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Abstract

It was recently shown that acute respiratory distress syndrome (ARDS) mortality has not
been reduced in over 15 years and remains ~40 %, even with protective low tidal volume
(LVt) ventilation. Thus, there is a critical need to develop novel ventilation strategies that
will protect the lung and reduce ARDS mortality. Protti et al. have begun to analyze the
impact of mechanical ventilation on lung tissue using engineering methods in normal
pigs ventilated for 54 h. They used these methods to assess the impact of a mechanical
breath on dynamic and static global lung strain and energy load. Strain is the change in
lung volume in response to an applied stress (i.e., Tidal Volume-Vt). This study has yielded
a number of exciting new concepts including the following: (1) Individual mechanical
breath parameters (e.g., Vt or Plateau Pressure) are not directly correlated with VILI but
rather any combination of parameters that subject the lung to excessive dynamic strain
and energy/power load will cause VILI; (2) all strain is not equal; dynamic strain resulting
in a dynamic energy load (i.e., kinetic energy) is more damaging to lung tissue than static
strain and energy load (i.e., potential energy); and (3) a critical consideration is not just the
size of the Vt but the size of the lung that is being ventilated by this Vt. This key concept
merits attention since our current protective ventilation strategies are fixated on the
priority of keeping the Vt low. If the lung is fully inflated, a large Vt is not necessarily
injurious. In conclusion, using engineering concepts to analyze the impact of the
mechanical breath on the lung is a novel new approach to investigate VILI mechanisms
and to help design the optimally protective breath. Data generated using these methods
have challenged some of the current dogma surrounding the mechanisms of VILI and of
the components in the mechanical breath necessary for lung protection.

“Life leaps like a geyser for those who drill through the rock of inertia”

Alexis Carrel

Background
The mechanisms by which mechanical ventilation exacerbates the lung damage associ-

ated with the acute respiratory distress syndrome (ARDS) have been extensively stud-

ied ever since Webb and Tierney demonstrated that high inflation pressure caused

edema and that application of positive end expiratory pressure (PEEP) could protect
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the lung and prevent edema formation [1]. It is now known, in general terms, that the

mechanisms of this ventilator-induced lung injury (VILI) are alveolar overdistension

(volutrauma), alveolar instability leading to alveolar collapse and reopening with each

breath (atelectrauma), and the secondary inflammation caused by these mechanical in-

juries which is known as biotrauma [2]. While dozens of ventilator settings were de-

signed to block these three VILI mechanisms, with some studies demonstrating

reduced mortality [3, 4], however, a recent review showed that ARDS mortality remains

at ~40 % [5]. Although ARDS mortality is complex and the result of VILI is direct,

clearly there is a pressing need to “drill through the rock of inertia” and entertain novel

approaches to reduce ARDS mortality.

Dr. Burkhard Lachmann proposed in 1992 that the optimal lung protective strategy

would be to “open the lung and keep it open” [6]. He hypothesized that heterogeneous

lung inflation, which is a hallmark of ARDS pathology, plays a major role in driving

mechanical ventilation-induced progressive acute lung injury. The corollary to this hy-

pothesis is that keeping the lung open would result in a homogeneously ventilated lung,

minimizing VILI and reducing ARDS mortality. If the approach of opening the ARDS

lung and keeping it open can significantly reduce injury, then protective mechanical

ventilation should be applied early in patients at a high risk of developing ARDS, in an

attempt to “never let the lung collapse” and significantly reduce ARDS incidence [7].

Main Text
Dr. Gattinoni’s group applies engineering concepts as a novel approach to analyze the

pathologic impact of mechanical ventilation on normal pulmonary tissue and to determine

what adjustments in the mechanical breath can block progressive acute lung injury and thus

reduce ARDS incidence [8, 9]. In their most recent paper by Dr. Protti, their goal was to

identify the volumetric threshold for VILI and determine if PEEP was directly or indirectly

protective in normal pigs [9]. Unlike many experiments in which the role of tidal volume

(Vt), plateau pressure (Pplat), and PEEP were correlated with VILI, Dr. Protti analyzed the

mechanism of VILI under two main categories with two respective subcategories: (1) global

strain (dynamic and static strain) and (2) energy load (dynamic and static) within the volu-

metric constraints of the lung, which is the inspiratory capacity. Strain is the response to an

applied stress, which in the case of the lung are Vt and PEEP; thus, global strain is the result

of Vt + PEEP volume. Dynamic strain is the amount the volume change caused by the Vt

over the FRC, and static strain is the volume change from PEEP over the FRC. Global

energy load is a combination of the static component due to PEEP (conceptually equivalent

to potential energy) and the dynamic cyclic component due to the driving pressure defined

as Vt above PEEP (conceptually equivalent to kinetic energy).

Discussion
Pigs were ventilated by Protti et al. for 54 h with multiple combinations of dynamic

and static strain and dynamic and static energy load in three groups that were either

below, within, or above the normal range of inspiratory capacity. VILI was defined as

either death or development of pulmonary edema. Injury could manifest rapidly as

stress at rupture with massive pneumothorax, or more slowly as progressive edema. In

the Below group, there were no deaths or edema and only a slight reduction in oxygen-

ation and elastance, so VILI did not occur in this group with any ventilation strategy.
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In the Within group ventilated with a high dynamic strain, there was an increase in

edema, associated with a sharp deterioration of gas exchange and impaired lung me-

chanics, and 54 % of the animals died. Sixty-six percent of the pigs in the Above group

died of stress rupture with massive pneumothorax, without pulmonary edema, and

PEEP increased mortality at the same Vt.

The results from this study raise some very interesting and exciting concepts dealing

with how the parameters of the mechanical breath (i.e., airway pressures, volumes,

flows, and rates) injure or protect lung tissue and may help to elucidate the mecha-

nisms of VILI. In addition, the impact of these breath parameters are analyzed as the

stress delivered to the lung, and the response of the lung to this applied stress is mea-

sured as a strain. The study shows that if the stress is sufficient to exceed the inspira-

tory capacity of the lung, then stress failure occurs (i.e., pneumothorax); thus, in

ventilation within this anatomical threshold of the lung, the main mechanism of VILI is

dynamic strain. The unifying explanation is that the trigger for VILI is an excessive

energy/power load, which encompasses all of the mechanical breath parameters.

Important concepts drawn from the Protti et al. study, as they apply to our under-

standing of VILI mechanism, would include:

1. Individual mechanical breath parameters (e.g., Vt or Pplat) are not directly

correlated with VILI, but rather, any combination of parameters that subject the

lung to excessive dynamic strain and energy/power load will cause VILI.

2. Changing one single breath parameter, such as lowering Vt or Pplat, will not protect the

lung unless there is a concomitant reduction in dynamic strain and energy/power load.

3. If the inspiratory capacity is not exceeded, stress failure does not occur. Within this

inspiratory capacity, dynamic strain is most injurious, as compared with static

strain. Above the inspiratory capacity, the lung is exposed to stress failure.

4. All strain is not equal; dynamic strain resulting in a dynamic energy load (i.e.,

kinetic energy) is more damaging to lung tissue than static strain and energy load

(i.e., potential energy).

5. It is clear that the independent variable for VILI is dynamic strain (Vt), while PEEP

is only “protective” if it is associated with a lower Vt. PEEP can be harmful in

ventilation above the inspiratory capacity.

6. For a given stress, lung strain may be completely different depending on the size of

the lung. Thus, a given stress, which does not injure the normal lung, may cause

severe injury in ARDS where there is a significant loss of lung volume due to

atelectasis (i.e., “baby lung”).

7. A critical consideration is not just the size of the Vt but the size of the lung that is

being ventilated by this Vt. This key concept merits attention since our current

protective ventilation strategies are fixated on the priority of keeping the Vt low.

Yes, low Vt is important if there is significant lung collapse (i.e., increase strain for

any given stress); however, a large Vt will not cause tissue injury if the lung is fully

recruited, since there are 380,000,000 inflated alveoli to share the strain. The impact

of any given Vt can be assessed by changes in driving pressure calculated as the Vt/

lung compliance.

8. In ARDS, we must also consider the “inhomogeneity” factor. Unevenly distributed

volumes and pressures in the lung are known as stress concentrators because they
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induce focal stress/strain which can amount to approximately double that

computed for the whole lung. Thus, in the heterogeneous lung of an ARDS patient,

it is impossible to forecast whether a given “low” Vt will be safe. Further, the

repetitive transition between static and dynamic strain is an important energy load

factor given its potential to aggravate lung tissue stress/injury, especially in a

heterogeneous structure.

9. A given airway pressure may result in widely different transpulmonary pressure

(Ptp), which is the stress applied to the lung, depending on the relationship between

lung and chest wall elastance.

10.Driving pressure has been advocated a variable most related to VILI. However,

driving pressure should be considered in relation to chest wall elastance, lung size,

homogeneity, and gas flow rate. Depending on how variables may combine, the

same driving pressure may be lethal or innocent.

Our commentary will focus on how these new concepts on the mechanisms of

VILI-induced lung damage can help to interpret the results of other studies by

using an ARDS clinical trial and a clinically applicable animal ARDS model as

examples.

Recently, Amato et al. did a retrospective analysis on the data from the ARDSnet

low tidal volume study [10]. These original studies set the stage for the current

standard of care protective ventilation strategy of 6 cc/kg Vt and keep Pplat below

30 cm H20 and PEEP set on a sliding scale based on changes in oxygenation. Sur-

prisingly, Amato’s study showed that Vt, Pplat, and PEEP had no correlation with

patient mortality. What did correlate with mortality was the driving pressure—ex-

pressed as Vt/lung compliance. Thus, the individual parameters of the mechanical

breath cannot be used in a one-size-fits-all protective ventilation strategy but ra-

ther must be personalized and adaptively adjusted based on changes in patient’s

lung physiology. In the case of driving pressure, the change physiology is lung

compliance. Thus, if the ventilator is set to minimize dynamic strain and energy/

power load, which can be assessed by the driving pressure, VILI will be minimized

and outcome improved.

Kollisch-Singule et al. showed that preemptive application of airway pressure re-

lease ventilation (APRV) in a high-fidelity, clinically applicable, porcine ARDS

model was lung protective despite higher plateau pressure and tidal volumes, as

compared to a low Vt (LVt) ventilation strategy [11]. So, using the concepts of

VILI mechanism in the Protti paper [9], how can these results be explained? First,

the transpulmonary pressure (Ptp), and thus the lung stress, was similar between

the groups despite the fact that Pplat and Vt were higher in the APRV group

(Fig. 1). Therefore, the increased Pplat in the APRV group was transmitted as

pleural pressure and applied to the chest wall without an increase in dynamic

strain or energy/power load to the lung.

Conclusions
In conclusion, analyzing the impact of the mechanical breath on the lung using en-

gineering concepts is an exciting new approach to investigate the mechanisms of

VILI and to help design the optimally protective breath. This optimal breath must
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be personalized with the ability to be continually adjusted by changes in lung

pathophysiology, to adaptively keep the lung open and stable. The key to the opti-

mally protective breath is to minimize dynamic strain and energy/power load. As

long as these components are held in check, the lung will be protected from VILI.

Thus, high tidal volume or plateau pressures are safe as long as dynamic strain

and energy/power load are maintained in the safe range [10, 11]. The optimally

protective breath must be matched to the patient’s complex pathology taking into

account the compliance of the chest wall and the possible presence of inhomogen-

eity leading to stress concentrators. Improved understanding of how to match the

physics of the mechanical breath with the pathophysiology of the lung will ultim-

ately result in the optimally protective mechanical breath.

Fig. 1 The plateau pressure (black line at top of the red area curve) in LVt (a) is significantly lower than that
of APRV (b) yet the transpulmonary pressures (blue) are statistically similar between the groups. This
demonstrates that the increases in plateau pressure in APRV reflect and increase in pleural pressure (red)
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