,

we observed that RAGE deficiency did not affect lung wet-to-dry ratio, total protein

level, and cell influx in LPS-exposed and LPS/MV-treated groups (Additional file 2).



Figure 3 RAGE in 1-hit VILI. Lung wet-to-dry ratios (A) and total protein level (B), cell influx (C), and neutrophil
counts (D) in bronchoalveolar lavage fluid of wild-type (WT) and RAGE knockout (KO) mice with healthy
lungs ventilated for 5 h with low tidal volumes (LVT ~ 7.5 ml/kg) or high tidal volumes (HVT ~ 15 ml/kg).
Non-ventilated mice (C) served as control. Data represent mean (SEM) of n = 6 to 9 mice/group. *p < 0.05,
**p < 0.01, and ***p < 0.001.
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Also, neutrophil influx was not significantly different between WT and RAGE KO mice

(Figure 4). Remarkably, in our 2-hit setting, RAGE KO mice demonstrated elevated

cytokine and chemokine levels in BALF. IL-6, TNF-α, and KC were higher when LPS-

induced lung injury was combined with MV, reaching significance for the RAGE KO

mice of the LPS/HVT MV group (Figure 4). Of note, MIP-2 and IL-1β levels were not

different (Additional file 2).
sRAGE attenuated inflammation in RAGE KO mice

Next, we measured RAGE ligand HMGB1 and sRAGE levels in our VILI models. HVT

MV of healthy mice resulted in an increased BALF sRAGE concentration compared to

LVT MV and non-ventilated controls (Figure 5). Levels further increased during the

LPS/MV double hit in which the highest levels were found in the HVT-ventilated
Table 1 Cytokines and chemokines in bronchoalveolar lavage fluid in 1-hit VILI

C WT C KO LVT WT LVT KO HVT WT HVT KO

IL-6 [ng/ml] B.D. B.D. 104.0 (17.0) 101.0 (12.4) 156.1 (15.9)*** 142.7 (18.6)

KC [ng/ml] 51.4 (0.7) B.D. 336.7 (70.0)** 463.4 (123.7) 423.4 (94.0)** 505.9 (59.3)

MIP-2 [ng/ml] B.D. B.D. 239.6 (56.5)* 233.2 (35.4) 189.2 (18.4) 216.2 (20.6)

IL-1β [ng/ml] B.D. B.D. 69.9 (21.9)* 64.9 (15.9) 57.3 (14.5)* 66.0 (21.3)

Cytokines and chemokines [pg/ml] in bronchoalveolar lavage fluid of wild-type (WT) and RAGE knockout (KO) mice with
healthy lungs ventilated for 5 h with low tidal volumes (LVT ~ 7.5 ml/kg) or high tidal volumes (HVT ~ 15 ml/kg).
Non-ventilated mice (C) served as control. Data represent mean (SEM) of n = 6 to 9 mice/group. *p < 0.05; **p < 0.01;
***p < 0.001 vs controls. B.D., below detection.



Figure 4 RAGE in 2-hit VILI. Neutrophil counts (A) and levels of interleukin (IL)-6 (B), keratinocyte-derived
chemokine (KC) (C) and tumor necrosis factor (TNF)-α (D) in bronchoalveolar lavage fluid of wild-type (WT)
and RAGE knockout (KO) mice in a 2-hit lung injury model of lipopolysaccharide (LPS) exposure followed by
mechanical ventilation for 5 h with low tidal volumes (LVT ~ 7.5 ml/kg) or high tidal volumes (HVT ~ 15 ml/kg).
LPS-exposed non-ventilated mice (C) served as control. Data represent mean (SEM) of n = 6 to 9 mice/group.
*p < 0.05, **p < 0.01, and ***p < 0.001.

Figure 5 sRAGE in lung lavage fluid in 1-hit VILI. Soluble RAGE (sRAGE) levels in bronchoalveolar lavage
fluid (BALF) of wild-type (WT) mice ventilated for 5 h with low tidal volumes (LVT ~ 7.5 ml/kg) or high tidal
volumes (HVT ~ 15 ml/kg) (VILI) (A). In addition, sRAGE (B) in BALF of WT mice in a 2-hit model of
lipopolysaccharide (LPS) exposure followed by mechanical ventilation for 5 h with low tidal volumes
(LVT ~ 7.5 ml/kg) or high tidal volumes (HVT ~ 15 ml/kg). Data represent mean (SEM) of n = 6 to 9 mice/group.
**p < 0.01, and ***p < 0.001.
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group. HMGB1 was undetectable in 1-hit HVT-ventilated mice. In our 2-hit model, we

observed that in lung lavage of animals with LPS-induced lung injury or LPS-induced

injury combined with LVT MV, HMGB1 was barely detectable (Figure 6). However,

HMGB1 was clearly present in BALF of mice that underwent the LPS/HVT MV double

hit (Figure 6). We next verified whether sRAGE might have protective effects during

MV by administering sRAGE (or vehicle) to LPS/HVT-ventilated RAGE KO mice. We

observed that total protein, cell count, and neutrophil influx were not affected by

sRAGE administration (Table 2). However, when analyzing cytokine and chemokine

levels in BALF, we found that sRAGE-treated mice displayed significantly lower levels

of IL-6, KC, and MIP-2 (Table 2).

Discussion
We demonstrate the following: (1) RAGE expression is up-regulated during 5 h of MV

in human lung brush cells and in murine lungs. (2) RAGE contributes to inflammatory

cell influx in 1-hit VILI, but it does not affect other VILI parameters. (3) In a 2-hit VILI

setting, RAGE deficiency is not protective; on the contrary, the lack of RAGE resulted

in an enhanced inflammatory response. (4) sRAGE administration to RAGE KO mice

undergoing the LPS/HVT MV double hit in part reverses this phenotype.

This is the first study that investigated the role of RAGE in the development of MV-

induced inflammation and injury. Others have studied RAGE in other lung injury models

such as lung fibrosis, hyperoxyia, LPS, and infection [28-31]. In line with previous studies,

we observed that in healthy lungs RAGE is already abundantly expressed [16,28,29]. Our

finding that MV increases RAGE expression in mouse lungs extends a previous investiga-

tion studying RAGE in hyperoxia-induced lung inflammation: 4 days of hyperoxia ele-

vated pulmonary RAGE as demonstrated by immunostaining, immunoblotting, and real-

time polymerase chain reaction (PCR) [29]. In contrast, other sterile lung inflammatory

disorders reported no impact on pulmonary RAGE expression (LPS instillation) [16] or

reported reduced RAGE levels (in pulmonary fibrosis models) [28,30]. This might indicate

that the presence of a sustained pro-inflammatory stimulus such as hyperoxia and MV

has more impact on RAGE expression. In line, also lung infection models, with the con-

tinuous presence of bacteria, reported RAGE up-regulation [31].

In our 1-hit VILI model, RAGE deficiency was associated with a reduced total cell

and neutrophil influx into the alveolar compartment. RAGE activation may enhance

neutrophil migration by increasing the release of inflammatory mediators. However, we
Figure 6 HMGB1 in lung lavage fluid in 2-hit VILI. High mobility group box-1 (HMGB1) levels in
bronchoalveolar lavage fluid (BALF) of wild-type mice in a 2-hit model of lipopolysaccharide (LPS) exposure
followed by spontaneous breathing or mechanical ventilation for 5 h with low tidal volumes (LVT ~ 7.5 ml/kg)
or high tidal volumes (HVT ~ 15 ml/kg), n = 8 mice/group.



Table 2 VILI parameters after sRAGE treatment in RAGE KO

Vehicle i.t. sRAGE i.t.

Cell count [×104] 112 (1.6) 91 (0.9)

Neutrophil influx [×104] 103 (15) 86 (10)

Total protein [μg/ml] 623 (32) 614 (44)

IL-6 [pg/ml] 3162 (291) 1875 (243)**

KC [pg/ml] 8831 (876) 6016 (867)*

MIP-2 [pg/ml] 6115 (688) 2827 (379)***

IL-1β [pg/ml] 676 (69) 850 (122)

TNF-α [pg/ml] 1274 (118) 1425 (141)

Cell count, neutrophil count, total protein, and cytokine and chemokine levels in bronchoalveolar lavage fluid of RAGE
knockout (KO) mice with LPS-injured lungs treated with soluble RAGE or vehicle at the start of 5 h of high tidal volume
(HVT ~ 15 ml/kg) mechanical ventilation. Data represent mean (SEM) of n = 7 to 8 mice/group. *p < 0.05; **p < 0.01;
***p < 0.001. i.t., intra tracheal.
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observed no differences in BALF cytokine and chemokine levels at the time point inves-

tigated. RAGE itself has also been implicated in the regulation of cell migration: it can

function as a counter receptor for leukocyte integrins [32]. In vitro studies showed that

RAGE can bind the β2 integrin MAC-1 and p150,95 [32]. From these findings, it can

be speculated that RAGE-dependent neutrophil adhesion also contributed in our 1-hit

VILI model.

Our current analysis revealed no differences in inflammation in pulmonary LPS-

exposed RAGE KO and WT mice. These results are in line with a previous report also

showing a similar degree of inflammation between RAGE-deficient and WT mice, here

24 h after intratracheal LPS challenge [33]. However, a recent in vitro study reported

evidence for RAGE-LPS interaction [34]. This group also demonstrated that RAGE

contributes to LPS-induced nuclear factor-κB activation in isolated peritoneal macro-

phages, while in vivo RAGE KO mice displayed reduced mortality and inflammation

after intraperitoneal LPS-induced shock [34]. As such, the importance of the RAGE-

LPS interaction seems to vary in different organ tissues; in the lungs, RAGE-LPS signal-

ing appears less important.

RAGE KO mice undergoing the LPS/HVT MV double hit were not protected from

VILI. Instead, they displayed more lung inflammation. This is a remarkable finding

since previous findings demonstrated that RAGE deficiency led to attenuated inflam-

mation in sterile lung injury models such as bleomycin-induced and hyperoxia-induced

lung injury [29,35]. However, inflammation was evaluated at a much later time point in

these studies: several days after the start of the experiment. Possibly, deficiency of

RAGE in our MV model might have influenced respiratory mechanics: pulmonary

RAGE is also important for adherence of epithelial cells towards the basal membrane

[36]. However, a previous study reported no differences in airway and tissue resistance,

compliance, and elastance between healthy RAGE KO and WT mice [37]. We repeated

our LPS/HVT MV double hit group in a MV model with volume-controlled ventilation,

to exclude possible interference of lung mechanics. Again, an increased inflammatory

response in RAGE KO mice was observed (data not shown).

Another explanation for our finding is that the lack of sRAGE was unfavorable for

the inflammatory response since sRAGE can scavenge ligands that also have the poten-

tial to activate other PRRs. HMGB1 for example can activate not only RAGE but also
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TLR4 [38]. Moreover, TLR4 signaling clearly contributes to VILI development

[9,10,39]. We observed elevated HMGB1 levels in mice undergoing the LPS/HVT MV

double hit, extending a previous study reporting increased HMGB1 levels after 4 h of

extremely high tidal volume (30 ml/kg) MV [19]. Blocking HMGB1 in that study im-

proved alveolar barrier dysfunction and limited neutrophil influx and TNF-α release. In

addition, S100A8/A8 proteins, which are as well present in our murine VILI model,

also have the potential to trigger both RAGE and TLR4 [15,40]. The observation that

sRAGE administration to RAGE KO mice in part reversed the increased inflammation

present in RAGE KO mice indeed suggests that certain ligands were sequestered by

sRAGE that would have interacted with other PRRs in the absence of sRAGE. If sRAGE

administration could also have therapeutic potential in WT mice in our VILI model is

an interesting question for future research. However, a recent study demonstrated that

neither intratracheal nor intraperitoneal sRAGE treatment affected LPS-induced or

E. coli-induced acute pulmonary inflammation, even though HMGB1 was also increased

in these models [33]. In contrast, intraperitoneal sRAGE attenuated lung injury in system-

ically LPS-challenged mice [41].

We chose to ventilate our mice with low or high tidal volume MV as both strategies

may reveal relevant information for clinical practice. Low tidal volume MV is widely

practiced since the ARDS network group convincingly demonstrated that this reduces

morbidity and mortality in ARDS [2]. However, ARDS is a very heterogeneous disease:

some lung regions are poorly aerated placing other healthier lung regions at risk for

overinflation [42]. It has been shown that even with the use of lung protective ventila-

tor settings one third of the ARDS patients still experience regional tidal hyperinflation

[42]. We therefore believe it is still an important translational effort to ventilate animals

with higher tidal volumes. In addition, a pulmonary pro-inflammatory state makes the

lung more vulnerable to a second hit such as MV [25,26]. Therefore, to mimic ventila-

tion in the presence of pulmonary co-morbidities, we added an additional injurious

stimulus to our MV model. Nonetheless, our 1-hit VILI model is still important to give

insights into RAGE signaling in ventilated healthy lungs.

Our study has several limitations. First, we used patient samples from a previous

study in which the effect of two ventilation strategies on inflammation and coagulation

was analyzed. This study was, however, not powered to find differences in mRNA levels

between the two groups. We therefore combined the samples from both ventilation

strategies. Second, we used a short-term VILI model to analyze the role of RAGE. Al-

though short-term MV models are commonly used [8-11,24-26,39], as it is technically

very difficult to ventilate rodents for days, a long-term MV model would make the

translation of results to clinical practice easier. Third, the tracheotomy and the use of

anesthesia might also have influenced inflammation in all ventilated animals. It would

be ideal to have a control group of anesthetized, tracheotomized spontaneously breath-

ing mice. Unfortunately, this results in hypoventilation, respiratory acidosis, and death.

Conclusions
In conclusion, our data indicate that RAGE is not a crucial pro-inflammatory receptor in

the development of MV-induced inflammation. However, the presence of sRAGE limited

the production of pro-inflammatory mediators in ventilated diseased RAGE KO lungs.

Further research is needed to study possible therapeutic potential of sRAGE in VILI.
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