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Abstract

Background: Although sepsis-induced organ failure is a major cause of death in ICU
worldwide, the associated mitochondrial dysfunction is not fully characterized and
there is presently no evidence of causality. In this study, we examined whether a
central factor in septic plasma could directly affect respiratory function of healthy rat
muscle mitochondria.

Methods: ICU patients with severe sepsis or septic shock were recruited within 24 h
of admission together with age-matched controls. Blood samples were centrifuged
and immediately frozen. Two trials were performed, and mitochondrial respiration was
analyzed using an Oxygraph chamber with a Clark-electrode. (1) Isolated mitochondria
from the rat skeletal muscle were divided and incubated for 30 min with plasma from
patients or postoperative controls (n = 10). Respiration was normalized for citrate
synthase activity. (2) Permeabilized muscle fibers from rats were divided and
incubated with plasma from patients or healthy controls, for 30 and 120 min, and
analyzed for mitochondrial respiration (n = 10). Respiration was normalized for wet
weight. Primary outcome was state 3 respiration, corresponding to the maximal
respiration initiated by ADP and energy substrates (malate and pyruvate). T test
was used for statistical comparison.

Results: No differences in respiratory function of the mitochondria were seen
between the groups in either of the experiments. (1) State 3 respiration of isolated
mitochondria were 19.9 ± 6.7 vs. 20.2 ± 8.8 nmol O2 × U CS−1 × min−1 for sepsis vs.
control, respectively. (2) State 3 respiration for fibers incubated with septic and
control plasma were after 30 min 2.6 ± 0.3 vs. 2.4 ± 0.7 and after 120 min 2.5 ± 0.4
vs. 2.5 ± 0.6 nmol O2 × mg × w.w−1 × min−1. Respiratory control ratios were good in
all experiments (8.8–11.2), ensuring functioning mitochondria.

Conclusions: These findings indicate that muscle mitochondria are not directly
influenced by a factor in plasma of septic patients. The effects seen in mitochondrial
function in sepsis may rather be a result of intracellular processes and signaling, such as
e.g., production of reactive oxygen species.
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Background
The systemic inflammatory reaction to an infection, sepsis, may progress into severe

sepsis or septic shock. In the worst cases, this can develop into multiple organ failure.

Both sepsis and, especially, the consequent organ failure remain the major causes of

mortality in ICU patients, despite advances in care in the last decades [1]. The cause

of the organ failure associated with sepsis in still not fully understood, but metabolic

alterations are described [2] and are suggested as a possible mechanism. Mitochondrial

dysfunction and derangement are associated with septic shock and are described in

different organs in animal models and septic patients in the last decades. However, the

methods used to assess mitochondrial function are variable, and the possible mechanism

not fully described and causative relationships are not thoroughly established [3–6].

Decreases in mitochondrial protein content, complex I and IV activity, and intramus-

cular ATP have been described in the skeletal muscle of septic patients with organ fail-

ure [7], and low mitochondrial function in the skeletal muscle of septic patients are

associated with increased mortality [8]. On the other hand, studies in peripheral blood

immune cells (PBMC) show more conflicting results. Increased mitochondrial respir-

ation throughout the course of sepsis in adults, but no difference is seen between survi-

vors and non-survivors [9]. However, Garrabou et al. have shown that oxygen

consumption of PBMCs are decreased as compared to healthy controls, but do not

state at what time point of sepsis this was assessed [10]. In early pediatric sepsis,

PBMCs are exhibiting mitochondrial dysfunction, assessed as decreased spare respira-

tory capacity and increased uncoupled respiration, as compared to non-septic pediatric

ICU patients, and this is normalized at days 5–7 [11].

Isolated mitochondria from the skeletal muscle of a healthy human incubated with

plasma from septic patients show a slight, but not significant, decrease in oxygen con-

sumption after 30 min [10]. Also, human umbilical endothelial cells decrease their

mitochondrial respiration when incubated with plasma from septic patients compared

to controls [12]. These studies suggest a potential circulating factor, directly affecting

mitochondrial function in sepsis.

To further investigate whether a central factor, present in plasma of septic patients,

could directly affect mitochondrial function, we performed a study on the effect of

plasma from human with severe sepsis on healthy rat muscle mitochondria. In a first

experiment, we examined how plasma from ICU patients with severe sepsis and septic

shock could affect the respiration of isolated mitochondria compared to plasma from

age-matched postoperative controls. In a second experiment, we examined the mito-

chondria in a more physiological situation by incubating permeabilized muscle fibers

from the rat muscle with plasma from septic ICU patient or healthy controls.

Methods
Study population, ethical considerations, and animal care

For the first part of the study, 10 patients with severe sepsis or septic shock, according

to the criteria specified in the 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis

Definitions Conference [13], were recruited within 24 h of ICU admission and a blood

sample was collected together with clinical data. Ten age- (±5 years) and sex-matched

controls were recruited from the postoperative care facility after undergoing minor
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elective surgery. For the second experiment, 10 new ICU patients were recruited, in an

identical manner as in the first trial, and 10 healthy age- and sex-matched individuals,

without prior surgery, were used as controls. These controls were screened for

C-reactive protein (CRP) analysis and by health status questionnaires to rule out

ongoing inflammatory process. Patient’s characteristics are presented in Table 1. All

blood samples were collected in EDTA tubes, immediately centrifuged at 2000g for

10 min to obtain plasma, frozen and stored at −80 °C until experiment.

Mitochondrial preparation and respiratory measurements

Male Sprague–Dawley rats (6–8 weeks old, weight 150–250 g) were sacrificed using CO2

followed by cervical dislocation. Within 2 min of euthanasia, m. soleus (120–180 mg)

were harvested and put in pre-chilled tubes with isolation solution (100 mM sucrose,

100 mM KCl, 50 mM Tris-HCl, 1 mM K2HPO4, 0.1 mM EGTA, and 0.2 % bovine serum

albumin (BSA), pH 7.4) and kept on ice until preparation.

In the first experiment, mitochondria were isolated according as described before

[14]. Briefly, muscle specimen was disintegrated, using scissors, in the isolation so-

lution and treated with 1 ml of 0.2 mg/ml protease (Sigma P-4789) for 2 min

followed by homogenization (Potter–Elvehjem homogenizer) and washing with iso-

lation solution. The homogenate was centrifuged for 10 min at 4 °C at 750g. The ob-

tained supernatant was centrifuged at 4 °C at 10,000g. The pellet, containing

Table 1 Patient characteristics

Subj. no. Source Age Sex SOFA Lactate (mmol/L) Outcome at 30 days

1:1 Urinary tract 79 F 13 3.7 Alive

1:2 Respiratory 55 F 10 4.1 Alive

1:3 Hematogenous 85 M 13 1.2 Dead

1:4 Liver abscess 38 M 9 2.6 (3.2) Alive

1:5 Soft tissue 40 F 2 1.7 Alive

1:6 Respiratory 51 F 9 1.6 Alive

1:7 Cholangitis/liver abscess 62 M 19 8.8 Dead

1:8 Hematogenous 74 F 3 3.1 Alive

1:9 Unknown 66 M 4 1.1 Alive

1:10 Respiratory 72 M 13 2.8 (3.2) Alive

2:1 Respiratory 69 F 7 2.3 Alive

2:2 Urinary tract 47 F 1 3.4 Alive

2:3 Abdominal 58 F 11 11.4 Dead

2:4 Abdominal 38 M 12 1.5 Alive

2:5 Unknown 58 M 9 3.0 Alive

2:6 Respiratory 53 M 8 4.1 Alive

2:7 Abdominal 58 M 13 3.6 (6.0) Dead

2:8 Respiratory 69 F 7 1.9 (2.0) Alive

2:9 Respiratory 33 M 4 1.5 (2.1) Alive

2:10 Thoracic abscess 71 F 6 1.3 Alive

Baseline characteristics of ICU patients with severe sepsis. Lactate values are from ICU admission. Numbers in brackets
are peak lactate levels if not reached at time of admission. Sequential organ failure assessment (SOFA) score is presented
for the day of enrollment in study
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mitochondria, was washed and suspended in 50 μl of preservation buffer (225 mM

mannitol, 75 mM sucrose, 10 mM TRIS-base, 0.1 mM EDTA, and 0.2 % BSA, pH 7.4).

The solution was divided into three portions, the one part was kept frozen at −80 °C for

later citrate synthase (CS) analysis, and the two portions were incubated with either

septic or control plasma and kept on ice in a dark environment for 30 min. After in-

cubation, mitochondrial respiration was analyzed using an Oxygraph chamber

(Hansatech DW1; Hansatech, King’s Lynn; Norfolk, UK) at 25 °C in an incubation

medium (225 mM mannitol, 75 mM sucrose, 10 mM Tris-base, 10 mM KCl, 10 mM

K2HPO4, and 0.1 mM EDTA, pH 7.0). Seven microliters of 100 mM malate, 3 μl of

10 mM MgCl, and 3 μl 500 mM pyruvate were added before state 3 respiration was

started by addition of 7 μl 20 mM ADP. P/O ratios were assessed as the known

amount of ADP being phosphorylated divided by oxygen consumed during state 3

respiration.

In the second experiment, the muscle specimen was prepared through a modifica-

tion of previously described methods [15, 16]. The harvested muscle was stored in a

BIOPS solution (2.77 mM Ca K2EGTA, 7.23 mM K2EGTA, 5.77 mM Na2ATP,

6.56 mM MgCl2 6H2O, 20 mM taurine, 15 mM Na2 phosphocreatine, 20 mM imid-

azole, 0,5 mM dithiothreitol (DTT), 50 mM MES, pH 7.0). Small pieces (1–3 mg) of

muscles were cut and placed in a Petri dish containing BIOPS solution. Fiber bundles

were separated under a microscope and then put in a solution containing saponin for

30 min. After this, the fibers are washed in a MiR05 solution (0.5 mM EGTA, 3 mM

MgCl2, 60 mM K-lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES,

110 mM sucrose, 1 mM BSA, and pH 7.1) and kept on ice while incubated with

plasma from septic patients or healthy controls for 30 and 120 min. One part of the

fibers was not incubated and used for control to ensure proper quality of the fibers

after the preparation process. Analysis in the Oxygraph was performed in the MiR05

solution with addition of 2 μl 1 M malate and 4 μl 1 M pyruvate, and state 3 respir-

ation was started by addition of 5 μl 160 mM ADP.

Citrate synthase analysis

Stored mitochondrial suspensions were defrosted and further diluted with a phosphate

buffer (pH 7.4) for the CS analyzes. Samples were mixed with a reagent (100 mM Tris,

100 μM DTNB and 50 μM Acetyl CoA, pH 8.0), and 7 mM oxaloacetic acid was used

to start the reaction. The change in absorbance, before and after addition of oxaloacetic

acid, was measured with a Konelab 20 Analyzer (Thermo electron corporation, USA) at

412 nm and 37 °C.

Data analysis

All data were blinded for the examiner calculating the respiratory rates. In both experi-

ments, state 3 respiration was approximated as the highest rate of oxygen consumption.

In the first experiment, state 4 respiration was derived from the oxygen consumption

after depletion of ADP. The data are presented as oxygen consumption per unit of CS

to compensate for the varying amount of mitochondria in each experiment. In the sec-

ond experiment, state 2 respiration was derived from oxygen consumption before

addition of ADP. The data are presented per milligrams of wet weight. Student’s t test
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and ANOVA were used for comparison between the paired groups. Data are presented

as means ± SD unless otherwise indicated.

Results
All patients in the study fulfilled criteria for severe sepsis or septic shock with a 30-day

mortality of 20 % and initial mean arterial lactate of 3.3 (range 1.1–11.4) mmol/L in

both experiments. The quality of the isolated mitochondria and permeabilized muscle

fibers were good, as indicated by a respiratory control ratio (RCR) of 8.8–11.2 (Table 2).

In the first experiment, no difference was observed between the mitochondria incu-

bated with plasma from septic or postoperative patients (Fig. 1). P/O ratios were 2.22 ±

0.25 for controls and 2.34 ± 0.29 for mitochondria incubated with septic plasma, re-

spectively. In the second experiment, no difference in oxygen consumption could be

seen between the fibers incubated with plasma from septic patients or healthy volun-

teers, neither were there any differences between the different incubation times (Fig. 2).

Discussion
In this study, we examined the effect of plasma from septic patients on rat muscle

mitochondrial function. We compared septic plasma to both postoperative and healthy

controls for different periods of time and using different modes of incubation (isolated

mitochondria as well as permeabilized muscle fibers). All experiments were paired,

meaning that each mitochondrial population was incubated with matched controls, to

avoid variability in the mitochondrial quality after isolation, and the recruited patients

were representative for severe sepsis with a 30-day mortality of 20 %. The good RCR

values measured in both parts of the study indicate that the mitochondria were not

damaged during the isolation or the permeabilization processes. In neither of the exper-

iments, we observed any difference in mitochondrial respiration between incubations

with septic or control plasma.

Our data partly contradicts the tendency towards a decreased respiration of isolated

skeletal muscle mitochondria by Garrabou et al. [10]. However, the latter study used

slightly different methodology and does not report whether they used paired examina-

tions, which is one of the strengths of our study since a large variation is inherent to

the sensitive methods of mitochondrial isolation.

Table 2 Respiratory rates of isolated mitochondria and permeabilized fibers after incubation with
plasma

Isolated mitochondria State 3 (nmol O2 × U CS−1 × min−1) State 4 (nmol O2 × U CS−1 × min−1) RCR

Septic 30 min 20.6 ± 6.2 2.1 ± 1.1 11.0 ± 3.5

Post-op 30 min 20.7 ± 8.4 2.0 ± 1.1 11.0 ± 2.4

Permeabilized fibers State 3 (nmol O2 ×min−1 × mg w.w−1) State 2 (nmol O2 ×min−1 × mg w.w−1) RCR

Control fibers 2.9 ± 0.7 0.27 ± 0.04 11.2 ± 2.3

Healthy 30 min 2.4 ± 0.7 0.25 ± 0.06 9.5 ± 2.0

Septic 30 min 2.6 ± 0.3 0.30 ± 0.07 8.8 ± 1.5

Healthy 120 min 2.5 ± 0.6 0.28 ± 0.13 10.2 ± 3.2

Septic 120 min 2.5 ± 0.4 0.27 ± 0.06 9.5 ± 2.2

Isolated mitochondria and permeabilized fibers from the rat skeletal muscle were incubated with plasma from ICU
patients with severe sepsis or matched controls. Respirations in the isolated mitochondria are expressed per citrate
synthase (CS) activity and in the muscle fibers per wet weight of the incubated fibers. There were no statistically
significant differences between the groups in either experiment
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However, there are limitations on the conclusions that can be drawn from the

present study. Even though all septic patients are recruited within 24 h from ICU ad-

mission, they have received resuscitative treatment and the plasma samples would

not necessarily represent the plasma from a native septic process. The plasma levels

of catecholamines would probably change during this initial treatment, which would

be relevant as a continuous infusion of adrenaline increases respiration in skeletal

muscle mitochondria of healthy humans [17]. Most of the patients also received nor-

adrenaline infusion at the time of blood sampling, which has been shown to increase

liver mitochondrial respiration, at least in endotoxemic pigs [18]. The plasma com-

position of the septic patient varies over time [19], and it is possible that we miss

some processes facilitated by mediators that are in abundance earlier (or later) in the

septic illness.

Fig. 1 State 3 respiration of isolated rat muscle mitochondria after incubation with plasma. Isolated mitochondria
were incubated with either plasma from ICU patients with severe sepsis or postoperative age-matched controls for
30 min. The respiratory rates are expressed per unit of citrate synthase (CS) activity. Red dotted lines
indicate average values

Fig. 2 State 3 respiration of permeabilized muscle fibers after incubation with plasma. Fibers were
incubated with plasma from ICU patients with severe sepsis or healthy age-matched controls for 30 (circles)
and 120 min (squares). The respiratory rates are expressed per wet weight of the incubated fibers. Each color
represents a separate patient and its matched control, and black dotted line indicates average values
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Our study is also limited to skeletal muscle mitochondria and other organs (e.g. the

kidneys and liver) may function differently. This may be why we could not see the de-

creased respiration that Boulos et al. are describing in endothelial cells incubated with

septic serum [12]. Also, a 3-h incubation with septic plasma increased oxygen con-

sumption of healthy white blood cells, however, not as much as healthy plasma [20],

and a 12-h incubation of human fibroblast cultures with septic serum decrease O2

consumption compared to serum from healthy controls [21]. All these studies use

longer incubation times in addition to the use of different human cells. While a pro-

longed incubation of isolated mitochondria would be interesting to examine, the iso-

lated mitochondria have a limited life span and a longer incubation would be difficult

to perform. We tried to address this issue by performing longer incubations of the

permeabilized muscle fibers, which are more durable, but without any tendencies

towards a change in effect.

Altogether, incubation of tissues and isolated mitochondria has been described in dif-

ferent studies with conflicting results. This may well be due to differences in method-

ology, but the effect of septic plasma on mitochondrial respiration is still not fully

described and may well vary between different tissues or the (patho-)physiological state

of the individual tissues.

Conclusions
The organ failure seen in sepsis often debuts after several days, and if mitochondrial

dysfunction is a major factor in that development, we do not think that the present

study points towards a primary effect caused by a mediator present in the plasma of

septic patients, at least not in the skeletal muscle. It is possible that incubation of in-

tact cells or cultures could give additional knowledge on the mechanisms through

which mitochondrial function is affected in sepsis and this would be interesting

experiments to sequel our study.
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