
RESEARCH Open Access

Whole blood microRNA markers are
associated with acute respiratory distress
syndrome
Zhaozhong Zhu1, Liming Liang2,3, Ruyang Zhang1,4, Yongyue Wei1,4, Li Su1, Paula Tejera1, Yichen Guo1,
Zhaoxi Wang1, Quan Lu1, Andrea A. Baccarelli1, Xi Zhu5, Ednan K. Bajwa6, B. Taylor Thompson6, Guo-Ping Shi7

and David C. Christiani1,6*

* Correspondence:
dchris@hsph.harvard.edu
1Department of Environmental
Health, Harvard T.H. Chan School of
Public Health, 665 Huntington
Avenue, Boston, MA, USA
6Pulmonary and Critical Care Unit,
Department of Medicine,
Massachusetts General Hospital and
Harvard Medical School, Boston,
MA, USA
Full list of author information is
available at the end of the article

Abstract

Background: MicroRNAs (miRNAs) can play important roles in inflammation and
infection, which are common manifestations of acute respiratory distress syndrome
(ARDS). We assessed if whole blood miRNAs were potential diagnostic biomarkers for
human ARDS.

Methods: This nested case-control study (N = 530) examined a cohort of ARDS
patients and critically ill at-risk controls. Whole blood miRNA profiles and logistic
regression analyses identified miRNAs correlated with ARDS. Stratification analysis
also assessed selected miRNA markers for their role in sepsis and pneumonia
associated with ARDS. Receiver operating characteristic (ROC) analysis evaluated
miRNA diagnostic performance, along with Lung Injury Prediction Score (LIPS).

Results: Statistical analyses were performed on 294 miRNAs, selected from 754
miRNAs after quality control screening. Logistic regression identified 22 miRNAs from
a 156-patient discovery cohort as potential risk or protective markers of ARDS. Three
miRNAs—miR-181a, miR-92a, and miR-424—from the discovery cohort remained
significantly associated with ARDS in a 373-patient independent validation cohort
(FDR q < 0.05) and meta-analysis (p < 0.001). ROC analyses demonstrated a LIPS
baseline area-under-the-curve (AUC) value of ARDS of 0.708 (95% CI 0.651–0.766).
Addition of miR-181a, miR-92a, and miR-424 to LIPS increased baseline AUC to 0.723
(95% CI 0.667–0.778), with a relative integrated discrimination improvement of 2.40
(p = 0.005) and a category-free net reclassification index of 27.21% (p = 0.01).

Conclusions: miR-181a and miR-92a are risk biomarkers for ARDS, whereas miR-424
is a protective biomarker. Addition of these miRNAs to LIPS can improve the risk
estimate for ARDS.
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Background
Acute respiratory distress syndrome (ARDS) is a complex syndrome occurring in crit-

ically ill patients and is characterized as acute inflammation and infection caused by

direct and indirect injury to the lung. ARDS affects approximately 200,000 people an-

nually in the USA, carries a mortality rate of 40%, and is a major cause of intensive

care unit (ICU) morbidity and mortality worldwide [1]. ARDS is mainly initiated by
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neutrophils accumulation and activation in the lungs, such cells can release inflamma-

tory mediators and cytokines to damage pulmonary tissues [2, 3].

Importantly, the complex etiology and lack of reliable biomarkers have complicated

ARDS diagnosis and treatment. Many protein-based biomarkers have been identified

from plasma [4], but none have been translated to clinical diagnostic routines. More

comprehensive study designs are needed to identify new mediators for ARDS patho-

genic mechanisms [5]. Further, no previous studies have evaluated the potential or per-

formance of whole blood microRNAs (miRNAs) to diagnose ARDS.

miRNAs, a group of small non-coding RNAs, regulate gene expression by binding to

specific target sites on messenger RNA to either repress or degrade targets. Previous

studies have discovered important roles for miRNAs in many disorders, including in-

flammation and infection [6, 7]. Thus, miRNA expression patterns may be able to serve

as diagnostic biomarkers for better disease detection [8, 9]. Studies have suggested miR-

NAs are involved in ARDS development. In a rat model of ARDS, miRNA profiling of

lung tissue demonstrated altered expression of multiple miRNAs compared to control

tissues [10]. We recently demonstrated that whole blood miRNAs can be potentially

valuable for predicting ARDS 28-day mortality due to their related function in multiple

organ failure (MOF), which is a primary risk factor of ARDS patient mortality. Indeed,

a miRNA panel is comparable to APACHE III in mortality prediction ability [11].

Yet, to date, no study has tested whether whole blood miRNAs may serve as bio-

markers for ARDS risk. Whole blood offers advantages for miRNA profiling compared

to other tissue types because it contains rich immune cell- and tissue-specific miRNAs

with low risk of noise from additional serum or plasma isolation steps or sample con-

tamination [12]. Therefore, we compared miRNA expression in whole blood prepara-

tions from two large populations of ARDS patients and critically ill at-risk controls.

Methods
Study population and design

This nested case-control study was part of an ongoing Molecular Epidemiology Study

of ARDS (MEARDS) at Harvard Medical School that was initiated in 2000. MEARDS

has more than 4000 patients and includes both ARDS patients and at-risk controls who

were critically ill patients admitted to the ICU of Massachusetts General Hospital

(MGH; Boston, MA) or Beth Israel Deaconess Medical Center (BIDMC; Boston, MA)

[13, 14]. Commonly known ARDS risk factors and their definitions are listed in Add-

itional file 1: Table S1. Detailed inclusion criteria are described in the “Supplemental

Methods and Results” section in Additional file 1 and illustrated in Additional file 1:

Figure S1. All ARDS subjects met the Berlin diagnostic definition [15]: timing of ARDS

was within 1 week of a known clinical insult or new or worsening respiratory symp-

toms; chest imaging showed bilateral opacities (not fully explained by effusions, lobar/

lung collapse, or nodules); respiratory failure was not fully explained by cardiac failure

or fluid overload; and ARDS severity was based on PaO2/FiO2 ratio. Exclusion criteria

included ages younger than 18 years old, diffused alveolar hemorrhage or chronic lung

disease, which may mimic ARDS, and directive to withhold intubation. Patients with

neutropenia not secondary to sepsis and immunosuppression secondary to medication

or diseases such as HIV infection were excluded. Treatment with granulocyte colony-
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stimulating factor or inhibitors of tumor necrosis factor was also excluded [13]. Pa-

tients were enrolled in the study immediately after meeting all inclusion criteria [15].

Institutional review boards of MGH, BIDMC, and Harvard T.H. Chan School of Public

Health approved this study.

We used a two-phase study with a total of 530 participants (recruited during 2003–

2012), including 199 ARDS and 330 at-risk controls. One patient without information

was excluded (Fig. 1). The discovery population (n = 156) included 78 ARDS patients

(cases) and 78 at-risk patients (controls), matched by age (± 5 years) and sex. Twenty-

two miRNAs were used to build an ARDS risk factor panel that included one inde-

pendent validation cohort (n = 373) containing 121 ARDS cases and 252 controls.

RNA isolation

Peripheral whole blood from 530 participants was collected in Tri Reagent solution

(Molecular Research Center, Cincinnati, OH) within 24 h of participant enrollment and

stored at − 80 °C. Tri Reagent is a robust miRNA stabilization method for long-term

storage and can generate reproducible results without degradation [16]. Total RNA

containing small RNA was extracted from whole blood. RNA quality was assessed on

an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA), and RNA integrity

numbers (RIN) were reported. Total RNA with RIN of 6.5–10 was processed for com-

plementary DNA synthesis using TaqMan Megaplex RT primer pools A or B and then

Fig. 1 Study design of discovery cohort, validation cohort, and gene set enrichment analysis (GSEA). *One
control sample was excluded due to few detectable miRNAs. **Discovery cohort ARDS and at-risk controls
were matched by age (± 5 years) and gender
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amplified with Megaplex PreAmp primers (Applied Biosystems, Foster City, CA). One

control sample in the validation cohort was excluded due to few detectable miRNAs.

miRNA profiling

In the discovery phase, we used the TaqMan OpenArray Human MicroRNA Panel (Ap-

plied Biosystems) according to the manufacturer’s instructions and detected expression

of 754 human miRNA transcripts. After quality control screening, we selected 294 miR-

NAs for discovery cohort analysis. Twenty-two miRNAs were selected from the discov-

ery cohort for further validation in an independent validation cohort. In the validation

cohort, we used OpenArray QuantStudio system to customize miRNA expression ar-

rays (Applied Biosystems). Technical consistency of assays within and across cohorts

was also tested using three random samples.

Statistical analysis

We applied stringent quality control (QC) criteria for miRNA analysis in order to

maintain the confidence of statistical results: good amplification score > 1.1, Cq confi-

dence > 0.8, high expression (Ct < 30), and detectable expression in more than half of

the samples. We performed both univariate and multivariate logistic regression to iden-

tify miRNA candidates that were associated with ARDS status. Odds ratios (OR) and

95% confidence intervals (CI) were calculated. Discovery miRNA candidate selection

was based on the following criterion: fold change > 1.5 or < 0.67 from the logistic re-

gression model in at least one of four normalization methods [9]. Gene set enrichment

analysis (GSEA) was used to investigate if candidate miRNAs were significantly

enriched in the whole miRNA gene set [17].

To build the miRNA risk factor model, we used miRNAs that were validated in all

cohorts with the same effect directions, and we computed sensitivity, specificity, accur-

acy, and area-under-the-receiver operating characteristic-curve (AUC) to assess per-

formance of risk factors. To compare miRNA risk factors, we considered the base

model for ARDS risk factor assessment to include only Lung Injury Prediction Score

(LIPS) [18]. Based on our miRNA results, we included miR-181a, miR-92a, and miR-

424, in combination with the LIPS model, in a miRNA classifier for ARDS risk factor

evaluation. To further assess the incremental diagnostic power of those three miRNAs

when added to the baseline LIPS risk model, we computed integrated discrimination

improvement (IDI) and net reclassification index (NRI) (“Supplemental Methods and

Results” section in Additional file 1), which offer an intuitive way of quantifying im-

provement offered by new biomarkers [19].

Values of p < 0.05 or false discovery rate (FDR) q < 0.05 were considered significant.

All analyses were performed with R software (v.3.3.0) and Statistical Analysis System

software (v.9.3, SAS Institute).

Results
Demographic features and clinical variables of the discovery and validation cohorts are

presented in Additional file 1: Table S2. In all experiments, we distributed samples such

that age, sex, case-control status, and RNA quality were balanced with respect to the

day of purification and the day of analysis or plate number and were randomized within
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each day and plate. This aspect is important to reduce confounding effects from tech-

nical variation, such as plate-to-plate variation and purification differences [20].

miRNA screening and validation

In total, 754 miRNA transcripts were identified from the discovery cohort. We only in-

cluded 294 miRNAs that met our QC inclusion criteria to maintain robust statistical

results. Ultimately, 22 miRNAs were selected based on fold change as candidate risk

factors for ARDS from the logistic regression model (Table 1). Of the 22 miRNAs, 3

miRNAs—miR-181a, miR-92a, and miR-424—remained significant risk factors (OR >

1.0) or protective factors (OR < 1.0) for ARDS in the validation cohort after multiple

testing adjustment by FDR (Benjamini–Hochberg) (Table 1). From fixed effect meta-

analysis, 14 miRNAs appeared to be significant risk/protective factors for ARDS. Of

those 14 miRNAs, miR-181a, miR-92a, and miR-424 demonstrated the strongest associ-

ations with ARDS risk (p < 0.001) (Table 1).

miR-181a, miR-92a, and miR-424 were the three most significant miRNAs among all

22 miRNAs from the discovery cohort and remained significant in the validation cohort

and meta-analysis. Indeed, under the null hypothesis GSEA [17], miR-181a, miR-92a,

Table 1 miRNA associations with ARDS in discovery cohort, validation cohorts, combined cohorts,
and meta-analysis

Discovery cohort (n = 156) Validation cohort (n = 373) Meta-analysis (n = 529)

MicroRNA OR (95% CI) OR (95% CI) FDR q OR (95% CI) p

miR-424 0.52 (0.29–0.93) 0.78 (0.66–0.94) 0.022 0.77 (0.67–0.9) < 0.001

miR-92a 1.60 (1.11–2.31) 1.75 (1.26–2.43) 0.022 1.69 (1.32–2.17) < 0.001

miR-181a 1.75 (1.03–2.97) 1.76 (1.21–2.56) 0.037 1.68 (1.26–2.23) < 0.001

miR-331 1.67 (1.11–2.52) 1.69 (1.12–2.56) 0.097 1.74 (1.29–2.36) < 0.001

miR-29b 0.66 (0.44–0.99) 0.82 (0.68–0.99) 0.132 0.79 (0.67–0.93) 0.004

miR-1290 0.66 (0.41–1.08) 0.84 (0.72–0.98) 0.097 0.83 (0.73–0.95) 0.006

miR-155 1.57 (1.03–2.38) 1.40 (0.95–2.08) 0.195 1.32 (1.07–1.64) 0.009

miR-148a 0.64 (0.42–0.98) 0.92 (0.7–1.22) 0.511 0.78 (0.62–0.97) 0.023

miR-579 0.57 (0.33–0.97) 0.89 (0.71–1.11) 0.511 0.82 (0.69–0.97) 0.023

miR-1291 0.58 (0.39–0.85) 0.90 (0.73–1.11) 0.511 0.81 (0.68–0.98) 0.027

miR-744* 0.58 (0.38–0.88) 0.89 (0.7–1.13) 0.511 0.82 (0.68–0.99) 0.036

miR-1244 0.64 (0.43–0.95) 0.90 (0.74–1.08) 0.511 0.84 (0.72–0.99) 0.042

miR-486-3p 1.57 (1.02–2.4) 1.12 (0.82–1.53) 0.723 1.28 (1.01–1.63) 0.043

miR-642 1.50 (1.03–2.09) 1.07 (0.88–1.32) 0.723 1.18 (1–1.38) 0.047

miR-340 0.65 (0.44–0.95) 0.93 (0.76–1.15) 0.598 0.87 (0.75–1) 0.057

miR-20a 0.65 (0.43–0.98) 1.02 (0.74–1.41) 0.896 0.87 (0.76–1.01) 0.059

miR-21 0.66 (0.44–0.98) 0.98 (0.76–1.26) 0.723 0.87 (0.74–1.01) 0.067

miR-34a 0.53 (0.31–0.91) 0.95 (0.76–1.2) 0.598 0.85 (0.68–1.05) 0.132

miR-590-3P 0.57 (0.36–0.91) 1.00 (0.87–1.15) 0.896 0.91 (0.81–1.04) 0.165

miR-204 1.57 (1.03–2.38) 0.89 (0.71–1.12) 0.857 1.07 (0.89–1.28) 0.477

miR-493 0.63 (0.39–0.99) 1.16 (0.97–1.39) 0.511 1.03 (0.89–1.2) 0.662

miR-483-5p 0.56 (0.33–0.93) 1.17 (0.98–1.4) 0.481 1 (0.86–1.16) 0.997

Discovery screening based on OR > 1.5 or OR < 0.67. Meta-analysis was conducted based on fixed effect model
OR odds ratio, CI confidence interval, FDR false discovery rate
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and miR-424 were significantly overrepresented and enriched among the top six genes

on a global miRNA scale (Table 2, Additional file 1: Figure S4).

Sepsis and pneumonia stratification analysis

Sepsis and pneumonia are the two most common ARDS-predisposing clinical risks and

account for the highest percentage of risk in our study cohort. Thus, stratification by

sepsis and pneumonia can help validate biomarkers in different risk aspects [21]. Ac-

cording to the risk factor assessment from the validation cohort in Table 3, we selected

six miRNAs that showed significant associations with ARDS and performed stratifica-

tion analyses according to those with sepsis or pneumonia. Among patients with sepsis

or pneumonia, miR-424, miR-92a, and miR-181a remained significantly associated with

ARDS, reinforcing that the association was independent of sepsis or pneumonia.

miRNA diagnostic performance

Including only ARDS patients from the validation cohort, we performed receiver oper-

ating characteristic (ROC) analyses for risk evaluation of ARDS with the LIPS model

(AUC = 0.708; 95% CI 0.651–0.766), sepsis (AUC = 0.572; 95% CI 0.573–0.607), and

pneumonia (AUC = 0.695; 95% CI 0.651–0.740). AUC values of miR-181a, miR-92a,

and miR-424 were larger than that of sepsis, but smaller than AUC values for LIPS or

Table 2 Gene set enrichment analysis of 22 candidate miRNAs in whole miRNA set

MicroRNA Rank in gene list Enrichment score Core enrichment

miR-424 0 0.654 Yes

miR-181a 1 0.560 Yes

miR-1291 2 0.545 Yes

miR-744* 3 0.545 Yes

miR-331 5 0.513 Yes

miR-92a 6 0.480 Yes

miR-1244 7 0.446 Yes

miR-486-3p 8 0.383 Yes

miR-493 11 0.328 Yes

miR-204 13 0.323 Yes

miR-34a 18 0.298 Yes

miR-642 21 0.282 Yes

miR-29b 22 0.281 Yes

miR-483-5p 24 0.278 Yes

miR-340 28 0.259 Yes

miR-148a 29 0.257 Yes

miR-590-3P 33 0.253 Yes

miR-1290 47 0.211 No

miR-21 52 0.203 No

miR-579 76 0.151 No

miR-20a 86 0.138 No

miR-155 211 0.051 No

Seventeen of them found to be significantly overrepresented (FDR q < 0.001) in ARDS vs at-risk control. miR-181a, miR-
92a, and miR-424 are among the top enrich score miRNAs
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pneumonia. Importantly, specificity and accuracy of the three miRNAs were all larger

than those from LIPS, sepsis, or pneumonia (Additional file 1: Table S4), suggesting

that these miRNAs have better performance in correctly classifying at-risk controls.

Addition of any one of the three miRNAs significantly increased baseline LIPS AUC,

sensitivity, specificity, and accuracy (Table 4). When miR-181a, miR-92a, and miR-424

were computed together with the baseline LIPS model, AUC significantly increased to

0.723 (95% CI 0.667–0.778; p = 0.005) (Table 4). Computation of all six miRNAs (miR-

181a, miR-92a, miR-424, miR-1290, miR-29b, and miR-331) together with the baseline

LIPS model further increased AUC to 0.728 (95% CI 0.674–0.783; p = 0.001) (Table 4).

These observations suggest that measurement of three miRNAs (miR-181a, miR-92a,

and miR-424) from whole blood greatly increased the risk evaluation of ARDS in this

population, including AUC, sensitivity, specificity, and accuracy.

Relative IDI values for miR-181a, miR92a, and miR-424 were 1.36 (95% CI 0.14–2.58;

p = 0.029), 1.22 (95% CI 0.09–2.35; p = 0.034), and 1.43 (95% CI 0.12–2.74; p = 0.033),

respectively. Of note, combination of miR-181a, miR-92a, and miR-424 increased IDI

to 2.40 (95% CI 0.72–4.08; p = 0.005) and category-free NRI to 27.21% (95% CI 5.72–

48.70; p = 0.014) (Table 4).

Table 3 Stratification analysis of miRNA associations with ARDS in validation cohorts

Sepsis miR-424 miR-92a miR-181a

N OR (95% CI) p OR (95% CI) p OR (95% CI) p

At-risk control 197 Ref. Ref. Ref.

ARDS 112 0.78 (0.66–0.94) 0.007 1.75 (1.26–2.43) < 0.001 1.76 (1.21–2.56) 0.003

Pneumonia miR-424 miR-92a miR-181a

N OR (95% CI) p OR (95% CI) p OR (95% CI) p

At-risk control 114 Ref. Ref. Ref.

ARDS 102 0.74 (0.6–0.92) 0.007 1.56 (1.05–2.32) 0.029 1.59 (1.03–2.46) 0.035

Stratify on sepsis or pneumonia only. All models were adjusted for age and gender
OR odds ratio, CI confidence interval

Table 4 Diagnostic performance of sepsis/pneumonia model and miRNA combined model for
ARDS
Combined
cohort
(N = 373)

ARDS vs. at-risk controls

AUC (95% CI) Sensitivity, % Specificity, % Accuracy, % IDI (95%
CI)

p Category-free
NRI, % (95% CI)

p

LIPS model 0.708
(0.651–0.766)

64.35 50.81 56.85 Ref. Ref.

miR-181a
+ LIPS

0.719
(0.661–0.776)

65.03 56.82 59.48 1.36
(0.14–2.58)

0.029 15.24
(−6.38–36.87)

0.649

miR-92a
+ LIPS

0.716
(0.659–0.773)

64.85 56.73 59.37 1.22
(0.09–2.35)

0.034 8.96
(−12.69–30.61)

0.418

miR-424
+ LIPS

0.715
(0.659–0.771)

64.78 56.69 59.32 1.43
(0.12–2.74)

0.033 24.24
(2.71–45.76)

0.237

Extended
model 1a

0.723
(0.667–0.778)

65.31 56.96 59.67 2.40
(0.72–4.08)

0.005 27.21
(5.72–48.70)

0.014

Extended
model 2b

0.728
(0.674–0.783)

65.70 57.14 59.92 3.18
(1.28–5.09)

0.001 36.93
(15.58–58.28)

<0.001

AUC area under the curve, IDI integrated discrimination improvement, NRI net reclassification index, LIPS Lung Injury
Prediction Score
aExtend model 1: LIPS + miR-181a + miR-92a + miR-424
bExtend model 2: LIPS + miR-181a + miR-92a + miR-424 + miR-1290 + miR-29b + miR-331
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Discussion
ARDS is a life-threatening inflammatory disease of the lung. Although a mechanical

ventilation strategy has been shown to influence mortality in this syndrome, there is

currently no proven pharmacologic treatment despite more than 30 completed or on-

going clinical trials. The mortality rate of ARDS remains high [1, 22, 23]; therefore,

early diagnosis and prevention are essential. The LIPS model has been used to detect

potential risk factors for ARDS, using clinical predisposing conditions based on clinical

observations. While this method is appropriately sensitive, it may not accurately reflect

the pathophysiological process of ARDS [18].

To our knowledge, this study is the first to use whole blood samples from a large

population of ARDS patients and critically ill, at-risk controls and to use a discovery

and independent validation cohort study design with rigorous statistical analysis of a

high-throughput miRNA set. The primary selected 22 miRNAs from the discovery co-

hort were further validated in an independent cohort and with subsequent meta-

analysis. Such diligent analyses may offer an advantage for miRNA profiling and greatly

reduce risk of misrepresentation from miRNA expression noise that typically results

from additional serum or plasma isolation steps and sample contamination. Although

patient collection spanned 10 years, we carefully selected high-quality samples and con-

trolled all experiments by grouping patients into a randomly selected discovery cohort

and a validation cohort according to dates of sample collection. We used identical

amounts of RNA input in all experiments to control against bias caused by variation

due to different RNA input amounts. We also distributed samples such that age, sex,

case-control status, and RNA quality were balanced with respect to the day of purifica-

tion and the day of analysis or plate number and randomized within each day and plate

to reduce confounding factors from technical variation, such as plate-to-plate variation

and purification differences.

miRNAs have been used successfully as biomarkers for chronic diseases, such as pan-

creatic and gastric cancers [9, 24]. This study identified three promising miRNAs—-

miR-181a, miR-92a, and miR-424—that are associated with human ARDS. GSEA

confirmed that they were significantly overrepresented in ARDS cases compared to

controls in these study cohorts, although there is no evidence directly linking these

miRNAs to ARDS. However, multiple recent studies provide indirect evidence for the

miRNAs’ involvement in dysregulated ARDS signaling pathways [25–27].

Here, we report that miR-181a and miR-92a are associated with ARDS risk in all

tested cohorts and meta-analysis. These findings are consistent with prior studies in in-

flammation and endothelial cell injury, which are common in ARDS [28]. miR-181a is a

key regulator of T-cell development and T-cell receptor signaling threshold [25]. In-

creased miR-181a expression in mature T-cells augments cell sensitivity to peptide anti-

gens. Further, T-cell responses decline with age due to an age-associated defect in T-

cell receptor signaling, which is caused by increased expression of phosphatase 6 and

miR-181a. The miR-181 family is also upregulated in asthma airway inflammation [29]

and neutrophil regulation [30], which both play crucial roles in the pathophysiology of

ARDS [2].

miR-92a inhibits endothelial cell angiogenesis and impairs endothelial cell function

[26, 31–33]. miR-92a also targets Krüppel-like factor 2 (KLF2), KLF4, and sirtuin 1,

thereby promoting inflammatory responses [26, 33, 34]. Further, lung microvascular
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endothelium injury-associated pulmonary edema is a hallmark of ARDS [35, 36]. When

miR-92a is overexpressed, blood vessel growth and functional recovery of damaged tis-

sue are restricted [31], which may enhance the incidence of pulmonary edema and

ARDS.

In contrast, miR-424 was a protective factor for ARDS in our study (Table 1). miR-

424 is downregulated in pulmonary artery hypertension (PAH) via apelin and fibroblast

growth factor 2 signaling in pulmonary artery endothelial cells [27]. PAH is commonly

observed in ARDS patients, who can have hypoxemia that promotes pulmonary vaso-

constriction to give rise to PAH. Hypoxia-induced miR-424 plays an important role in

vascular remodeling and angiogenesis in endothelial cells [37]. Low oxygen levels affect

cells and tissues during wound healing as well as during pathological conditions, such

as stroke. As a consequence, miR-424 signaling is activated in endothelial cells to

stabilize hypoxia-inducible factors [37]. These prior studies support our finding that

miR-424 expression may exert a protective effect against ARDS.

Of note, sepsis and pneumonia had lower prevalence in at-risk controls than ARDS

subjects in this population. Thus, we conducted stratification analysis to prove that the

top three miRNAs (miR-181a, miR-92a, and miR-424) remained significantly associated

with ARDS regardless of sepsis and pneumonia imbalance between our two cohorts.

LIPS is currently considered a standard clinical prediction model and is associated with

ARDS risk and complications [18]. A recent study evaluating LIPS on ARDS develop-

ment showed LIPS has an AUC of 0.70 [38], which is consistent with our results [38].

All three miRNAs selected from our two cohorts had similar specificity and accuracy in

predicting ARDS to that of LIPS. Further, incorporation of these miRNAs with LIPS

further increased the potency and accuracy of ARDS risk estimate. Therefore, miRNAs

identified from this study may have incremental utility to that of LIPS for future ARDS

risk evaluation.

This study focused mainly on three miRNAs selected from the validation cohort.

However, that does not mean that the remaining 19 miRNAs identified in the discovery

cohort are irrelevant. Some of these miRNAs have been implicated in inflammatory sig-

naling pathways and may also be ARDS candidate risk factors. For example, miR-155

and miR-21 are functionally related and contribute to NF-κB signaling [39], an import-

ant pathway for innate and adaptive immunity and inflammation. miR-155 is also up-

regulated in asthma, and the miR-29 family is upregulated in adult lungs. Further, miR-

21 has been shown to play multiple roles in different pulmonary diseases, such as idio-

pathic pulmonary fibrosis and pulmonary arterial hypertension, by targeting several im-

mune receptors and cytokines, including IL-12 and SMAD7 [29]. Further investigation

is needed to inform the involvement of these miRNAs in ARDS, which might provide a

better understanding of mechanisms underlying the disease.

The miRNAs identified for ARDS risk were different from the ones we identified in

previous prior study [11]. ARDS patients have a rapid change in the syndrome progress,

from the initial pulmonary tissue damage and inflammation/infection to later wherein

some of them developed MOF. And miRNAs are functional. This fact explains why

miRNAs signal can be different under various disease biological conditions even with

the same phenotype. The miRNAs we found in the other study were mainly associated

with organ failure, whereas the miRNAs in current study were mainly associated with

endothelial cell damage and inflammatory response.
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However, we also acknowledge limitations of our study. First of all, our results were

only based on 294 (out of 754) miRNAs that passed stringent QC criteria. It is possible

that miRNAs did not pass QC are functionally related to ARDS. More studies, such as

miRNA injection in ARDS mouse model, are needed to proof their functionality. The

diagnostic power of our miRNAs might not be sufficiently strong. However, unlike

other similar studies [8, 24], our control subjects were at-risk patients who share more

features with ARDS cases, which may have reduced confounding variables compared to

the use of healthy controls. In addition, ARDS is considered a complicated syndrome

with multiple etiologies, so a single or a few miRNAs might not show strong signals for

all ARDS patients. This concept was recently confirmed in an ARDS randomized clin-

ical trial, which concluded that aspirin has no beneficial effect for ARDS prevention

[40]. Aspirin has direct effect only on platelet function-related mechanistic pathways

[41]. Although alteration in platelet function was found during ARDS development

[42], it was not the only mechanistic pathway. Also, our study was based on a single

geographic region—a geographically different, external cohort in a similar study setting

would be helpful to further validate our findings. In this study, miRNA target gene ex-

pression data are not available. Future research on such targets will be informative for

validating the functions of the identified miRNA in ARDS and provide more compre-

hensive understanding of mechanistic knowledge.

Conclusions
This study links whole blood expression of miR-181a, miR-92a, and miR-424 to

ARDS. Inflammatory response markers miR-181a and miR-92a were significantly el-

evated in ARDS patients, while pulmonary artery endothelial cell anti-inflammation

marker miR-424 was significantly reduced in ARDS patients. Further, expression

patterns of our miRNA biomarkers may provide an in-depth molecular understand-

ing of ARDS among at-risk patients beyond clinical factors, such as sepsis and

pneumonia. In addition, combining these miRNA biomarkers with the LIPS model

may further improve ARDS diagnosis.
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