**Open Access** 

# 0082. Early circulating lipid and cytokine profiles prognosticate in a rat model of faecal peritonitis

W Khaliq<sup>\*</sup>, M Singer

From ESICM LIVES 2014 Barcelona, Spain. 27 September - 1 October 2014

# Introduction

In stress states, catecholamines induce lipolysis and insulin resistance with hyperglycaemia. Lipid profiles differ between surviving and non-surviving septic patients [1,2] but, hitherto, little attention has been paid to this finding and its significance remains unknown. We used a previously characterized 72h fluid-resuscitated rat model of faecal peritonitis where prognostication can be made with high sensitivity and specificity as early as 6h from heart rate or stroke volume [3].

# Objectives

To determine the relationship between early changes in plasma cytokine and metabolic profiles, and their prognostic significance.

# Methods

Table 1

Under general anaesthesia male Wistar rats  $(325\pm15g)$ underwent tunneled insertion of carotid arterial and jugular venous lines, followed by i.p. injection of  $4\mu$ l/g faecal slurry. They were then woken and attached to a swivel-tether system allowing free movement in their cage with, from 2h, fluid resuscitation (1:1 mix of 5% dextrose:Hartmann's) at 10ml/kg/h. An echocardiography-measured HR cut-off of 460 bpm was used to classify animals into predicted survivors or non-survivors. At 6h, animals were sacrificed for blood and tissue sampling. We here report plasma levels of IL-6, IL-10, and a metabolic profile using blood gas analysis, ELISA and enzymatic colorometric testing.

# Results

At 6h the animals manifested only mild clinical features of illness, however significant differences were seen in IL-6 and all lipid measurements between predicted survivors and non-survivors. Glucose, lactate and IL-10 levels did not differ. Table 1

# Conclusions

In this long-term rat model of faecal peritonitis, predicted non-survivors had a significantly different IL-6 and lipid profile as early as 6 hours after sepsis. IL-6 impacts on

|                               | Predicted survival (n=6) | Predicted non-survival (n=6) |
|-------------------------------|--------------------------|------------------------------|
| IL-6 (ng/mL)                  | 0.94 ± 0.23              | 3.70 ± 0.83*                 |
| IL-10 (ng/mL)                 | 0.33 ± 0.05              | 0.30 ± 0.12                  |
| Glucose (mmol/L)              | 6.8 ± 0.7                | $6.9 \pm 0.6$                |
| Lactate (mmol/L)              | 1.9 ± 0.5                | 1.6 ± 0.5                    |
| HDL cholesterol (mmol/L)      | 0.88 ± 0.04              | 0.73 ± 0.07*                 |
| LDL/VLDL cholesterol (mmol/L) | 0.50 ± 0.03              | 0.39 ± 0.03*                 |
| Triglyceride (mmol/L)         | 1.12 ± 0.04              | 0.75 ± 0.08*                 |
|                               |                          |                              |

[Data shown as median  $\pm$  SE; \* p<0.05]

Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK



© 2014 Khaliq and Singer; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

lipid metabolism [4] but the relationship in sepsis has not, to our knowledge, been previously described. The impact of early hypolipidaemia on outcome warrants further investigation.

#### Grant acknowledgment

UK Intensive Care Foundation and NIHR

# Published: 26 September 2014

#### References

- Barlage S, et al: Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation. Intensive Care Med 2009, 35:1877-1885.
- Cappi SB, et al: Dyslipidemia: a prospective controlled randomized trial of intensive glycemic control in sepsis. Intensive Care Med 2012, 38:634-641.
- Rudiger A, et al: Early functional and transcriptomic changes in the myocardium predict outcome in a long-term rat model of sepsis. Clin Sci 2013, 124:391-401.
- 4. Glund S, Krook A: . Acta Physiol (Oxf). 2008, 192(1):37-48.

#### doi:10.1186/2197-425X-2-S1-P2

**Cite this article as:** Khaliq and Singer: **0082. Early circulating lipid and cytokine profiles prognosticate in a rat model of faecal peritonitis.** *Intensive Care Medicine Experimental* 2014 **2**(Suppl 1):P2.

# Submit your manuscript to a SpringerOpen<sup>™</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com