Open Access

Lung deposition of a radiolabeled aerosol with two ventilation modalities during invasive mechanical ventilation: a randomized comparative study

J Dugernier^{1*}, G Reychler², X Wittebole¹, J Roeseler¹, T Sottiaux³, JB Michotte⁴, R Vanbever⁵, T Dugernier⁶, P Goffette⁷, MA Docquier⁸, C Raftopoulos⁹, P Hantson¹, F Jamar¹⁰, PF Laterre¹

From ESICM LIVES 2015 Berlin, Germany. 3-7 October 2015

Introduction

Volume-controlled ventilation has been suggested during nebulization to optimize lung deposition although promoting spontaneous ventilation is targeted for ventilated patient management. Comparing topographic lung aerosol deposition during volume-controlled and spontaneous ventilation in pressure support has never been performed.

Objectives

The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, using two ventilation modes: pressure support ventilation (PS) and volume-controlled ventilation (VC).

Methods

Seventeen postoperative neurosurgical patients without pulmonary disease volunteered to participate in the study and were randomly ventilated in PS (n = 8) or VC (n = 9) with constant inspiratory flow. Diethylenetriaminepentaacetic acid labelled with technetium-99 m (2 mCi/3 mL) was administered using a vibrating-mesh nebulizer (Aerogen Solo[®], Aerogen Ltd., Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed by planar scintigraphy.

Results

Mean lung deposition expressed as a percent of nominal dose was $10.5 \pm 3.0\%$ and $15.1 \pm 5.0\%$ during PS and VC,

¹Université Catholique de Louvain, Cliniques Universitaires Saint Luc, Intensive Care Unit, Brussels, Belgium

Full list of author information is available at the end of the article

respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during PS (27.4 \pm 6.6% versus 20.7 \pm 6.0%, p < 0.05). A similar aerosol penetration from the inner to the outer region of the right lung (p = 0.347) and the left lung (p = 0.239) was observed.

Conclusions

Volume-controlled ventilation improved lung deposition of aerosolized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies.

Authors' details

¹Université Catholique de Louvain, Cliniques Universitaires Saint Luc, Intensive Care Unit, Brussels, Belgium. ²Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pneumology, Brussels, Belgium. ³Clinique Notre-Dame de Grâce, Intensive Care Unit, Gosselies, Belgium. ⁴Haute Ecole de Santé Vaud, Lausanne, Switzerland. ⁵Université Catholique de Louvain, Cliniques Universitaires Saint Luc, Louvain Drug Research Institute, Brussels, Belgium. ⁶Clinique Saint-Pierre, Intensive Care Unit, Ottignies, Belgium. ⁷Université Catholique de Louvain, Cliniques Universitaires Saint Luc, Department of Interventional Radiology, Brussels, Belgium. ⁸Université Catholique de Louvain, Cliniques Universitaires Saint Luc, Department of Anesthesiology, Brussels, Belgium. ⁹Université Catholique de Louvain, Cliniques Universitaires Saint Luc, Department of Neurosurgery, Brussels, Belgium. ¹⁰Université Catholique de Louvain, Cliniques Universitaires Saint Luc, Department of Nuclear Medicine, Brussels, Belgium.

Published: 1 October 2015

doi:10.1186/2197-425X-3-S1-A10 Cite this article as: Dugernier *et al.*: Lung deposition of a radiolabeled aerosol with two ventilation modalities during invasive mechanical ventilation: a randomized comparative study. *Intensive Care Medicine Experimental* 2015 3(Suppl 1):A10.

© 2015 Dugernier et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.