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Abstract

Background: Increased vascular permeability is a key feature in the pathophysiology
of sepsis and the development of organ failure. Shedding of the endothelial
glycocalyx is increasingly being recognized as an important pathophysiological
mechanism but at present it is unclear if glypicans contribute to this response. We
hypothesized that plasma levels of glypicans (GPC) are elevated in patients with
sepsis.

Methods: Plasma GPC 1–6 levels were measured by ELISA in 10 patients with sepsis
and 10 healthy controls as an initial screening. Plasma GPC 1, 3, and 4 were further
measured in a cohort of 184 patients with a clinically confirmed infection. Patients
were divided into groups of those who had sepsis and those who had an infection
without organ failure. To determine whether plasma glypicans could predict the
development of organ failure, patients were further subdivided to those who
had organ failure at enrolment and those who developed it after enrollment.
The association of plasma GPC 1, 3, and 4 with organ failure and with various markers
of inflammation, disease severity, and glycocalyx shedding was investigated.

Results: In the pilot study, only GPC 1, 3, and 4 were detectable in the plasma of sepsis
patients. In the larger cohort, GPC 1, 3, and 4 levels were significantly higher (p < 0.001)
in patients with sepsis than in those with infection without organ failure. GPC 1, 3, and
4 were significantly positively correlated with plasma levels of the disease severity
markers C-reactive protein, lactate, procalcitonin, and heparin binding protein, and
with the marker of glycocalyx degradation syndecan 1. They were significantly
negatively correlated with plasma levels of the glycocalyx-protective factors
apolipoprotein M and sphingosine-1-phosphate.

Conclusions: We show that GPC 1, 3, and 4 are elevated in plasma of patients
with sepsis and correlate with markers of disease severity, systemic inflammation,
and glycocalyx damage.
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Background
Sepsis is an increasingly important health problem that continues to have high mor-

tality and morbidity [1]. The breakdown of endothelial barrier function, leading to

vascular leak, edema, and organ failure, is central to the pathophysiology of sepsis

[2, 3]. The endothelium is covered by a complex extracellular gel of both

membrane-bound and more loosely attached proteins and glycans which collectively

are referred to as the glycocalyx [4]. The glycocalyx has a number of important
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functions for vascular homeostasis. It acts as a sensor of shear stress, it provides re-

ceptor sites for a number of signaling molecules, it maintains an antithrombotic sur-

face, and by creating a negatively charged fiber matrix, it contributes to the barrier

function of the endothelium [5–7].

Proteins with glycosaminoglycan side chains, known as proteoglycans, make up

the foundation of the glycocalyx [5]. Most endothelial proteoglycans are secreted,

while syndecans and glypicans remain attached to the cell membrane [8]. The four

syndecans contain the glycosaminoglycan species heparan sulfate and sometimes

chondroitin sulfate and are attached to the cell surface by a transmembrane domain.

The six glypicans primarily contain heparan sulfate and are attached to the phospho-

lipids of the membrane via a glycosylphosphatidylinositol anchor [8].

Proteoglycans can be removed from the cell membrane in a process known as

shedding [9]. The shedding can be induced by pro-inflammatory factors from the

host [10] and from infecting pathogens [11]. Some bacteria also carry enzymes that

can directly shed glycocalyx components [12, 13]. Supporting a role for shedding of

the glycocalyx in the pathophysiology of the critically ill are observational studies

demonstrating plasma concentrations of syndecans are generally higher in

non-survivors than in survivors [14–16] and experimental studies showing increased

permeability for macromolecules following degradation of the glycocalyx [17, 18].

Whether glypicans are shed in conjunction with syndecans in sepsis is largely un-

known at present. To our knowledge only one study has measured glypican levels in

severe infections and found that glypican 3 concentrations were higher in patients

with acute respiratory distress syndrome (ARDS) than in those with severe pneumo-

nia [19]. The primary aim of this study was to determine whether plasma levels of

any of the six glypicans are associated with the presence and development of organ

failure in patients with infection. Some of the data presented in this manuscript has

previously been published as a poster abstract [20].

Methods
Patient enrollment and sample collection—pilot study

The aim of the pilot study was to determine which, if any of the six glypicans, are

detectable and elevated in the plasma of patients with sepsis. Plasma samples were

collected from ten patients who were admitted to the Clinic for Infectious Diseases

at Lund University Hospital (Lund, Sweden). Patients had confirmed sepsis as classi-

fied based on presence of systemic inflammatory response syndrome (SIRS) criteria,

the presence or absence of organ failure, and the final diagnosis, according to the

criteria proposed by the American College of Chest Physicians/Society of Critical

Care Medicine [21]. Informed consent was obtained as approved by the ethics com-

mittee of Lund University Hospital (Diarie number 2014/741). Plasma from ten

healthy controls was obtained with informed consent as approved by the ethics com-

mittee of Lund University Hospital (Diarie number: 2013/728).

Patient enrollment and sample collection—main cohort

The study design of the main cohort is summarized in a flow chart in Fig. 1. The

main cohort was taken from a prospective nonconsecutive convenience sample study
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of febrile adult patients with clinically suspected infection who were enrolled into

the study upon admission to the Clinic for Infectious Diseases at Lund University

Hospital (Lund, Sweden) between March 2006 to April 2008 [22]. Plasma samples

were collected upon enrollment as described previously, using sodium citrate as the

anticoagulant [22]. The protocol was approved by the ethics committee of Lund Uni-

versity Hospital (Diarie number 790/2005), and informed consent was obtained from

all patients or their close relatives. Plasma samples were available from 184 patients

with confirmed infection. This group of patients is hereafter referred to as the main

cohort. Patients were classified based on presence of systemic inflammatory response

syndrome (SIRS) criteria, the presence or absence of organ failure, and the final diagnosis,

according to the criteria proposed by the American College of Chest Physicians/Society of

Critical Care Medicine [21]. Because the Sepsis-3 criteria emphasize organ dysfunction in

sepsis [1], we separated the patients into two groups: (1) infection with organ failure (sep-

sis; n = 64) and (2) infection without organ failure (n = 120). In some analyses, we further

subdivided group 1 into two groups: (a) those that already had organ failure at the time of

enrollment and sample collection (n = 37) and (b) those that developed organ failure after

enrollment and sample collection (n = 27).

Glypican analysis

Plasma concentrations of glypican (GPC) 1–4 were determined using ELISA kits from

Cloud Clone Corp. GPC 5 and 6 were analyzed using ELISA kits from Cusabio Biotech.

Fig. 1 Flow chart describing the study design in the main cohort. The original study is described in [22]
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ELISA steps were performed according to the manufacturer’s directions. The standard

curve range for the GPC 3 ELISA was extended below the manufacturer’s recommen-

dation to 0.0375 ng/mL after validating that the linearity of the curve was preserved at

this concentration (not shown). The limit of detection (LOD) of each assay, as reported

by the manufacturer, was 0.32 ng/mL for GPC 1, 0.057 ng/mL for GPC 3, and 0.0142

ng/mL for GPC 4.

The majority of the values were above the LOD of each assay prior to multiplica-

tion by the dilution factor. For GPC 1, 31 (16.8%) of data points were below the

LOD; for GPC 3, no data points (0%) were below the LOD; and for GPC 4, 12 (6.5%)

of data points were below the LOD. Values below the LOD were not modified in any

subsequent analysis.

Measurement of other plasma markers

Plasma concentrations of syndecan (SDC) 1 were determined using an ELISA kit

from Diaclone according to the manufacturer’s directions. Heparin binding protein

(HBP), interleukin (IL)-6, procalcitonin (PCT), C-reactive protein (CRP) and lactate

[22], sphingosine-1-phosphate (S1P) [23], and apolipoprotein M (ApoM) [24] were

measured previously in these patients. Briefly, HBP was measured using an in-house

ELISA assay [25], IL-6 was measured by a commercial ELISA (Quantikine; R&D

Systems), procalcitonin levels were measured with an enzyme-linked fluorescent

immunoassay (Biomérieux), and C-reactive protein and lactate analyses were per-

formed on a Roche Hitachi Modular-P [22]. S1P was measured by liquid chromatog-

raphy coupled to mass spectrometry [23]. ApoM was measured using an in house

ELISA [24].

Statistical analysis

Analysis by the D’Agostino and Pearson K2 omnibus normality test found that plasma

GPC 1, 3, and 4 levels are not normally distributed (p < 0.01). Therefore,

non-parametric analyses were used in all cases. Concentrations of plasma GPC in sep-

sis and infection without organ dysfunction groups were compared by Mann-Whitney

test. Baseline variables were compared by Mann-Whitney test or chi-squared test as

appropriate. Receiver operating characteristic (ROC) curves were generated to com-

pare patients who developed organ dysfunction to those who did not.

To adjust for confounding variables, multivariate logistic regression was performed

as follows. Potential confounding variables were first compared between groups by a

univariate analysis, described in Table 1. Those with p values below the chosen

threshold of 0.25 were included in the initial model. To reduce the number of vari-

ables in the model, a backward elimination approach was used. Variables were re-

moved from the model one by one and those that did not change the parameter

estimate of the glypican in question by more than 15% were removed from the

model, leaving only the greatest confounding variables. Then, variables that had ini-

tially been excluded from the model were then added one by one and included only

if they changed the parameter estimate of the glypican in question by more than

15%. Glycocalyx-related factors ApoM, S1P and SDC1 were added to the final model

to determine whether they also have any confounding effects.
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Where indicated, p-values were multiplicity adjusted using the indicated method.

P-values below 0.05 were considered significant. Data were analyzed using R (version

3.5.1) for multivariate logistic regression, and using Graphpad Prism (version 7) for all

other analyses.

Results
Pilot measurement of GPC 1–6

In a pilot experiment, plasma concentrations of GPC 1–6 were measured in the plasma of

10 patients with sepsis and 10 healthy controls. Although GPC 5 expression is largely

brain-specific and GPC 2 expression is largely absent from adults [26], sepsis can com-

promise blood brain barrier function [27] and can sometimes induce expression of fetal

isoforms of proteins [28]. Therefore, we considered it prudent to first measure the plasma

concentration of all six glypicans. Plasma concentrations of GPC 1, 3, and 4 were higher

in sepsis patients than in healthy controls (Additional file 1: Figure S1) while GPC 2, 5,

and 6 were below the detection limit of the assays in all patients (not shown). Based on

these results, GPC 1, 3, and 4 were chosen for further analysis in the main cohort of 184

patients with sepsis (n = 64) or with infection without organ dysfunction (n = 120).

Baseline characteristics of the Lund cohort

Baseline characteristics of the cohort were compared between the groups and are pre-

sented in Table 1. Groups differed significantly in their median age, site of infection, in-

fectious agent, and various laboratory variables.

Table 1 Patient characteristics at time of blood sampling (baseline)
Organ failure (n = 64, 35%) No organ failure (n = 120, 65%) p value*

Age, median (IQR) 65 (54–76) 53 (36–71) 0.005

Male, n (%) 38 (59%) 55 (46%) 0.080

Site of infection, n (%)

Respiratory tract 15 (23%) 63 (53%) < 0.001

Urinary tract 19 (29%) 22 (18%) 0.078

Skin/soft tissue 14 (22%) 16 (13%) 0.135

Other 16 (26%) 19 (16%) 0.131

Infection agent, n (%)

Gram positive bacteria 23 (36%) 13 (11%) < 0.001

Gram negative bacteria 19 (30%) 22 (18%) 0.078

Other bacteria 3 (5%) 12 (10%) 0.210

Virus 1 (2%) 37 (31%) < 0.001

Unknown agent 18 (28%) 36 (30%) 0.790

Laboratory variables at baseline, median (IQR)

WBC (×109 cells/L) 12 ± (6–19) 11 (8–14) 0.490

Temperature (°C) 38.9 (38.0–39.6) 38.5 (38–39) 0.018

Pulse (beats per minute) 105 (90–120) 90 (80–102) < 0.001

Lactate (mM/L) 1.6 (1.2–2.4) 1.0 (0.8–1.4) < 0.001

CRP (mg/L) 164 (107–235) 77 (26–182) < 0.001

IL-6 (pg/mL) 493 (106–3300) 0 (0–73) < 0.001

PCT (μg/L) 5.8 (1.5–15.6) 0.12 (0.05–0.5) < 0.001

*Groups were compared by chi-square test (categorical variables) or by Mann Whitney U test (continuous variables)
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Plasma concentrations of GPC 1, 3, and 4 in the Lund cohort

GPC 1, 3, and 4 levels were measured by ELISA in the plasma of the 184 patients in

the Lund cohort. Patients with sepsis had higher plasma levels of GPC 1 (28 [18–36]

ng/mL vs 19 [14–26] ng/mL; p < 0.001), GPC 3 (2.8 [1.9–3.7] ng/mL vs 1.7 [1.3–2.3]

ng/mL; p < 0.001), and GPC 4 (4.3 [2.6–7.8] ng/mL vs 1.7 [1.1–2.6] ng/mL; p < 0.001)

compared to patients with infection without organ failure (Fig. 2). In order to adjust for

potential cofounding variables, a logistic regression model was built for each glypican

using a backward elimination method to reduce the number of variables, using the

presence of organ failure as the dependent variable. Variables with no confounding

Fig. 2 Elevated plasma GPC1, 3, and 4 levels are associated with sepsis. a GPC 1, b GPC 3, and c GPC 4
levels were measured by ELISA in 184 patients with infection who were divided into groups based on the
presence or absence of any organ failure. Differences between these groups were determined by
Mann-Whitney test
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effect were removed and the final models are summarized in Table 2. GPC 1 (odds ra-

tio [OR] = 1.07 [1.03–1.10]; p < 0.001), GPC 3 (OR = 1.79 [1.22–2.73]; p = 0.004), and

GPC 4 (OR = 1.45 [1.17–1.86]; p = 0.002) all remained significantly associated with sep-

sis even when adjusted for these confounding variables.

Association of plasma GPC 1, 3, and 4 with the development of organ failure

To determine whether elevated plasma glypican levels could predict the development

of organ failure, patients in the sepsis group were further subdivided into two

groups: (a) patients who already had organ failure at the time of enrollment and

plasma sampling and (b) patients who developed organ failure after enrollment and

plasma sampling, and these groups were compared to patients with infection without

organ failure. Plasma GPC 3 and 4, but not GPC 1, were significantly elevated in pa-

tients who developed organ failure after enrollment compared to those who never

developed organ failure (Fig. 3). Receiver operating characteristic (ROC) curves indicated

that plasma GPC 1 (area under curve [AUC] = 0.63 [0.50–0.76]; p = 0.035), GPC 3

(AUC = 0.66 [0.53–0.78]; p = 0.011), and GPC 4 (AUC = 0.77 [0.66–0.68]; p < 0.001)

had a moderate predictive value for the development of organ failure in patients who

did not already have organ failure at enrollment (Fig. 3).

To adjust for potential confounding variables, a logistic regression model was

built for each glypican as described before, with the development of organ failure as

the dependent variable, excluding patients who already had organ failure at

enrollment (Table 2). GPC 1 (odds ratio [OR] = 1.07 [1.02–1.13]; p = 0.008), GPC 3

(OR = 1.91 [1.22–2.09]; p = 0.005), and GPC 4 (OR = 1.39 [1.14–1.84]; p = 0.006) all

were significantly associated with the development of organ failure when adjusted

for confounding variables.

Association of GPC 1, 3, and 4 with makers of inflammation and disease severity

Together these results indicate that a severe state of inflammation is associated with

higher plasma levels of GPC 1, 3, and 4. Therefore, we examined whether plasma

GPC 1, 3, and 4 levels are associated with other markers of inflammation and disease

Table 2 Multivariate logistic regression analysis of the association of plasma GPC 1, 3, and 4 with
the presence of organ failure and progression to organ failure

Dependent variable Independent variables
in final model

Variable
of interest

Coeff. Odds
ratio

95% confidence
intervals

p value

Any organ failure GPC1 +WBC + CRP +
IL-6 + Gram positive

GPC 1 0.0631 1.065 1.032–1.103 < 0.001

GPC3 + IL.6 + PCT + Virus GPC 3 0.584 1.790 1.215–2.727 0.004

GPC4 + temp + Lactate
+ PCT

GPC 4 0.368 1.445 1.171–1.858 0.002

Development of
organ failure

GPC1 + temp + CRP +
IL.6 + Gram Positive

GPC 1 0.0678 1.070 1.021–1.129 0.008

GPC3 + PCT + Gram
Positive + Virus

GPC 3 0.645 1.906 1.219–3.089 0.005

GPC4 + temp + Lactate GPC 4 0.332 1.393 1.147–1.842 0.006

Coeff. Coefficient (parameter estimate)
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severity across the whole cohort (Table 3). Plasma GPC 1, 3, and 4 were all signifi-

cantly positively correlated with plasma levels of lactate and PCT. Only GPC 3 and 4

were significantly correlated with CRP and IL-6. Plasma heparin binding protein

(HBP), a predictive marker of the development and severity of sepsis [29], was also

significantly correlated with plasma levels of GPC 1, 3 and 4.

Fig. 3 Plasma glypicans are predictive of the development of organ dysfunction. Patients were divided into
groups of those who developed organ failure after enrollment, those who never developed organ failure,
and those who already had organ failure on enrollment. Plasma levels of a GPC 1, b GPC 3, and c GPC 4
were compared between groups using a Kruskal-Wallis test followed by Dunn’s multiple comparisons test.
ROC curves were generated to examine the ability of each glypican to predict the development of organ
failure in patients who did not already have organ failure upon enrollment. Area under the curve (AUC) and
95% confidence intervals are indicated on each graph

Fisher et al. Intensive Care Medicine Experimental             (2019) 7:2 Page 8 of 13



GPC 1, 3, and 4 and glycocalyx shedding

Because inflammatory conditions, including sepsis, are associated with massive shed-

ding of the glycocalyx from endothelial and other cell surfaces, we examined whether

GPC 1, 3, and 4 shedding may occur in conjunction with the shedding of other

glycocalyx components (Table 2). Indeed, plasma levels of SDC 1 were strongly posi-

tively correlated with GPC 3 and 4, but not GPC 1. Additionally, plasma GPC 1, 3,

and 4 were strongly correlated with each other, suggesting that they may be shed to-

gether as part of a mass shedding of the glycocalyx. The signaling molecule

sphingosine-1-phosphate (S1P) and its main carrier protein apolipoprotein M

(ApoM) are known to exert protective and regenerative effects on the glycocalyx

[30]. Plasma levels of S1P were significantly negatively correlated with GPC 1 and 4,

and plasma levels of ApoM were significantly negatively correlated with GPC 3 and

4, suggesting that a decrease of plasma levels of protective S1P/ApoM can be associ-

ated with GPC shedding. When these glycocalyx-associated variables were added to

the logistic regression models generated previously, they did not greatly change the

models (not shown) suggesting that they do not have a confounding effect on the as-

sociation of plasma glypicans with organ failure.

Discussion
In this study, we examined whether glypicans are shed during sepsis and whether

they are associated with the development of organ failure. So far, studies of glycoca-

lyx shedding in sepsis and inflammatory conditions have focused largely on synde-

cans, hyaluronan, and heparan sulfate [10]. The four syndecans have been

systematically measured in the plasma of intensive care unit patients and showed

that only syndecan-1 and 3 are elevated compared to healthy controls [14]. To our

Table 3 Correlation of plasma GPC 1, 3 and 4 with plasma levels of markers of inflammation and
disease severity, and with proteins associated with the glycocalyx

GPC 1 GPC 3 GPC 4

Spearman R p value* Spearman R p value* Spearman R p value*

Disease severity markers

HBP 0.20 0.019 0.41 0.001 0.49 < 0.001

WBC − 0.09 0.38 0.09 0.38 0.13 0.07

CRP − 0.07 0.38 0.30 0.001 0.44 < 0.001

IL-6 0.18 0.056 0.37 0.001 0.47 < 0.001

Lactate 0.24 0.005 0.33 0.001 0.42 < 0.001

PCT 0.22 0.015 0.40 0.001 0.64 < 0.001

Glycocalyx components

SDC 1 0.16 0.061 0.35 0.001 0.38 < 0.001

GPC 1

GPC 3 0.46 0.002

GPC 4 0.25 0.002 0.56 0.001

Glycocalyx protective proteins

S1P − 0.19 0.037 − 0.04 0.57 − 0.27 < 0.001

ApoM − 0.10 0.056 − 0.39 0.001 − 0.54 < 0.001

*p values were determined by non-parametric Spearman correlation and adjusted for multiple comparisons by the
Holm-Sidak method
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knowledge, a similar systematic study of glypican levels in plasma has never been

carried out. In this study, we first measured all 6 glypicans in plasma of patients with

sepsis. Our finding that three of the glypicans, GPC 1, 3, and 4, are elevated in the

plasma of sepsis patients indicates that these components of the glycocalyx may be

involved in the pathophysiology of sepsis. Additionally, we found that GPC 1, 3, and

4 were elevated in patients who later developed organ failure, indicating that their

increase in plasma is not a consequence of organ failure, but rather a preceding

event.

A likely source of elevated GPC 1, 3, and 4 levels in sepsis is from the endothelial

cell surface. Although all glypican expression decreases significantly in adulthood

[31], GPC 1, 3, and 4 are still expressed in several organs and tissues in adults [26]

and have been detected on the endothelium [32, 33]. The glycocalyx is shed exten-

sively from the endothelium in sepsis and several of its components are found in the

plasma during inflammatory conditions [10]. Alternately, mature monocyte-derived

dendritic cells express GPC 3 while monocytes express GPC 4 [34]. Whether glypi-

cans are shed from these cells in inflammatory conditions is unknown, but it is pos-

sible this could contribute to elevated GPC 3 and 4 in plasma. Glycocalyx

components can also be shed from other cell types, including epithelial cells and fi-

broblasts, in response to inflammation and cell stress [35]. Since GPC 1, 3, and 4 ex-

pression is found in many organs [26], it is also possible that some of the elevated

GPC 1, 3, and 4 is derived from other cell types and has diffused into the blood.

Shedding of glycocalyx components can occur in various ways [4]. Syndecans, as

transmembrane proteins, can only be released by proteolytic cleavage. Heparan and

chondroitin sulfate can be shed along with a proteoglycan core protein or can be re-

moved by heparanases and chondroitinases. Mechanisms of glypican shedding are less

well studied. In theory, glypicans can be released by three different mechanisms of

shedding. First, glypicans are anchored to the cell membrane via a glycosylphosphatidy-

linositol (GPI) anchor, and so they can be shed from the membrane by phospholipases

that cut the GPI moiety, freeing the whole protein core and the heparan sulfate chains

from the membrane [36]. Phospholipase activity is altered in the plasma in sepsis [37,

38] and several bacteria can secrete phospholipases that could potentially sever the GPI

anchor [39] so this shedding mechanism could be relevant in sepsis.

Glypicans can also be cleaved proteolytically by furin-like convertases [40]. Furin

levels are unchanged in sepsis [41] so this mechanism of shedding is less likely. How-

ever, endoproteolytic cleavage of glypicans also occurs intracellularly prior to glypican

trafficking to the cell surface [42]. This results in an N-terminal domain that is linked

to the membrane-associated C-terminal domain only by disulfide bridges [40, 42]. Di-

sulfide bonds are highly susceptible to breakage by reactive oxygen species (ROS) dur-

ing changes in oxidative conditions [43], which could lead to the release of glypican

N-terminal domains from the cell surface, leaving the C-terminal domain, which con-

tains the heparan sulfate chains [40], still attached to the membrane. Sepsis is associ-

ated with massive increases in ROS and changes in the redox state of the blood and

cells [44], and so this shedding mechanism could also be relevant in sepsis. Measure-

ment of plasma glypicans can therefore potentially provide information about

phospholipase- and ROS-mediated glycocalyx damage, which is not available from

measurement of syndecan, hyaluronan or heparan sulfate levels.
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The strengths of this study lie in our measurement of different glypican species to

determine the relevant players in sepsis. We used commercial ELISA kits and meas-

urement was done while blinded to the clinical outcomes of the patients. Addition-

ally the cohort was fairly large and the patients had a wide range of clinical

diagnoses and disease severities. A limitation of this study is that we were not able

to distinguish between glypicans produced by the endothelium or by other cells.

Additionally we did not examine whether increased plasma glypican levels are due to

glycocalyx shedding, which may compromise endothelial barrier function, or

whether they simply reflect increased turnover of the glycocalyx with no effect on

barrier function. Recent experimental data from mice suggests that sepsis both in-

duces shedding and impairs regeneration of the glycocalyx [45]. Lastly, the glypican

ELISAs used polyclonal antibodies to the whole glypican protein, making it impos-

sible to distinguish between glypicans shed by cleavage of the GPI anchor or the di-

sulfide bridges. The development of ELISAs specific to the different cleavage

products would be required to determine which form of each glypican is present in

plasma and to indicate which shedding mechanisms are relevant during sepsis.

Conclusions
We report for the first time that glypican 1, 3, and 4 levels are elevated in the plasma

of patients with sepsis compared to those with infection without organ failure. GPC

1, 3, and 4 levels are associated with markers of inflammation and disease severity,

and with plasma levels of other glycocalyx-related proteins. A greater understanding

of glypican shedding in sepsis could provide insights into the mechanisms that lead

to sepsis-associated glycocalyx damage.
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