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Background: Severe scorpion envenomation can evolve to lung injury and, in some
cases, death. The lung injury could be attributed to acute left ventricular failure and
increased pulmonary vascular permeability secondary to the release of inflammatory
mediators. In clinical practice, corticosteroids have been administered to reduce the
early side effects of the anti-venom. We propose to study the effects of Tityus serrulatus
venom and dexamethasone on pulmonary expression of sodium and water transporters,
as well as on the inflammatory response.

Methods: Wistar rats were injected intraperitoneally with saline (control group),
dexamethasone, and saline (2.0 mg/kg body weight—60 min before saline injection;
dexamethasone + saline group), venom (T. serrulatus venom—3.8 mg/kg body weight),
or dexamethasone and venom (2.0 mg/kg body weight—60 min before venom
injection; dexamethasone + venom group). At 60 min after venom/saline injection,
experiments were performed in ventilated and non-ventilated animals. We analyzed
sodium transporters, water transporters, and Toll-like receptor 4 (TLR4) by Western
blotting, macrophage infiltration by immunohistochemistry, and serum interleukin
(IL) by cytokine assay.

Results: In the lung tissue of non-ventilated envenomed animals, protein expression
of the epithelial sodium channel alpha subunit (α-ENaC) and aquaporin 5 (AQP5) were
markedly downregulated whereas that of the Na-K-2Cl cotransporter (NKCC1) and TLR4
was elevated although expression of the Na,K-ATPase alpha 1 subunit was unaffected.
Dexamethasone protected protein expression of α-ENaC, NKCC1, and TLR4 but not that
of AQP5. We found that IL-6, IL-10, and tumor necrosis factor alpha were elevated in the
venom and dexamethasone + venom groups although CD68 expression in lung tissue
was elevated only in the venom group. Among the ventilated animals, both envenomed
groups presented hypotension at 50 min after injection, and the arterial oxygen tension/
fraction of inspired oxygen ratio was lower at 60 min than at baseline.

Conclusions: Our results suggest that T. serrulatus venom and dexamethasone both
regulate sodium transport in the lung and that T serrulatus venom regulates sodium
transport via the TLR4 pathway.
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Background
In tropical and subtropical countries, scorpion envenomation is common and sometimes

fatal, especially among children [1, 2]. The incidence and severity of such envenomation

are remarkable in Africa, the Near- and Middle-East, Mexico; Brazil, the Amazon basin,

and southern India [1]. In Brazil, approximately 78,000 scorpion stings are reported annu-

ally [3]. Tityus serrulatus is considered the most medically important scorpion species in

Brazil. Although most cases of scorpion envenomation occur in adults, the most severe

cases are in children, in whom mortality is also higher [4].

The clinical manifestations of envenomation by scorpions of the genera Androctonus,

Leiurus, Buthus, Centruroides, and Tityus are quite similar, including pain, persistent

nausea, vomiting, hypertension, tachycardia, tachypnea, and prostration. Patients pre-

senting with severe envenomation can also progress to heart failure, pulmonary edema,

and shock [4–8]. Most of the symptoms and signs of scorpion envenomation have been

attributed to the effects of the venom interacting with sodium channels and of neuro-

transmitters released from autonomic nerve endings [9, 10]. In severe cases, lung injury

is common and is frequently the cause of death [11]. Two distinct mechanisms have

been suggested to explain the development of pulmonary edema: acute left ventricular

failure resulting from massive catecholamine release [12, 13] and increased pulmonary

vascular permeability following the release of inflammatory mediators, such as platelet-

activating factor, leukotrienes, and prostaglandins [14–16]. Increased serum levels of

pro- and anti-inflammatory cytokines, such as interleukin (IL)-1, IL-6, tumor necrosis

factor alpha (TNF-α), and IL-10, have also been observed following T. serrulatus en-

venomation in animals and humans [17–20].

Regardless of its pathogenesis, pulmonary edema is resolved by active sodium trans-

port across the alveolar epithelium via apical amiloride-sensitive sodium channels and

basolateral Na,K-ATPase. This active vectorial sodium transport produces a transe-

pithelial osmotic gradient that results in passive movement of water from the air spaces

into the alveolar interstitium [21, 22]. In some models of acute lung injury, as well as in

patients with acute respiratory distress syndrome, the ability of the lungs to clear edema is

impaired [23]. In rats injected with the T. serrulatus venom, alveolar fluid clearance is de-

creased by up to 60 %. In addition, the expression and activity of Na,K-ATPase subunits

have been shown to decrease in the basolateral membranes of alveolar type II epithelial

cells incubated with scorpion venom [24].

Because they can recognize pathogen-associated molecules, Toll-like receptors (TLRs) are

key components in human innate immune responses. In contrast with the adaptive immune

system, the innate immune system uses TLRs to react rapidly to a wide range of pathogen-

associated molecular patterns, without prior exposure. TLRs were initially characterized by

their interactions with bacterial ligands and involvement in the cellular activation associated

with infection and sepsis. However, recent studies have shown that TLR2 and TLR4 can

recognize non-microbial ligands. Once activated, TLRs induce the production of in-

flammatory cytokines, such as TNF-α, IL-1β, and IL-6, through an intracellular sig-

naling cascade [25].

In Brazil, it is common to administer corticosteroids prior to the administration of

anti-venom [4]. Therefore, the objective of the present study was to evaluate, in rats

inoculated with T. serrulatus venom, the effects that dexamethasone has on the early

clinical, biochemical, and ventilatory parameters, on initial molecular changes in the
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expression of sodium and water transporters, and on the early inflammatory

response.

Methods
Animals, experimental materials, and procedures

Adult male Wistar rats weighing 215–250 g were obtained from the animal facilities of

the University of São Paulo School of Medicine, provided food and water ad libitum,

and maintained on a 12/12-h light/dark cycle.

Venom (from T. serrulatus), provided by the Butantan Institute (São Paulo, Brazil),

was diluted in sterile saline, aliquoted, and stored at −70 °C. Sodium thiopental and

dexamethasone were obtained from Cristália (São Paulo, Brazil). We generated a dose–

response curve. We found that intraperitoneal (ip) injection of 3.8 mg/kg body weight

(BW) of crude scorpion venom-induced rats to severe envenomation. Rats were divided

into the following groups: venom, comprising rats receiving 3.8 mg of venom/kg BW

(ip); dexamethasone + venom, comprising rats receiving 2.0 mg/kg BW (ip) of dexa-

methasone [26], 60 min before receiving venom (as above); and control, comprising

rats receiving 0.5 ml of saline (ip). Two sets of experiments were performed. In the first

set, we used non-ventilated animals (8 control group rats, 13 venom group rats, and 11

dexamethasone + venom group rats). In the second set, we used ventilated animals (7

control group rats, 6 venom group rats, and 5 dexamethasone + venom group rats).

An additional group of control rats receiving only dexamethasone (2.0 mg/kg) was

evaluated in order to determine the effects of the drug on biochemical and ventilatory

parameters.

All procedures were performed in compliance with Brazilian Ethics Committee for

Animal Experimentation (Federal Law n.11.794, October 8th, 2008, Arouca Act), and

all experimental procedures were approved by the University of São Paulo School of

Medicine Animal Research Committee (number 515/09).

Non-ventilated animals

Procedures

After injection(s), non-ventilated rats were monitored for 60 min, during which time

we analyzed clinical parameters such as lacrimation, salivation, dyspnea, and cyanosis.

The survivors were anesthetized with sodium thiopental (50 mg/kg BW). The aorta was

cannulated with a PE-60 catheter, and blood samples were collected for biochemical ana-

lysis and determination of cytokine levels. The lungs were flushed with phosphate-

buffered saline (injected into the aorta), excised, and stored at −70 °C for subsequent

Western blotting.

Biochemical analysis

At 60 min after venom administration, plasma levels of Na, K, urea, creatinine, creatine

kinase, lactate dehydrogenase, amylase, and troponin were measured kinetically.

Antibodies

The peptide-derived polyclonal antibodies specific to the Na-K-2Cl cotransporter (NKCC1)

were kindly supplied by Dr. R. James Turner (National Institute of Dental and Craniofacial

Research, Bethesda, MD). The peptide-derived polyclonal antibodies specific to the
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epithelial sodium channel alpha subunit (α-ENaC), the Na,K-ATPase alpha 1 subunit (α1-

Na,K-ATPase), aquaporin 5 (AQP5), TLR4, and actin were obtained from Santa Cruz Bio-

technology (Santa Cruz, CA), and the peptide-derived monoclonal antibodies specific to

CD68 were obtained from ABD Serotec (Raleigh, NC).
Membrane fractions

Samples of lungs were homogenized in ice-cold isolation solution containing protease

inhibitors. The homogenates were centrifuged, the supernatants were spun, and the

resulting pellets, containing membrane fractions enriched with plasma membranes and

intracellular vesicles, were suspended in the isolation solution.
Western blotting

Samples of membrane fractions were run on 12.5 % polyacrylamide minigels (for AQP5),

10 % polyacrylamide minigels (for α-ENaC, α1-Na,K-ATPase, and TLR4), or 8 % polyacryl-

amide minigels (for NKCC1). After transfer by electroelution to nitrocellulose membranes

(PolyScreen, PVDF Transfer; Life Science Products, Boston, MA, USA), blots were blocked

with 5 % milk and 0.1 % Tween 20 in phosphate-buffered saline for 1 h, then incubated

with anti-AQP5 antibody (1:500), NKCC1 antibody (1:1000), α1-Na,K-ATPase antibody

(1:500), α-ENaC antibody (1:100), or TLR4 antibody (1:100). The labeling was visualized

with horseradish peroxidase-conjugated secondary antibody (anti-rabbit IgG, diluted

1:5000, or anti-goat IgG, diluted 1:10,000; Sigma) using the enhanced chemiluminescence

detection system (Amersham Pharmacia Biotech, Piscataway, NJ, USA). Bands correspond-

ing to protein expression of AQP5, α-ENaC, α1-Na,K-ATPase, NKCC1, TLR4, and actin

were quantified by densitometric analysis using Image J software (Research Services

Branch, National Institutes of Health, Bethesda, MD, USA). Bands were normalized

to actin and are expressed as percentages of the control values.
Immunohistochemistry

Fragments of the lungs from rats of all groups were immersed in 4 % paraformalde-

hyde, fixed for 2 h, post-fixed in Bouin’s solution for 4 h, drained, dehydrated in 70 %

ethanol, and processed for paraffin embedding. The samples were sliced into 4-μm

histological sections. The sections were incubated overnight at 4 °C with antibodies

against CD68 (1:1000) or AQP5 (1:50). The reaction products were detected with an

avidin-biotin-peroxidase complex (Vector Laboratories, Burlingame, CA, USA). The

color reactions were developed with 3,3-diaminobenzidine (Sigma) and nickel chloride

(8 %) in the presence of hydrogen peroxide, and the material was then counterstained

with methyl green, dehydrated, and mounted. Infiltrating macrophage/monocyte-posi-

tive cells were counted in 30 grid fields (0.087 mm2 each). The volume proportion of

AQP5 in the alveolar tissue of lung sections was determined by dividing the number of

points hitting AQP5 by the total number of points hitting alveolar septa (in 20 fields).

Results are expressed as a percentage of positive area per total area of tissue. For count-

ing positive cells, we used the AxioVision program, version 4.8 (Carl Zeiss, Eching,

Germany), and we used ImagePro Plus 4.1 (Media Cybernetics, Silver Spring, MD), for

measuring area and percentage.
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Inflammatory cytokines

To determine plasma levels of IL-6, IL-10, and TNF-a, we used a Bio-Plex rat cytokine

assay kit (R&D Systems, Minneapolis, MN, USA). The assay was read on the Bio-Plex

suspension array system (Bio-Rad, Hercules, CA, USA), and the data were analyzed

with Bio-Plex Manager software, version 6.0 (Millipore, Billerica, MA, USA).

Ventilated animals

Procedures

In ventilated rats, we evaluated the following parameters: the arterial oxygen tension/frac-

tion of inspired oxygen (PaO2/FIO2) ratio, bicarbonate and plasma glucose (Fig. 1), mean

arterial pressure (MAP), and heart rate (HR). We subtracted the PaO2/FiO2 at 30 and

60 min from the PaO2/FiO2 before venom injection because that difference (ΔPaO2/FiO2)

is more important than is the absolute PaO2/FIO2 at either time point.

All animals were submitted of mechanical ventilation at a tidal volume of 10 ml/kg,

positive end-expiratory pressure (PEEP) of 3 cmH2O, FIO2 of 50 %, and respiratory rate

of 60 breaths/min. Animals were anesthetized with thiopental (50 mg/kg BW ip) and

underwent tracheotomy. The right carotid artery was cannulated with a PE-60 catheter

in order to determine MAP, as well as to allow blood sampling at the various time

points. The left jugular vein was also cannulated with a PE-60 catheter for the infusion

of drugs and venom. The rats were connected to a small animal ventilator (Atlanta;

Takaoka, São Paulo, Brazil). Pancuronium (1 ml/kg BW ip) was then administered. To

allow the animals to stabilize, we did not initiate the experiment until 15 min after the

tracheotomy (Fig. 1). After stabilization, the control and venom groups received saline,

whereas the dexamethasone + venom group received dexamethasone diluted in saline.

In order to evaluate the effects of dexamethasone in the ventilated animals, we deter-

mined serum glycemia and arterial blood gases at 60 min after the initiation of mech-

anical ventilation, immediately prior to envenomation.

Arterial blood sampling and hemodynamic evaluation

Arterial blood gases and glucose were analyzed with a blood gas analyzer (ABL800

FLEX; Radiometer, Copenhagen, Denmark). In addition, heart rate and MAP were con-

tinually monitored with an invasive constant monitoring probe (MP100; Biopac Sys-

tems, Goleta, CA, USA).

Statistical analysis

All quantitative data are expressed as mean ± SEM. Comparisons between proportions

were analyzed by chi-square test or Fisher’s exact test. Differences among the means of
Fig. 1 Diagram of the study protocol (ventilated animals)
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multiple parameters were analyzed by ANOVA followed by the Student-Newman-Keuls

test. Values of p ≤ 0.05 were considered statistically significant.

Results
Non-ventilated animals

Clinical data

Some venom-injected rats exhibited systemic manifestations, as early as 30 min after

the injection, including lacrimation, salivation, dyspnea, cyanosis, and chromodacryor-

rhea. Of the 13 venom group rats, 1 (7.7 %) died before the end of the 60-min observa-

tion period and 4 (30.8 %) showed no clinical manifestations consistent with severe

poisoning, compared with 2 (18.2 %) and 4 (36.4 %) of the 11 dexamethasone + venom

group rats (NS).

Biochemical data

Serum potassium levels were lower in the venom and dexamethasone + venom groups

than in the control and dexamethasone groups. Serum amylase levels were higher in

the dexamethasone + venom group than in the other groups (Table 1).

Sodium and water transporters in lungs

Figure 2 shows that α-ENaC expression in the venom group (43.2 ± 7.3 %) was lower than

in the control group (91.5 ± 8.5 %) and dexamethasone + venom group (78.6 ± 18 %), the

differences being significant (p < 0.05 for both). Semiquantitative immunoblotting revealed

that pulmonary expression of α1-Na,K-ATPase was comparable across the venom, dexa-

methasone + venom, and control groups (102.5 ± 7.2, 102.8 ± 7.6, and 95.3 ± 6.0 %,

respectively).

As shown in Fig. 2, pulmonary NKCC1 expression in the venom group (146.2 ± 4.5 %) was

significantly higher than in the control group (98.5 ± 7.4 %, p < 0.01) and dexamethasone +

venom group (63.6 ± 15.6 %, p < 0.001), the dexamethasone + venom value being significantly

lower than that obtained for the control group (p < 0.05).

Figures 3a, b shows that pulmonary expression of AQP5 was significantly lower in the

venom and dexamethasone + venom rats than in the controls (46.0 ± 5.8 and 43.9 ± 8.6 %

vs. 100.1 ± 9.2 %, p < 0.05). In accordance with the protein expression results, the immu-

nohistochemical staining for AQP5 was less intense and less extensive in the venom and

dexamethasone + venom groups than in the control group (Fig. 3C1-C3).

Macrophage infiltration

At 60 min after venom administration, the number of cells presenting CD68 staining

for macrophages/monocytes in the lung (Fig. 4) was significantly higher in the venom

group than in the control group (51.9 ± 6.9 vs. 23.2 ± 1.3 cells/0.087 mm2, p < 0.05).

The number obtained for the dexamethasone + venom group (39.4 ± 3.8 cells/0.087 mm2)

did not differ significantly from those obtained for the other groups.

TLR4 expression

As shown in Fig. 5, TLR4 expression was significantly higher in venom rats than that in

control and dexamethasone + venom rats (194 ± 17.5 % vs. 100.6 ± 5.2 and 106.3 ±

12.3 %, p < 0.05 for both).



Table 1 Biochemical data for non-ventilated rats after administration of saline, dexamethasone, T. serrulatus venom, or dexamethasone plus T. serrulatus venom

Group Na K Urea Creatinine Amylase CK LDH Troponin

mEq/L mEq/L mg/dl mg/dl U/L U/L U/L ng/ml

Control 143.1 ± 2.3 4.3 ± 0.2 38.9 ± 2.6 0.3 ± 0.0 2210.0 ± 89.5 572.4 ± 66.1 623.0 ± 187.2 0.2 ± 0.2

Dx 148.5 ± 0.96 3.7 ± 0.2 46.8 ± 3.8 0.2 ± 0.0 2268.0 ± 146.3 532.0 ± 84.7 385.0 ± 49.6 0.0 ± 0.0

Vn 140.6 ± 2.4 3.2 ± 0.1* 44.4 ± 5.4 0.3 ± 0.0 2311.0 ± 112.2 630.8 ± 118.5 525.4 ± 129.2 0.1 ± 0.1

Dx + Vn 142.3 ± 1.4 3.4 ± 0.2* 55.5 ± 13.1 0.3 ± 0.1 3213.0 ± 338.5** 761.0 ± 140.8 586.3 ± 97.4 0.0 ± 0.0

CK creatine kinase, LDH lactate dehydrogenase, Dx dexamethasone, Vn venom, Dx + Vn dexamethasone + venom
*p < 0.05 compared with control
**p < 0.05 compared with the other groups
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Fig. 2 Alpha-ENaC and NKCC1 lung expression. Semiquantitative immunoblotting of membrane fractions
prepared from lung tissue samples from rats in the groups venom (Vn, n = 8), dexamethasone + venom
(Dx + Vn, n= 6), and control (Cont, n= 4). a Densitometric analysis revealing significantly lower α-ENaC expression
in the Vn group and no statistical difference between the Dx + Vn and Cont groups. *P< 0.05 compared with
Cont and Dx + Vn. b Immunoblots reacted with anti-α-ENaC, revealing a 90-kDa band. c Densitometric analysis
showing that NKCC1 expression was significantly higher in the Vn group and significantly lower in the Dx + Vn
group. *P < 0.01 vs. Cont; **P < 0.001 vs. Dx + Vn; ***P < 0.05 vs. Cont. d Immunoblots reacted with
anti-NKCC1, revealing a 170-kDa band and anti-Actin, 43-kDa
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Plasma cytokine levels

Plasma cytokine levels (in pg/ml) were significantly higher in the venom and

dexamethasone + venom groups than in the control group—IL-6, 114.9 ± 21.4 and

108.9 ± 8.9 vs. 88.8 ± 49.2; TNF-α, 11.84 ± 0.0 and 11.54 ± 0.0 vs. 5.9 ± 3.3; and IL-10,

42.6 ± 9.0 and 35.7 ± 6.8 vs. 10.0 ± 2.4—(p < 0.05 for all).
Ventilated animals

Clinical data

After 60 min on mechanical ventilation (immediately before venom or saline administra-

tion) (Fig. 1), the biochemical, respiratory and hemodynamic parameters in the dexa-

methasone group did not differ from those observed in the control group:

glycemia—120.0 ± 4.4 vs. 125.2 ± 4.3 (NS); bicarbonate—18.2 ± 0.7 vs. 18.2 ± 0.4 (NS);

ΔPaO2/FIO2 (T0-T−60)—7.2 ± 9.7 vs. 10.0 ± 6.0 (NS); MAP—142.0 ± 1.9 vs. 142.0 ± 5.8

(NS); HR—493.8 ± 21.5 vs. 503.0 ± 8.3 (NS).

Biochemical data

Hyperglycemia was seen in the venom and dexamethasone + venom groups. In both

groups, the levels of glycemia were highest at 30 min after venom injection (Table 2).

Respiratory and hemodynamic parameters

At 60 min after venom injection, the greater ΔPaO2/FIO2 (i.e., the difference between

the PaO2/FIO2 values obtained immediately before and 60 min after envenomation) in-

dicates that PaO2/FIO2 was worse in both envenomed groups than in the control



Fig. 3 AQP5 lung expression. Semiquantitative immunoblotting of membrane fractions prepared from lung
tissue samples from rats in the groups venom (Vn, n = 8), dexamethasone + venom (Dx + Vn, n = 8), and
control (Cont, n = 6). a Densitometric analysis revealing significantly lower AQP5 expression in the Vn and
Dx + Vn groups. *P < 0.05 compared with Cont. b Immunoblots reacted with anti-AQP5, revealing a 35-kDa
band. C1-C3 Immunohistochemical localization of AQP5 in lung parenchyma of rats in the groups Cont (C1),
Vn (C2), and Dx + Vn (C3) at 60 min after envenomation (magnification, ×400)
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group (Table 2). At 50 min after venom administration, the animals in both envenomed

groups presented hypotension, whereas the control group animals did not. Although

we expected the hypotension seen in the envenomed groups to increase heart rates, we

found no statistical differences in heart rate among the groups (Fig. 6). However, the

mean heart rate was slightly higher in the dexamethasone + venom group, a difference

that trended toward significance in comparison with the other groups. In order to

analyze the acid–base status, we measured plasma bicarbonate levels. At 30 and 60 min

after venom administration, plasma bicarbonate levels were lower in the venom and

dexamethasone + venom groups than in the control group (Table 2).
Discussion
The animal model used in the present study, which involved a high dose of scorpion

venom, mimicked the physiological manifestations of severe human envenomation [6, 27],

provoking altered expression of sodium and water transporters in lung tissue.



Fig. 5 TLR4 lung expression. Semiquantitative immunoblotting of membrane fractions prepared from lung
tissue samples from rats in the groups venom (Vn, n = 5), dexamethasone + venom (Dx + Vn, n = 4), and control
(Cont, n = 5). a Densitometric analysis revealing significantly higher TLR4 expression in the Vn group. *P < 0.05
compared with Cont and Dx + Vn. b Immunoblots reacted with anti-TLR4, revealing an 89-kDa band

Fig. 4 Alveolar macrophage infiltration. Alveolar infiltration by CD68-positive cells (cells/0.087 mm2) at 60 min after
envenomation in tissue samples from rats in the groups venom (Vn, n = 5), dexamethasone + venom
(Dx + Vn, n = 5), and control (Cont, n = 3). Immunostaining for CD68 in the Cont (a), Vn (b), and Dx + Vn (c)
groups (magnification, ×400 for all). CD68-positive cell counts (mean ± SEM), showing that alveolar macrophage
infiltration was significantly greater in the Vn group (d). *P < 0.05 compared with Cont

Malaque et al. Intensive Care Medicine Experimental  (2015) 3:28 Page 10 of 14



Table 2 Metabolic parameters in ventilated animals

Group ΔPaO2/FIO2 Bicarbonate (mEq/L) Glucose (mg/dl)

T30–T0 T60–T0 T0 T30 T60 T0 T30 T60

Control 3.5 ± 3.2 14.0 ± 6.3 21.3 ± 0.6 17.8 ± 0.6 18.5 ± 0.4 119.2 ± 0.9 110.3 ± 8.6 106.7 ± 5.9

Vn −11.0 ± 6.1 −14.8 ± 4.3* 20.0 ± 0.7 12.8 ± 0.4* 11.5 ± 0.4* 121.8 ± 2.0 249.8 ± 12.3* 189.8 ± 23.0*

Dx + Vn −14.7 ± 11.9 −9.0 ± 7.9* 19.9 ± 0.4 13.3 ± 1.2* 12.8 ± 1.6* 119.3 ± 4.8 245.3 ± 24.0* 166.8 ± 27.9*

ΔPaO2/FIO2 delta arterial oxygen tension/fraction of inspired oxygen (T30 minus T0; T60 minus T0), T0 immediately before
envenomation, T30 30 min after envenomation, T60 60 min after envenomation, Vn venom, Dx + Vn dexamethasone + venom
*p < 0.05 compared with control
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The hyperamylasemia observed in the dexamethasone + venom group might be attrib-

utable to synergism between the dexamethasone and the high dose of venom, given that

no hyperamylasemia was observed in the venom or dexamethasone groups. This suggests

a potential adverse effect of corticosteroid administration in the absence of specific anti-

venom administration.

In extremely severe cases of scorpion envenomation, pulmonary edema is common and

may lead to death. In some cases, pulmonary edema can persist even 24 h after anti-venom

administration [28]. Pulmonary edema is more affected by active sodium transport out of

the alveoli than by the reversal of Starling forces. In alveolar epithelial cells, T. serrulatus

venom downregulates Na,K-ATPase [24]. In our study, T. serrulatus venom decreased ex-

pression of α-ENaC and AQP5, as well as upregulating basolateral NKCC1, although α1-

Na,K-ATPase expression was unaffected. Impaired fluid handling can hinder pulmonary

function and increase the susceptibility of the lung to injury [22]. Active transport by the

Na,K-ATPase pump generates an osmotic driving force favorable to the entrance of sodium
Fig. 6 Hemodynamic variation during envenomation. Effect of Tityus serrulatus venom administration on
mean arterial pressure and heart rate in the venom (Vn), dexamethasone + venom (Dx + Vn) and control
(Cont) groups. *P < 0.05 for Dx + Vn vs. Cont, **P < 0.05 for Vn and Dx + Vn vs. Cont)
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via α-ENaC. There is therefore continuous transport of sodium from the lumen into the

interstitial space [29]. Volume is regulated primarily by electroneutral cotransporters such

as NKCC1, which is found in virtually all cells and mediates the coupled influx of sodium,

potassium, and chlorine. The mechanism by which cell shrinkage activates NKCC1 is un-

known [30]. We hypothesized that T. serrulatus venom might impair pulmonary fluid

transport because it decreases α-ENaC and AQP5 expression, as well as increases NKCC1

expression. Although it has been demonstrated that AQP5 knockout mice show the same

pulmonary fluid transport as do control mice [31–33], it is possible that, in association with

altered sodium transporter expression, decreased AQP5 expression impairs pulmonary

fluid transport in severe scorpion envenomation.

In Brazil, it is common to give corticosteroids prior to the administration of anti-

venom [4]. A clinical study of pediatric patients with severe scorpion envenomation,

comparing those that did and did not receive a corticosteroid together with anti-

venom, showed that there were no differences between the groups in terms of mortality

or length of stay in the intensive care unit [34]. However, the corticosteroid group pa-

tients presented systemic manifestations (indicative of more severe envenomation) at

admission, which calls into question the conclusion drawn by the authors—that cor-

ticosteroid administration does not improve the evolution of cases of severe scorpion

envenomation [34]. Therefore, we tested whether dexamethasone has any regulatory ef-

fect on the expression of proteins in experimental envenomation. It has been demon-

strated that, in alveolar cells, there is an increase of the α-, β-, and γ-ENaC, as well as

Na,K-ATPase, after exposure to dexamethasone [35–38]. In the present study, dexa-

methasone administration prevented a venom-induced decrease in α-ENaC and a venom-

induced increase NKCC1 expression. However, we observed no difference between the

venom group and the dexamethasone + venom group in terms of α1-Na,K-ATPase

expression.

Various studies have shown that, in human and experimental scorpion envenomation,

there is inflammatory activation [17–20, 39]. Some authors suggest that, in the pres-

ence of systemic inflammation, cytokines mediate sodium transporter expression [40].

We investigated the effects of T. serrulatus venom on macrophage infiltration, TLR4

expression in the lung, and serum cytokines. TLRs are expressed in immune cells, such

as polymorphonuclear granulocytes, macrophages, dendritic cells, and certain epithelial

cells. Engagement of TLR4 initiates signaling through intracellular pathways that lead

to activation of transcription factors, including nuclear factor κ-B and interferon regu-

latory factor 3, that transcribe genes such as pro-inflammatory cytokines and other im-

munoregulatory molecules [25]. T. serrulatus venom induces production of inflammatory

mediators in peritoneal macrophages by interacting with TLR2 and TLR4 [41]. Mice inocu-

lated with T. serrulatus venom show increased perivascular infiltration of mononuclear

cells in lung tissue as soon as 15 min after injection [42]. In the present study, the number

of CD68-positive cells in the lung increased by 60 min after venom injection, and dexa-

methasone had no effect on cell infiltration. However, dexamethasone prevented the

venom-induced increase in TLR4 expression. In addition, rats inoculated with T. serrulatus

venom showed elevated serum levels of IL-6, TNF-α, and IL-10 by 60 min after envenom-

ation, and dexamethasone did not reduce cytokine concentrations to control group levels.

In our model, animals developed early hypotension, metabolic acidosis, and worsen-

ing of the PaO2/FIO2 ratio. Although we observed a decrease in blood pressure, there
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was no accompanying increase in heart rate, as would be expected. Other authors

found that heart rates decreased or not changed significantly after the administration of

scorpion venom [43, 44].

Conclusions
We have demonstrated that T. serrulatus venom impairs the pulmonary expression of

sodium and water transporters, as well as increase in inflammatory infiltration and

cytokine levels. Together with cardiovascular dysfunction, these initial events might be

responsible for the lung injury seen in scorpion envenomation. Our results suggest that

T. serrulatus venom and dexamethasone both regulate sodium transport and that

TLR4 is one of the pathways by which T. serrulatus venom regulates sodium transport. Fur-

ther preclinical and clinical studies are warranted in order to elucidate these mechanisms.
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