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Abstract

Background: Contrast-enhanced ultrasonography (CEUS) is a novel imaging
modality to estimate microvascular perfusion. We aimed to assess renal cortical
microcirculatory changes by CEUS during pharmacologically or mechanically induced
modifications of renal blood flow (RBF) in experimental animals.

Methods: We implanted invasive transit-time Doppler flow probes and a vascular
occluder around the renal artery in six Merino sheep. After induction of general
anaesthesia, renal CEUS studies with destruction-replenishment sequences were
performed at baseline and after different interventions aimed at modifying RBF.
First, we administered angiotensin II (AngII) to achieve a 25% (AngII 25%) and
50% (AngII 50%) decrease in RBF. Then, we applied mechanical occlusion of the
renal artery until RBF decreased by 25% (Occl 25%) and 50% (Occl 50%) of the baseline.
Finally, a single dose of 25 mg of captopril was administered. CEUS sequences were
analysed offline with dedicated software and perfusion indices (PI) calculated.

Results: Pharmacological reduction of RBF with AngII was associated with a 62%
(range: 68 decrease to 167 increase) increase (AngII 25%) and a 5% increase in PI
(range: 92% decrease to 53% increase) (AngII 50%) in PI. Mechanical occlusion of
the renal artery was associated with a 2% (range: 43% decrease to 2% increase)
decrease (Occl 25%) and a 67% (range: 63% decrease to a 120% increase) increase
(Occl 50%) in PI. The administration of captopril was associated with a 8% (range:
25% decrease to a 101% increase) decrease in PI. Pooled changes in PI failed to
reach statistical significance. The study was limited by the difficulty to obtain
high quality images.

Conclusions: CEUS-derived parameters were highly heterogeneous in this sheep
model. The current protocol and model did not allow the evaluation of the
correlation between macro and microcirculation assessment by CEUS.
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Background
Acute kidney injury (AKI) is a common and important complication of critical ill-

ness associated with increased morbidity, mortality and costs [1,2]. Alterations in

renal perfusion are thought to play a central role in its pathogenesis. This causal re-

lationship remains; however, largely speculative as data on renal perfusion in AKI

and critical illness are scarce [3]. Moreover, methods enabling renal perfusion
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quantification are either invasive, very expensive, or difficult to apply in critically ill

patients.

Contrast-enhanced ultrasonography (CEUS) is a recent imaging modality which

provides a unique means of visualizing tissue perfusion. Several studies have sug-

gested that CEUS could enable the quantification of blood flow in an organ [4,5].

These techniques have been used in the brain [6], myocardium [7] and, to some

degree, in the kidney [8-10]. CEUS would be an ideal tool in the intensive care

unit because it is safe [11] and applicable on the bedside [12]. Indeed, knowledge

of renal perfusion changes after an intervention has the potential to greatly influ-

ence medical management in critical illness. However, challenges remain before

renal perfusion quantification with CEUS can be used in clinical practice and fur-

ther studies are required to validate its measurements.

In this study, we aimed to estimate renal cortical microcirculatory changes by

CEUS during pharmacologically or mechanical induced modifications of renal blood

flow (RBF).
Methods
Animal preparation

Experiments were conducted on six adult (1 to 2 years of age) Merino ewes. The

experimental procedures were approved by the animal experimental ethics com-

mittee of the Florey Institute of Neuroscience under the guidelines laid down by

the National Health and Medical Research Council of Australia.

All animals underwent two sterile procedures under general anaesthesia at 2 weeks

intervals, and a similar 2 weeks recovery period was allowed before the experiment was

undertaken. For all procedures, anaesthesia was induced with intravenous sodium thio-

pentone (10 to 15 mg/kg) for intubation followed by maintenance with oxygen/air/iso-

flurane (end-tidal isoflurane, 1.6% to 2.0%), peri-procedural antibiotic prophylaxis

(procaine penicillin, Troy Laboratories Ptd Ltd, Smithfield, NSW, Australia or Mavlab,

Qld, Australia) was administered and post-surgical analgesia maintained with intramus-

cular injection of flunixin meglumine (1 mg/kg) (Troy Laboratories or Mavlab, Qld,

Australia) before and 24 h following surgery. Of note, the last exposure to NSAID was

at least 2 weeks prior to the experiment.

During the first procedure, a carotid arterial loop was created to facilitate subse-

quent arterial cannulation and a transit-time flow probe (20 mm, Transonics Sys-

tems, Ithaca, NY, USA) was implanted in the pulmonary artery through left side

thoracotomy. During the second procedure, a transit-time flow probe (4 mm) and

a renal artery occluder (4 mm, IVM, In Vivo Metric, Healdsburg, California, USA)

were placed around the left renal artery.

On the day before the experiment, cannulae were inserted into the carotid arterial

loop for continuous arterial pressure monitoring and into a jugular vein for drugs infu-

sions. Analogue signals (mean arterial pressure (MAP), heart rate, cardiac index (CI)

and RBF) were collected on computer using a customized data-acquisition system

(Spike2; CED; Cambridge, UK). The data were continuously recorded at 100 Hz and av-

eraged every minute during experiments. To prevent major interferences with ultra-

sound equipment, RBF acquisition was interrupted during CEUS scans.
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Experimental protocol

To prevent pseudo-anaphylaxis and secondary pulmonary hypertension in response to

ultrasound contrast agents (UCA) administration which was observed in other species

[13,14], pre-medication with 0.5 mg dexamethasone (DBL®, Hospira, Wasserburg,

Germany) per kg was administered 2 h before the administration of the UCA.

General anaesthesia was induced and maintained as described above. At least 15 min

was allowed for the stabilisation of all parameters before RBF manipulations were

started. Each intervention was preceded by 5 min of baseline haemodynamic data col-

lection. After each intervention, a recovery period of at least 15 min was allowed.

Three interventions were performed to manipulate RBF. RBF was decreased using a

continuous infusion of angiotensin II (AngII, Hypertensin Ciba™, Ciba-Geigy, Basel,

Switzerland) with rates set to target a 25% (AngII low) and 50% (AngII high) decrease

in RBF. Second, a mechanical decrease of RBF was achieved using the renal artery vas-

cular occluder. The level of inflation of the occluding device was titrated to aim for a

25% (Occl 25%) and a 50% (Occl 50%) decrease in RBF as measured in real time by the

transit-time flow probe. Finally, 25 mg of captopril (Captopril, E.R. Squibb & Sons,

Princeton, New Jersey, USA) was given as a bolus with the intent to increase RBF. The

two interventions aiming at decreasing RBF (AngII administration and occlusion) were

performed in a random order by the investigator in charge of anaesthesia maintenance

(PC). Captopril administration was always performed last.

At each study time, once hemodynamic parameters (RBF, MAP and CI) had stabi-

lized, a CEUS scan of the left kidney (detailed procedure infra) was performed.
CEUS procedure

For this study, we used Sonovue® (Bracco, Milano, Italy) as an UCA. The UCA was in-

fused into a central vein using a dedicated syringe pump (VueJect®, Bracco Research,

Geneva, Switzerland). Low mechanical index (MI = 0.06) ultrasound of the left kidney

was performed with a Philips IU22® ultrasound machine (Philips, Amsterdam, The

Netherlands) and a C5-1® 5 MHz probe. A long axis view of the kidney was obtained

by placing the transducer probe over the lower back of the animal. Once adequate im-

ages of the kidney were obtained, UCA infusion was started at 1 ml/min. Image depth,

focus, gain and frame rate were optimized at the beginning of each experiment and

were held constant during the study. After a 2-min period required to obtain a steady

state, five consecutive destruction/refilling sequences (with 15 s refilling time) were ob-

tained [15,16]. Destruction was obtained by applying a flash of increased ultrasound in-

tensity (5 pulses with high mechanical index (>1.0)).
Sequence analyses

Ultrasound data sets were exported in a digital imaging and communication in medi-

cine (DICOM) format and analysed offline using VueBox® (Bracco Research, Geneva,

Switzerland), a dedicated software package. An example of offline analysis is presented

in Figure 1. Suboptimal sequences with inadequate contrast enhancement or excessive

(or off plane) movement artefact were excluded. For each sequence, one region of inter-

est (ROI) was drawn. In order to minimize the influence of local perfusion heterogene-

ities, this ROI was drawn so that it enclosed the largest area of visible renal cortex on



Figure 1 Software analysis data. Top left panel shows contrast-enhanced ultrasound images with region of
interest drawn (yellow line). Top right panel shows conventional (B mode) imaging for anatomical localisation.
Bottom panel shows linearized time intensity curve for the region of interest (yellow curve) and overall image
(green curve_not relevant for perfusion quantification). AngII: angiotensine II.
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the surface of the kidney closest to the ultrasound probe. When parametric map

depicted high heterogeneity in the area, the ROI was adapted to exclude nonrepresen-

tative areas. For instance, cortical areas that were only intermittently visible because of

breathing or other artefacts and areas representing blood vessel transections were not

included in the ROI.

The software generates linearized time intensity curves from which mean transit time

(mTT) and relative blood volume (RBV) parameters are computed. These parameters

have been described in detail elsewhere [17,15]. In brief, RBV is proportional to the

local fractional blood volume as well as to the contrast agent concentration and is

expressed in arbitrary units (AU). The mTT is a measure of time needed to replenish

the imaging plane with fresh bubbles following destruction by ultrasonic flash and is in-

versely proportional to blood flow velocity; mTT is expressed in seconds. A perfusion

index (PI) is obtained by calculating the ratio RBV/mTT. PIs are thought to be propor-

tional to perfusion within a region of interest and are expressed in AU.

For each subject and study time, the median value for interpretable measurements

was considered for analysis. Results from CEUS examination are reported as mean

values and as percentage changes from the nearest baseline for RBV, mTT and PI.

Given the expected inter-observation variability and based on previous research [8],

a change of more than 25% between two measurements was considered to be

significant.
Repeat baseline measurement

As per study protocol, CEUS baseline measurements were obtained at the start of

the experiment and were only repeated in case of significant modification of RBF or
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other hemodynamic parameter as compared with baseline values. Therefore, a base-

line measurement was not repeated before each series of occlusions and before cap-

topril administration. In such cases, and in cases where baseline measurement were

discarded for poor quality, changes in CEUS-derived parameters were compared to

the nearest baseline available.
Statistical analysis

RBV, mTT and PI are reported as median (interquartile range). In addition, as baseline

values are known to be highly heterogeneous due to inter-subject variability (organ

depth, subcutaneous thickness and composition), we report changes in those values as

median percentage change (range) from the nearest baseline, each animal being its own

control. Analyses were performed using SPSS® version 21 (IBM, Armonk, NY, USA).

All outcomes were assessed for normality and as RBV, mTT and PI were all well ap-

proximated by log-normal distributions, each was log-transformed prior to analysis.

RBF measurements were found to be normally distributed. A two-sided p value of 0.05

was considered to be statistically significant.
Results
Renal blood flow

As shown in Figure 2, both pharmacological and mechanical interventions were associ-

ated with the expected, proportional and significant changes in renal blood flow (RBF).

Target reductions in RBF were obtained in all animals with AngII infusion. Overall,

RBF decreased from a baseline of 147 (±29) to 112 (±19) ml/min (AngII low, p < 0.001)

and to 96 (±22) ml/min (AngII high, p < 0.01).

Mechanical occlusion of the renal artery induced a 25% reduction in RBF in all ani-

mals and a 50% reduction in 4/6 animals. Overall, such occlusion was associated with a

decrease in RBF, from a baseline of 177 (±34.9) to 128 (±25.5) ml/min (Occl 25%,

p < 0.001) and to 83 (±17.2) ml/min (Occl 50%, p < 0.001). Finally, the administration

of captopril was associated with an increase in RBF from 172 (±44) to 206 (±50.9) ml/

min (p < 0.05).
Pooled CEUS-derived parameters

Median CEUS-derived parameters are reported in Figure 3.

Overall, most differences were found to be non-significant. The only two changes in

CEUS-derived parameters which reached statistical significance were a decrease in RBV

associated with a 25% reduction of RBF with mechanical occlusion and an increase in

mTT associated with the high dose of AngII that caused a 50% reduction in RBF.
Values expressed as percentage change from the nearest baseline

Values of PI expressed as a percentage change from the nearest baseline (using each in-

dividual animal as its own control) are presented in Figure 4.

Angiotensin II infusion

A 25% reduction in RBF as induced by AngII infusion was associated with a median

89% increase in RBV (range: 56% decrease to a 152% increase) and a 19% median
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increase in mTT (range: 6% decrease to 32% increase) resulting in an overall 62% me-

dian increase (range: 68 decrease to a 167 increase) in PI.

A 50% reduction in RBF as induced by AngII infusion was associated with a median

47% increase in RBV (range: 84% decrease to 119% increase) and a 43% (range: 40 to

99%) increase in mTT resulting in an overall 5% increase in PI (range: 92% decrease to

a 53% increase).

Mechanical occlusion

A 25% reduction in RBF as induced by occluder inflation was associated with a median

32% decrease in RBV (range: 31% to 47%) and a 33% decrease (range: 45% decrease to
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a 18% increase) in mTT resulting in an overall 2% decrease (range: 43% decrease to 2%

increase) in PI.

A 50% reduction in RBF as induced by occluder inflation was associated with a me-

dian 48% increase in RBV (range: −53% decrease to a 178% increase) and a 25% in-

crease in mTT (range: 10% decrease to a 55% increase) resulting in an overall 67%

increase in PI (range: 63% decrease to a 120% increase).

Captopril

The administration of captopril was associated with a median 5% increase in RBV

(range: 7% decrease to a 67% increase) and a 7% increase in mTT (range: 16% decrease

to a 26% increase) resulting in an overall 8% decrease in PI (range: 25% decrease to a

101% increase).
Data consistency

Missing values

Four baseline values were not repeated (as per study protocol) and a 50% reduction of

RBF could not be obtained in two situations. In addition, CEUS data were judged as

not interpretable at four time points (two baselines, one during AngII low dose infusion

and one during 25% occlusion). Hence, altogether, valid results were obtained in 38/48

(79.9%) of study time points. Most (5/10) missing values occurred during the occlusion

phase of the experiment.

In-between animals consistency

Individual animal data are presented in Figure 5. There was poor consistency for de-

rived CEUS-PIs between animals and heterogeneous response to RBF manipulations.
Discussion
Summary of key findings

We performed an observational study in six merino sheep to evaluate changes in renal

cortical microcirculation as evaluated by CEUS in response to pharmacological and

mechanical modifications of RBF. We found that appropriate reductions in RBF could

be obtained in all animals with an infusion of AngII and, in most of them, with an
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implanted renal artery occluder and that a 20% increase in RBF could be obtained with

the administration of 25 mg of captopril. However, we found that obtaining high quality

images in this sheep model was challenging. We also found that, within the limitations

of our model, CEUS-derived perfusion indices did not parallel changes in RBF and that
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the findings were highly heterogeneous. We found that a similar decrease in RBF was as-

sociated with unpredictable and divergent changes in perfusions indices according to

whether they were obtained with a mechanical occlusion of the artery or the administra-

tion of AngII.
Comparison with previous studies

A previous human study has used CEUS to compare changes in renal microcirculation

in response to changes in renal perfusion as induced by AngII and Captopril [8]. In this

study, AngII administration was associated with marked and statistically significant de-

creases in PI, even when renal plasma flow was only reduced by 15%.

A recent animal study [10] used CEUS to measure renal microcirculation parame-

ters in rats. Similar to our protocol, the investigators used AngII to decrease RBF.

This study compared two methods of blood flow quantification and demonstrated an

excellent correlation between CEUS-derived parameters and blood flow. We failed to

replicate these data in our sheep model. This might in part be due in part to our deci-

sion to use parasagittal images, as the findings from the above study suggested that

coronal images had better sensitivity.

In addition, our results were associated with important heterogeneity. Heterogeneity

among subject and measurements has been previously reported, however to a much

lesser degree than in the current study. Potential reasons for increased heterogeneity

might involve the model used and our study design and are discussed in the ‘Strengths

and Limitations’ section.

A moderate (25%) reduction in RBF as induced by AngII was associated with an in-

crease in PI, while a larger (50%) reduction was associated with a decrease in PI. This

was essentially linked to a proportional increase in mTT (indicative of delayed replen-

ishment) which reached statistical significance during 50% occlusion associated with a

persistent increase in RBV (indicative of increased UCA concentration).

These findings seemed quite robust as such pattern was exhibited in similar magni-

tude in all but one animal where a baseline was available. This could be explained by

the specific effect of AngII on renal microcirculation. Indeed, both afferent (AA) and

efferent (EA) arteries respond to AngII with a dose-dependent vasoconstriction [18].

Such response is significantly more pronounced at the EA level with vasoconstriction

occurring at lower concentration [19,20]. Therefore, a proportional increase in transit

time with increased AngII induced RBF reduction could be expected. The associated

increase in UCA concentration (RBV) remains to be investigated and might well be

artefactual (see ‘Strengths and Limitations’ section).

To the best of our knowledge, no study has evaluated changes in renal cortical

microcirculation in response to renal artery occlusion. The influence of a mechanical

occlusion on renal function was described using a similar model of sheep [21]. In this

study, neither an acute (30 min) 25%, 50% or 75% nor a prolonged (80% for 2 h) re-

duction in RBF as induced by an implanted occluder was associated with sustained

loss of kidney function. In this study, occlusion phases were associated with transient

increases in MAP with returns to baseline within 2 h.

In comparison, we found that a similar decrease in RBF was associated with a modest

(+11% with Occl 25%) or marked (+41% Occl 50%) increase in renal cortical
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microcirculation. These changes were associated with no (Occl 25%) or a modest (+14

mmHg, Occl50%) increase in mean arterial pressure but no change in cardiac output.

This could be consistent with modest activation of the renin-angiotensin-aldosterone sys-

tem (RAS) [22,23]. Hence, such progressive activation might explain the paradoxical in-

crease in perfusion indices in the same fashion as observed with low dose AngII

(predominant EA vasoconstriction). However, given the small number of observations

such conclusions remain speculative.
Strengths and limitations

Heterogeneity of measurements is a common limitation of all attempts to use CEUS

for organ perfusion quantification. Sources for this heterogeneity have been reviewed

in details by Tang et al. [24]. In order to limit the influence of the most important fac-

tors associated with heterogeneity, we kept mechanical index, dynamic range, fre-

quency and gain constant throughout the experiment.

Ensuring the reproducibility of anatomical location of ROI proved challenging in

our experimental animals. For adequate perfusion quantification, focus depth and

insonification angle need to be kept constant. In sheeps, kidney position seems to

be greatly altered by respiration and peristaltic activity. To overcome this limitation,

we have used anatomical landmarks and compared live images with previously ac-

quired baseline images. In addition, several sequences were obtained at each study

point and only similar looking areas were retained for data analyses. Finally, we tried

to locate ROIs at similar depth and distance from the focal depth to ensure a more

uniform acoustic field as recommended by Averkiou et al. [25]. Motion artefact was

partially tackled by the selection of a probe angle limiting this motion and by the

use of an advanced image stabilisation algorithm in the VueBox® software. Unfortu-

nately, such compensation can only deal with in-plane motion and perhaps further

studies should make use of 3D probes [26]. Further attenuation of signal was associ-

ated with transient interposition of air fluid cavities possibly related to the sheep's

large four-compartment stomach. This issue limited the number of usable

sequences.

Further heterogeneity might have been due to protocol-related changes in blood

pressure. Indeed, such changes are known to directly to affect the mean size of the

bubbles and their resonant frequency. Mor-Avi et al. [27] observed an approxi-

mately 20% decrease in video intensity for albumin-coated bubbles during systole

compared with diastole. However, changes in blood pressure observed in our proto-

col are of lesser intensity, and their influence on the results might be limited.

Changes in the inhaled fraction of anaesthetic gas might have impacted the inten-

sity of CEUS signal [28]. Indeed, inhaled gas concentrations might alter microbub-

ble's size and dynamically change their response to the ultrasound beam and be

associated with a decrease in their blood concentration as larger bubbles tend to be

filtered in the lung. To overcome this limitation, only minor and strictly mandatory

changes in inspired fractions of gases were allowed during the experiment. In

addition, anaesthetic gas might have decreased RBF through its effects on the acti-

vation of the RAS [29]. However, this is unlikely to have influenced our results as

study interventions were targeted based on the readings of a flow meter.
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The increase in intensity sometimes observed during the second administration of con-

trast agent in the same subject has been related to the saturation of pulmonary macro-

phages by the first injection, leading to increased signals from the second injection [24].

The importance of this effect in sheep and its impact on our results is unknown.

The administration of dexamethasone as a pre-medication to prevent pseudo-

anaphylaxis was necessary. However, such medication might influence the circulation and

perhaps explain the shift in RBF seen throughout the study. However, as repeated baseline

measurements were taken, such shift is unlikely to have biased our results.

Finally, our study protocol might not have allowed enough time between interven-

tions to enable establishment of a new steady state in the microcirculation. This is sug-

gested by the fact that the ‘baseline’ value for RBF did not systematically return to their

‘original’ baseline and presented a trend to an upward shift. This limitation was par-

tially attenuated by the repetition of baseline measurements. Unfortunately, such mea-

surements were not performed before each series of occlusions.

Implications for clinicians and further studies

Renal perfusion quantification with CEUS remains a promising yet non-validated tool.

Indeed, the lack of a gold standard for the quantification of microcirculatory perfu-

sion and the large heterogeneity of the results (and its associated potential for major

error) limits the application of this technology in a clinical setting for the time being.

Most of the aforementioned sources of variability are likely to primarily influence the

intensity of the enhancement by the UCA, therefore the RBV parameter is that most

likely to be associated with measurement errors.

Further studies are required to improve technical measurements in order to limit het-

erogeneity and better validate this technique. These studies should aim at determining

ideal conditions to limit measurements heterogeneity.

Conclusions
CEUS-derived parameters were highly heterogeneous in this sheep model. The

current protocol and model did not allow the evaluation of the correlation between

macro- and microcirculation assessments by CEUS. Further studies should include

other animal models and simpler protocols and possibly use of a 3-D probe.
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