

POSTER PRESENTATION

Open Access

0295. Induction and repression effects of heat shock (HS) and LPS and modulatory effects of glutamine on blood mononuclear cells -hsprotein-72 from icu patients with severe sepsis, trauma and healthy controls

E Briassouli^{1*}, M Tzanoudaki², G Daikos¹, K Vardas³, M Kanariou², C Routsi³, S Nanas³, G Briassoulis⁴

From ESICM LIVES 2014 Barcelona, Spain. 27 September - 1 October 2014

Introduction

In severe sepsis (SS) or trauma-related systemic inflammatory response syndrome (SIRS), induction of heat-shock-protein-72 (HSP72) may protect cells from stress.

Objectives

We compared the heat-shock (HS) with the lipopolysaccharide (LPS) induction/repression effect on HSP72 of peripheral blood mononuclear cells (PBMCs) in SS or SIRS patients and healthy-controls (H) and investigated any possible modulating glutamine (Gln) effect.

Methods

PBMCs from 16/H, 11/SS, and 7/SIRS were incubated with 1µg/ml LPS or 43° HS vs. no stimulation for 4h. In each group 3 experiments involved L-Ala-Gln10mM incubation 1h before (Gln-b) or after (Gln-a) induction, or no glutamine (1088 measurements). Intracellular Mean Fluorescence Intensity (MFI) levels of monocytes (mHSP72) or lymphocytes (lHSP72) were determined using Flow Cytometry.

Results

In H-PBMCs, LPS did not affect mHSP72 (79 \pm 10 MFI vs. 78 \pm 13) or lHSP72 (7 \pm 1.7 vs. 7 \pm 2). HS induced mHSP72 (454 \pm 60, p < 0.0001) and lHSP72 (41 \pm 7, p < 0.0001) with or without Gln (p < 0.0001). Basal mHSP72

was higher in SIRS compared to H (144 \pm 25 vs. 78 \pm 10, p < 0.03). A HS-induction effect on SIRS-mHSP72 (394 \pm 108, p < 0.04) and lHSP72 (37 \pm 5, p < 0.02) was further enhanced by Gln-b (495 \pm 114, p < 0.01 and 58 \pm 14, p < 0.04). LPS suppressed SIRS-mHSP72 (120 \pm 54 vs. 144 \pm 25, p < 0.02) especially in the Gln-b group (107 \pm 19, p < 0.02). Basal Gln-b mHSP72 in SS was higher compared to H (112 \pm 16 vs. 69 \pm 10, p < 0.03). In SS-PBMCs HS, but not LPS, induced mHSP72 (492 \pm 56 vs. 108 \pm 19, p < 0.003). LPS repressed the SS-lHSP72 (10 \pm 2 vs. 17 \pm 2, p < 0.007) an effect attenuated by Gln-b (13 \pm 5).

Conclusions

Heat shock greatly induces mHSP72 and lHSP72 of ICU patients' PBMCs. LPS may repress lHSP72 in septic or trauma patients. Glutamine pre-treatment may either enhance HS-induction or LPS-repression on mHSP72 or attenuate LPS-repression on lHSP72 in SS and SIRS groups.

Grant acknowledgment

This research has been co-financed by the European Union (European Social Fund (ESF)) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)-Research Funding Program: THALES.

Authors' details

¹1st Department of Propaedeutic InternalMedicine, University of Athens, Athens, Greece. ²Department of Immunology - Histocompatibility, Specialized Center & Referral Center for Primary Immunodeficiencies - Paediatric Immunology, "Aghia Sophia" Children's Hospital, Athens, Greece. ³First Critical Care Department, University of Athens, Evangelismos Hospital,

Full list of author information is available at the end of the article

¹1st Department of Propaedeutic InternalMedicine, University of Athens, Athens, Greece

Athens, Greece. $^4\text{PICU}$, University of Crete, University Hospital, Heraklion, Greece.

Published: 26 September 2014

doi:10.1186/2197-425X-2-S1-P17

Cite this article as: Briassouli et al.: 0295. Induction and repression effects of heat shock (HS) and LPS and modulatory effects of glutamine on blood mononuclear cells -hsprotein-72 from icu patients with severe sepsis, trauma and healthy controls. Intensive Care Medicine Experimental 2014 2(Suppl 1):P17.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com