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Abstract

Mechanical ventilation [MV] is a life-saving technique delivered to critically ill patients
incapable of adequately ventilating and/or oxygenating due to respiratory or other
disease processes. This necessarily invasive support however could potentially result
in important iatrogenic complications. Even brief periods of MV may result in
diaphragm weakness [i.e., ventilator-induced diaphragm dysfunction [VIDD]], which
may be associated with difficulty weaning from the ventilator as well as mortality.
This suggests that VIDD could potentially have a major impact on clinical practice
through worse clinical outcomes and healthcare resource use. Recent translational
investigations have identified that VIDD is mainly characterized by alterations
resulting in a major decline of diaphragmatic contractile force together with atrophy
of diaphragm muscle fibers. However, the signaling mechanisms responsible for
VIDD have not been fully established. In this paper, we summarize the current
understanding of the pathophysiological pathways underlying VIDD and highlight
the diagnostic approach, as well as novel and experimental therapeutic options.
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Background
Invasive mechanical ventilation (MV) is a life-saving procedure applied to critically ill

patients to achieve adequate pulmonary gas exchange and unload excessive respiratory

muscle work. Observational studies report that the use of mechanical ventilation has

led to a decrease in the mortality rate of critically ill patients [1–3].

Nevertheless, and based on the advances in the understanding that mechanical venti-

lation itself can cause and potentiate lung injury [4, 5], translational research has focused

on ventilatory strategies and adjunctive measures aimed at mitigating this so-called

ventilator-induced lung injury (VILI) [6].

Recently, a similar concern has emerged with regard to the potential adverse effects

of invasive mechanical ventilation on the respiratory muscles. This entity was originally
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termed ventilator-induced diaphragmatic dysfunction (VIDD) [7], although it may also

involve other respiratory muscles. Both animal [8, 9] and recent human [10, 11] studies

have demonstrated that complete diaphragm muscle unloading or inactivity during

invasive MV induces a rapid and profound loss of diaphragm muscle force-generating

capacity. In 2008, it was [12] demonstrated that VIDD occurs in critically ill patients

and is characterized by marked diaphragm atrophy of both slow-twitch and fast-twitch

fibers, with evidence of oxidative stress in addition to proteolysis.

It is well known that muscle dysfunction in critically ill patients defined as ICU-

acquired weakness is associated with weaning failure and unfavorable outcomes in

critically ill patients [13, 14]. However, it remains unclear whether the specific changes

in the diaphragm caused by mechanical ventilation significantly impact clinical out-

comes. A recent study [15] confirmed the results of prospective studies that associated

VIDD with difficulty weaning and poor clinical outcomes. The authors also found that

the development of a decreased diaphragm thickness was associated with a lower daily

probability of liberation from ventilation adjusted hazard ratio (0.69; 95% confidence

interval (CI), 0.54–0.87; per 10% decrease), prolonged ICU admission (adjusted

duration ratio, 1.71; 95% CI, 1.29–2.27), and a higher risk of complications (adjusted

odds ratio, 3.00; 95% CI, 1.34–6.72).

Currently, VIDD represents one of the most challenging fields within translational

research applied to critically ill patients. This review provides the knowledge necessary

for intensivists to better understand the signaling mechanisms responsible for VIDD, as

well as summarizes the development of diagnostic bedside tools. Based on these

findings, future therapeutical approaches may have the ability to prevent VIDD and to

improve weaning success as well as other relevant clinical outcomes.

Epidemiology of diaphragm dysfunction in mechanically ventilated patients
Multiple recent studies have shown that VIDD is reported in up to 53% of mechanically

ventilated patients within 24 h of intubation. An additional 26% may develop VIDD

while on mechanical ventilation during their stay in the intensive care unit (ICU).

In the literature, the variations observed in the incidence of this complication are

based fundamentally on the diagnostic tool used. The assessment of the transdiaphrag-

matic twitch pressure (PdiTw) generated in response to bilateral anterior magnetic

phrenic nerve stimulation (BAMPS) is an objective, nonvolitional measurement which

represents the gold standard technique used to specifically assess diaphragm strength.

According to several observational studies, mechanically ventilated patients in the ICU,

on average, generate a PdiTw that is only 20% of normal [16]. The use of ultrasono-

graphy as a diagnostic tool is easier in everyday practice when compared to performing

a PdiTw, and it is becoming an increasingly popular alternative method for the diagno-

sis of VIDD [17]. Additional studies have confirmed that around 60 to 80% of mechan-

ically ventilated patients manifest clinically significant diaphragm dysfunction as

evaluated by bedside diaphragmatic ultrasound [18–20]. Overall, a recent study

indicates that diaphragm weakness is present twice as often as limb weakness in

critically ill patients [21, 22].

The potential improvement in the outcome that might be obtained by implementing

prevention or therapeutic strategies for diaphragm atrophy caused by ventilation is

therefore also uncertain.
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Pathogenic mechanisms underlying ventilator-induced diaphragm
dysfunction
Most studies show that VIDD occurs in a progressive, time-dependent manner

[11], although its degree is influenced by different MV modes and other clinical

variables [23, 24].

The molecular mechanisms underlying VIDD currently represents one of the more

attractive fields of translational research in critically ill patients. We summarize some

of the key discoveries that may provide a unified mechanistic framework for under-

standing the pathogenesis of VIDD (Fig. 1).

The mechanical properties of diaphragm muscle fibers are characterized by the

relationship between cytosolic-free calcium, cross-bridge attachment/cross-bridge

cycling rate, and sarcomere length [25]. Any factor that influences one or more of these

variables can impact diaphragm muscle force generation.

Nonetheless, it seems likely that the cause of MV-induced diaphragm contractile

dysfunction is multiplicative and includes oxidative modifications to contractile

proteins resulting in depressed fiber sensitivity to calcium, protease activation leading

to sarcomere disruption, and a loss of myosin heavy chain protein.

Mitochondrial oxidative stress (MOS)

Overall, we can consider that VIDD is characterized by a disbalance in protein homeosta-

sis defined as a decrease in diaphragm protein synthesis and an increase in diaphragm

protein degradation. The activation of catabolic pathways, induced in the diaphragm

under mechanical ventilation, occurs in the short-term under controlled modes of

Fig. 1 Summary of the current understanding of the molecular pathways contributing to ventilator-induced
diaphragm dysfunction (VIDD) in critically ill patients. As shown, different conditions can lead to diaphragm
atrophy via an imbalance between proteolysis and protein synthesis [11, 14], whereas remaining muscle
proteins may be impaired by enhanced oxidation and dephosphorylation [15–17]. Inflammation and
oxidative stress are proposed to be the major drivers of these impairments [17]. In addition, certain drugs
can impair neural drive and excitation-contraction coupling
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mechanical ventilation [26]. This appears to be related to an upregulation of the oxidative

stress-mediated ubiquitin–proteasome pathway that would lead to an increase in protein

degradation and thus atrophy.

Therefore, mitochondrial oxidative stress (MOS) may play an integral role in

MV-induced atrophy of the diaphragm by inducing catabolism [27, 28].

The force component of VIDD can also be affected by MOS in the following two

ways: firstly, by producing free radicals that can induce a post-translational modifi-

cation of muscle proteins [e.g., oxidation] and, hence, alter their structure and function,

specifically reducing the calcium sensitivity of myofilaments [29], and secondly, MOS

can cause a metabolic switch, by reducing mitochondrial oxidative phosphorylation and

increasing glycolysis [30]. The lipid accumulation seen in diaphragms under mechanical

ventilation [31] could trigger important metabolic pathways as an accelerated glycolysis.

This allows for more intermediate metabolites to be converted into fatty acids and so

the decreased breakdown of fatty acids due to altered mitochondrial function. In fact,

lipotoxicity could serve as a stimulus to VIDD, but further studies are required to

determine if these are the triggers or the consequence of MOS.

Autophagy

Autophagy is a catabolic process that degrades cytosolic proteins and organelles using

lysosomal proteases. More specifically, lysosomal proteases (i.e., cathepsins) have the

biological function of removing both organelles and nonmyofibril cytosolic protein

aggregates [32]. During autophagy, targeted cytosolic components are encapsulated into

a double-membrane vacuole called the autophagosome. When complete, the auto-

phagosome moves through the cytosol to the lysosome where the contents of the

autophagosome are degraded.

A recent study found that prolonged mechanical ventilation increases the expression

of key autophagy proteins [e.g., ATG5, ATG7, and beclin 1] and the number of auto-

phagosomes in the human diaphragm [33]. Furthermore, emerging evidence reveals an

increase in autophagy biomarkers in rodent diaphragms following 8–18 h of controlled

mechanical ventilation [34, 35].

However, it is not clear whether autophagy is an effector of VIDD, or a protective

mechanism that may actually offset VIDD [36, 37]. Critically ill patients have been

shown to have both impaired autophagic vacuole formation and mitophagy in their

skeletal muscles, resulting in a reduced clearance of proteins that result from cellular

damage [38]. On the other hand, several experimental studies have shown a reduction

of VIDD by enhanced autophagic pathways. These include fragmentation of intermyo-

fibrillar mitochondria as an early event in a mouse model of VIDD [39], and stimulation

of autophagy with n-acetylcysteine or rapamycin [40]. Mechanical ventilation-associated

increases in autophagy may actually help to clear cells of dysfunctional mitochondria and

thereby improve muscle function, as has been shown to be the case in other murine

models of muscle disease [41].

Calpains

Calpains are cysteine proteases that promote muscle atrophy by cleaving over 100 dif-

ferent cellular proteins, and the two ubiquitous calpains located in skeletal muscle are
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calpain I and II [42]. Numerous studies reveal that calpain cleavage of Z line-associated

proteins (i.e., titin and nebulin) is responsible for the release of myofilament proteins

that are then degraded by the ubiquitin-proteasome system and perhaps other

proteases as well [37, 43].

Importantly, it has been established that prolonged mechanical ventilation activates

calpain in the diaphragms of both humans and animals [44]. In fact, recent experimen-

tal studies revealed that pharmacological inhibition of calpain activation could partially

protect against VIDD [45].

Specific diaphragm muscle proteins have been identified that are degraded during

mechanical ventilation-induced sarcomere damage, concretely both titin and myosin. A

recent work found a significant reduction in rat diaphragm single muscle fiber force

production after 18 h of mechanical ventilation, which was accompanied by a pro-

portional loss of myosin heavy chain concentration together with a titin dysfunc-

tion in diaphragm fibers [46]. Interestingly, these findings were not found in other

peripheral muscles.

Another possible link between mechanical ventilation-induced oxidative stress and

diaphragm contractile dysfunction is the connection between reactive oxygen species

(ROS) and calpain activation. MV-induced ROS production in diaphragm muscle

promotes calpain activation [47, 48]; in turn, active calpain can degrade key cytoskeletal

proteins involved in maintaining sarcomere structure. This results in sarcomere dis-

ruption, which impairs the muscle’s ability to generate force.

Finally, recent studies have shown that regulatory cross-talk exists between calpain

and caspase-3 in the diaphragm during controlled MV in rats. Caspase-3 belongs to a

large family of cysteine proteases and plays an important role in apoptosis. This pro-

tease may also contribute to muscle protein degradation during a variety of muscle

wasting conditions.

There is a body of research demonstrating that full support MV activates caspase-3

in both the rodent and human diaphragm and induces myonuclear apoptosis in the

diaphragm [25, 44, 49, 50].

The ubiquitin-proteasome system of proteolysis plays an important role in muscle

protein catabolic pathways during a variety of wasting conditions [51]. Recent ex-

perimental studies have demonstrated that prolonged and controlled mechanical

ventilation may increase the activation of the ubiquitin-proteasome system of proteolysis

in both human and rat diaphragms [52, 53]. Studies on the effects of partial support or

assisted mechanical ventilation on protease activation in humans remain unpublished.

Ventilator-induced impairment of diaphragmatic contractile function

Both experimental and human studies have shown that prolonged mechanical ventilation

induces diaphragm contractile dysfunction [11]. In an animal study, the investigators

found a depression of in vivo diaphragm contractility at 5 days of mechanical ventilation

in piglets [54]. Several experimental studies consistently report that invasive mechanical

ventilation results in a rapid and time-dependent decrease in diaphragmatic force pro-

duction measured in vitro through the electrical stimulation of the diaphragm [55–58]. A

recent murine model showed diaphragm contractile dysfunction after 6 h of ventilatory

support [59]. The ventilator-induced diaphragmatic contractile dysfunction in animals
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may be directly associated to diaphragm contractile inactivity since partial ventilator

modes or short periods of intermittent spontaneous breathing can reduce the magnitude

of full ventilator support-induced contractile dysfunction [9, 36]. In this respect, there are

few experimental studies focused on the impact of prolonged mechanical ventilation on

diaphragm weakness in animals [60–64].

Risk factors for acquiring VIDD
In critically ill patients, some factors have been identified that along with prolonged mechan-

ical ventilation adversely impact diaphragm contractile function including senescence [65, 66],

intravenous medications such as neuromuscular blockers [67], and/or glucocorticoids [68].

These studies however present divergent findings, and further research is needed to

address the effect of treatments on diaphragm function in animals using both partial

and controlled mechanical ventilation.

Although human information is limited, age-related respiratory muscle dysfunction

resulting in a decrease in strength has been demonstrated, with the fall of 0.8 to

2.7 cm H2O per year from the maximal inspiratory pressure (MIP) between the

ages of 65 and 85 years [67]. A 25% drop in transdiaphragmatic pressure in adults

between 65 and 75 years of age has also been described [69, 70].

One mechanism that explains these changes is the cumulative effect of active oxygen

radicals, which can trigger proteolytic processes. It has also been suggested that with

increasing age, there is a remodeling of the muscle fibers in which the fast myosin

fibers are replaced by slow type isoforms [71].

The mechanisms involved in the deleterious effect of mechanical ventilation on dia-

phragmatic dysfunction are not fully elucidated. Recently, a translational study found

that invasive mechanical ventilation with positive end-expiratory pressure (PEEP) re-

sults in longitudinal atrophy of the diaphragm fibers that is modulated by the elasticity

of the titin of giant sarcomeric protein [72].

Hypercapnia, on the other hand, is more clearly protective against VIDD. In this re-

gard, piglets ventilated with increased dead space to achieve moderate hypercapnic

acidosis [PaCO2 55–70 mmHg] showed preserved diaphragmatic force production after

72 h of mechanical ventilation [73]. A similar level of hypercapnia induced by adding

inspired CO2 also attenuated several aspects of VIDD in rats [74].

The cellular mechanisms underlying the improvements associated with hypercapnia are yet

to be fully understood but likely involve anti-inflammatory and/or antioxidant effects. VIDD

however does not appear to be correlated with ventilator-induced lung injury [60, 75, 76].

The majority of VIDD seen in critically ill patients, however, does not appear to be

the consequence of any easily treatable conditions. In many cases, the potential mecha-

nisms underlying diaphragmatic injury are induced by mechanical ventilation. There is

also strong evidence that processes other than VIDD, including sepsis and other

systemic infections, are responsible for various forms of diaphragmatic myotrauma.

Diagnostic approach for VIDD
Tests of respiratory muscle strength

Accurate evaluation of diaphragmatic contractile function in the setting of critically ill pa-

tients undergoing mechanical ventilation continues to be difficult due to multiple factors.
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These include limitations in the techniques used, the volitional aspect of some

maneuvers of diaphragmatic contraction, the interference of positive pressure venti-

lation, and inter-observer heterogeneity [77]. Briefly, the tests most used in assessing

respiratory muscle endurance are summarized in Table 1.

The maximum static inspiratory pressure (PImax) in ventilated patients has com-

monly been used, but its interpretation is effort-dependent. It represents the combined

action of all inspiratory muscles rather than isolating the diaphragmatic contraction,

can be affected by underlying lung diseases, and is associated with widely variable

predicted values [78, 79]. A PImax of − 80 cm H2O usually excludes clinically important

inspiratory muscle weakness [77, 78], and bilateral diaphragm paralysis can be expected

to decrease PImax < 30% of the predicted values [79].

The transdiaphragmatic pressure [PTIdi] can also be measured by simultaneously

recording the esophagus and the stomach pressures, but the interpretation of the

results is also limited and may be dependent on the level of patient co-operation, the

depth of sedation, or the use of neuromuscular blockers.

Other non-invasive beside volitional tests such as the sniff maneuvers can be used in

combination to enhance the performance of certain tests.

Specifically, sniff nasal pressure (Sniff Pnasal) may result as precise as when more invasive

tests (i.e., sniff esophageal pressure) are added to the evaluation [80–82]. The assessment of

a diaphragmatic contraction following phrenic nerve stimulation by electric or magnetic

twitch performed during phrenic nerve conduction studies is the accepted standard non-

volitional method to quantify the mechanical function of the diaphragm. During these

evaluations, the twitch transdiaphragmatic pressure (Twitch Pdi) is used, and a cutoff value

lower than 18 cm H2O is highly suggestive of diaphragmatic weakness [83].

Table 1 Summary of the clinical tests used in the assessment of respiratory muscle strength [63]

Test Threshold values Advantages Disadvantages

Volitional
Tests

Maximum static
inspiratory pressure
(PImax)

Male < − 45 cm H2O
Female <− 30 cm H2O

Easy to perform.
Normal values
are available

Difficult
interpretation.
Lack of specificity

Maximum static
transdiaphragmatic
pressure (PI,di,max)

Male < 40 cm H2O (2)
Female < 30 cm H2O

Easy to perform.
Well tolerated
by patients.

Wide normal range.
Limited usefulness in
clinical practice.
Limited normal data

Sniff transdiaphragmatic
pressure (Sniff Pdi)

Male < 100 cm H2O (2)
Female < 70 cm H2O

Requires little practice.
It is relatively
reproducible.
Range of normal
values

Technical limitations
Variability.

Maximum sniff
pressures (nasal)

Male < 50 cm H2O
Female < 45 cm H2O

Maximum cough
pressure

Male < 130 cm H2O
Female < 95 cm H2O

Normal ranges
available

Limited validation in
critically ill patient.

Nonvolitional
tests

Twitch
transdiaphragmatic
pressure (PdiTw)

Male and
female < 18 cm H2O

Measurement specific
for the diaphragm
and is not influenced
by the central
nervous system

Requires
considerable skill.
Uncomfortable
for patients

Diaphragm
excursion (DE)

< 10 cm Provides both
morphological and
functional information
in real time. Allows
repeated measurements
over time and
monitoring recovery

Learning curve.
Inter-observer
variations.
Availability.
Reproducibility

Inspiratory
diaphragm
thickening
fraction (TFdi)

< 20%
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However, these techniques depend to a great extent on the effort of the patient in

addition to other factors. For instance, these maneuvers require experience and special-

ized equipment as well as access to this equipment in routine ICU clinical practice. The

capacity to predict clinical outcomes, such as weaning failure, with the use of any of the

abovementioned tests of inspiratory, specific diaphragm, or expiratory muscle strength, is

broadly similar to any other test [84].

Nevertheless, a combination of tests can substantially increase the diagnostic

accuracy [85–88].

Diaphragmatic contraction can be assessed using magnetic resonance imaging and

fluoroscopy, but the problems associated with ionizing radiation, patient transport, and

high cost are factors limiting daily bedside use [89, 90].

Ultrasonography

In recent years, diaphragmatic ultrasound has become the most useful bedside for the

clinician to identify patients with VIDD subjected to invasive mechanical ventilation.

This is most likely because it has been shown to be safe and easy to perform, while

allowing both morphologic assessment and functional evaluation of the muscle with

high inter-observer agreement [91, 92]. It is also possible to perform a follow-up of the

initial clinical evaluation, providing information on time course and recovery.

There are two main ultrasonography parameters used to assess diaphragmatic function.

These include the dynamic evaluation of diaphragmatic excursion (DE) and the inspi-

ratory diaphragm thickening fraction (TFdi). Diaphragmatic excursion (DE) can be easily

measured with a 3–5-MHz probe in M-mode and represents the mobility of the

diaphragm in inspiration and expiration during a spontaneous mode of mechanical venti-

lation. However, DE depends on the amount of ventilator support and PEEP; accordingly,

a recent study indicated that DE should not be used to assess diaphragmatic contractility

in patients receiving mechanical ventilation [93, 94].

The second parameter, TFdi, measures muscle thickening in the zone of apposition of

the diaphragm to the rib cage with a 10–15MHz probe in B or M mode.

The transducer is placed in the same way as for the measurement of the dia-

phragmatic excursion. Following placement, measurements of the diaphragmatic thick-

ness in both inspiration and expiration are taken (Fig. 2).

TFdi is defined as [[thickness at end-inspiration − thickness at end-expiration]/thick-

ness at end-expiration]. The most accepted cutoff values are 10–14mm for DE and

30–36% for TFdi [95].

Both DE and TFdi have been shown to correlate with functional measurements of

diaphragmatic function in spontaneously breathing patients, but the use of ultrasound

in the process of weaning remains controversial [96, 97].

Several clinical studies suggest that these ultrasound parameters can be reliable

predictors of weaning and extubation outcomes. Indeed, a recent study [98] found

a prevalence of VIDD of 29% (by DE < 10 mm or paradoxical movements of the

diaphragm). Additionally, patients diagnosed with VIDD had a longer duration of

mechanical ventilation.

On the other hand, a study [96] reported in 63 adult critically ill patients with me-

chanical ventilation that a TFdi ≥ 30% presented a sensitivity of 88% and a specificity of

Peñuelas et al. Intensive Care Medicine Experimental 2019, 7(Suppl 1):48 Page 8 of 25



71% for extubation success, with a positive predictive value of 91% and a negative value of

63%, with an area under the curve of 0.79. In combination, these two methods of assess-

ment of diaphragmatic function during spontaneous breathing are useful tools for the

determination of patients at risk of invasive mechanical ventilation withdrawal failure.

Recently, a systematic review that included 13 studies on 742 adult critically ill

patients found that ultrasound had excellent intra- and inter-observer reproducibility,

as well as higher accuracy in investigating diaphragm dysfunction compared with other

weaning indexes or fluoroscopy [99]. Finally, another metaanalysis that included

nineteen studies (1071 participants) found that ultrasound may help predict weaning

outcome, but its accuracy and interpretation involve several pitfalls [100]. Therefore,

ultrasound is emerging as a new noninvasive tool used to monitor respiratory workload

during assisted mechanical ventilation and to assess the progression of VIDD. Never-

theless, further randomized clinical trials are needed to determine whether ultrasound

could guide clinical decisions for improving outcomes in critically ill patients.

A novel field of research is the implementation of tissue Doppler as a diagnostic tool

in the analysis of diaphragm function. Tissue Doppler imaging (PW-TDI, pulse wave

tissue Doppler imaging) is an echocardiographic technique and promises a number of

applications to further extend the unique diagnostic role in echocardiography. In

particular relation to the diaphragm, it might allow the assessment of regional dia-

phragmatic contractile function at rest and with stress. It should also provide a reliable

identification of viable respiratory contractile muscle. There is currently a French

clinical trial which aims to look for correlations between the time movement mode and

tissue Doppler in the assessment of a threshold value of diaphragm mobility in patients

in the postoperative period following scheduled cardiac surgery (ClinicalTrials.gov

Identifier: NCT03295344).

Diaphragm electromyography (EMGdi) reflects the muscle electrical activity, and it is

considered the gold standard in the assessment of neural respiratory drive.

Electromyography (EMG) comprises the temporal and spatial summation of neural

impulses from the brain that are translated into muscle fiber action potentials. There

are different approaches to obtaining a diaphragm EMG, and at the bedside, it can be

recorded using an esophageal catheter with multiple electrodes [101].

Fig. 2 Representative ultrasound image at the zone of apposition in B-mode view of the diaphragm during
inspiration (a) and expiration (b). The diaphragm is identified as a 3-layer comprising two hyperechoic lines
representing the pleural and peritoneal membranes and a middle hypoechoic layer representing the
diaphragmatic muscle itself (with permission of the Intensive Care Unit from the Hospital Universitario
de Getafe)
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The processed signal can be obtained easily and continuously in ICU patients and is re-

ferred to as the amplitude of the electrical activity of the diaphragm (EAdi). EAdi records

action potentials from the diaphragm and can therefore assess whether the phrenic nerve

is intact. This may be helpful in monitoring respiratory muscle loading, patient–ventilator

synchrony, and efficiency of breathing in critically ill patients [102]. EAdi is tightly

correlated to a patient’s inspiratory effort and is a good estimate of diaphragm function.

Combining EAdi with the breathing pattern provides indices that evaluate the diaphragm’s

contribution to the generation of tidal volume (VT). For example, the ratio of VT to EAdi

(VT/EAdi) represents the neuroventilatory efficiency of the diaphragm.

This index reflects the ability of the diaphragm to convert the respiratory drive into

ventilation. A low VT/EAdi suggests severe impairment of neuromechanical coupling.

EAdi-derived indices have been used to identify patients with weaning failure [103].

Interestingly, monitoring neuroventilatory efficiency during a SBT enables very early

detection of patients likely to fail the test. However, the performance of EAdi-derived

indices to predict weaning failure is not better than the performance of other clinical,

non-invasive, and bedside weaning tests.

Similarly, the electrical activity of the diaphragm (EAdi) records action potentials

from the diaphragm and therefore assesses whether the phrenic nerve is intact [104].

A clinical study [105] reported that the pressure developed by the respiratory muscles

(Pmusc) is related to the electrical activity of the diaphragm (EAdi) and that the ratio of

Pmusc/EAdi could estimate inspiratory effort. However, a study published by the same

author found no correlation between the Pmusc/EAdi ratio and ventilator variables [106].

The second tool is the diaphragm electromyography (EMGdi), which measures the

activation of action potentials along the diaphragm muscle and can be used to assess

muscle contractility. Intramuscular electrodes can be used to record, relatively select-

ively, from the diaphragm and intercostal muscles [107].

However, the techniques are invasive and technically difficult.

There is a body of research showing that EMGdi is feasible in routine clinical care

for monitoring respiratory muscle function. However, there are some limitations in the

interpretation of EAdi: it is still necessary to identify the threshold level of EAdi that

should be achieved in the daily management of mechanically ventilated patients [108];

respiratory muscle activity may be suppressed by sedatives; the insertion of an esopha-

geal catheter carries a low complication risk, but it is an uncomfortable and invasive

procedure in non-sedated patients.

Nevertheless, there are nasogastric tubes for enteral feeding, which are already com-

mercially available, with EMG electrodes.

Taken together, EAdi is a well-evaluated parameter to monitor respiratory muscle

unloading and patient–ventilator synchrony from an early phase of critical illness. The

implementation of EAdi would be clinically relevant as an important tool for respi-

ratory muscle monitoring during mechanical ventilation and weaning.

Potential therapeutical approaches for VIDD
One of the challenges in translational research is the development of a management

strategy in order to avoid VIDD in the critically ill patient, with the aim of improving

clinical outcomes.

No preventive or therapeutic interventions have been tested in clinical trials.
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Potential treatments arising from translational or from small clinical studies should be

considered as initial steps towards large clinical trials. These larger trials are necessary in

order to establish a definitive approach to VIDD in the critically ill patient. The current

strategies which target preventive, experimental, and/or therapeutic approaches might

support the development of well-designed clinical trials. Any VIDD management strategies

should firstly consider the optimal medical treatment of concurrent conditions, such as

malnutrition [109], in addition to any other associated factors such as sepsis [110].

Experimental drugs

A better understanding of the pathophysiological mechanisms involved in VIDD at the

cellular, transcriptional, and molecular levels is leading the search for new therapeutic

approaches. This includes experimental pharmacological agents such as the use of

mitochondria-targeted antioxidants [111], JAK-STAT inhibitors [112, 113], different

modulators of proteolysis pathways including autophagy [40], and myofilament calcium

sensitizers [114]. Future studies should be focused at translating these findings into the

clinical setting in critically ill patients.

Transcription factors of the FOXO and signal transducer and activator of transcrip-

tion (STAT) families are upregulated and act as important mediators of VIDD [115].

Data from both animal [28, 116, 117] and human studies [118] have highlighted that

the main source of oxidative stress in the diaphragm during mechanical ventilation is

excess mitochondrial reactive oxygen species (ROS) production. However, the mecha-

nisms triggered by invasive mechanical ventilation leading to the development of

mitochondria-derived oxidative stress are poorly understood.

An experimental study found in a rat model of mechanical ventilation that the intra-

venous infusion of an antioxidant (Trolox, an analog of vitamin E with antioxidant

activity) prevented VIDD by attenuating the oxidative stress and subsequent proteolysis

and contractile dysfunction during mechanical ventilation [119].

In summary, antioxidant agents acting on more than one molecular target may

mediate VIDD produced by oxidative stress, and therefore, this represents an important

clinical issue that warrants further investigation.

Preventives

Since VIDD has been identified as a cause of weaning failure, improving respiratory

muscle function is an important strategic option. In the ICU, the most promising

therapy seems to be inspiratory muscle training (IMT); however, only a few studies

have been conducted. When looking at studies on inspiratory muscle training, two

factors must be considered. First, the modalities of the “control” arm to which inspi-

ratory muscle training is compared should be carefully examined because there is

considerable heterogeneity in practice. Second, the impact of the intervention should

have clinical relevance. There is no real benefit of improving inspiratory muscle force

itself; attention has to be paid to clinical outcomes, such as shortened duration of

mechanical ventilation, successful extubation, or greater survival. The largest study

enrolled 69 long-term ventilated patients and randomized them to receive either IMT

(defined as a 5-day-a-week program with four sets breathing through a threshold

inspiratory muscle trainer of 6 to 10 breaths per day) or control training [118]. Patients
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in the control group used a resistive inspiratory muscle training device set at the largest

opening. In this study, IMT significantly improved maximal inspiratory pressure and

successful weaning was more likely. A randomized study [119] performed on ventilated

patients allocated them to either inspiratory strength training in addition to usual care

or usual care only. Each training session consisted of five sets of loaded breaths [40%

maximum inspiratory pressure], twice a day, 7 days a week.

In this study, IMT significantly increased maximum inspiratory pressure but did not

affect clinical outcomes such as weaning time. In another study, it was recently

reported that IMT performed after successful extubation improved respiratory muscle

function, but without any clinical benefit [120]. In conclusion, IMT appears to be

effective by improving markers of respiratory muscle function but fails to produce any

significant clinical outcomes, in particular on the duration of mechanical ventilation.

Therefore, IMT is feasible and appears safe in critically ill patients with respiratory

muscle weakness and weaning failure [121]. Studies in other patient categories, inclu-

ding COPD, indicate that IMT improves outcome. In our opinion, IMT can be included

as an endurance training strategy in stable, difficult-to-wean patients with confirmed

VIDD. Further studies are needed to determine the optimal training protocol and

appropriate timing for initiation of IMT.

When choosing ventilatory modes, maintaining spontaneous breathing efforts during

invasive mechanical ventilation seems protective and seems to alleviate VIDD in healthy

animals [122, 123]. Early in acute critical illness, modes of controlled mechanical ventila-

tion may often be required, but an early switch to an assisted mode seems clearly desirable

[124]. A recent study [125] found that the daily reductions in thickness were 7.5% during

controlled mechanical ventilation, 5.3% during high pressure support ventilation, and

1.5% during low pressure support ventilation, whereas the diaphragm thickness increased

2.3% under conditions of spontaneous breathing and CPAP. In another large obser-

vational and prospective study [126], diaphragm thickness was assessed in 107 critically ill

patients during the first week of invasive mechanical ventilation. The authors found a

rapid decrease in more than 10% of diaphragm thickness during the first several days of

mechanical ventilation in 44% of subjects. The factors significantly associated with higher

contractile activity were the use of lower ventilator driving pressures and partially assisted

modes of ventilation (p value 0.01 and 0.02, respectively).

The preferred ventilation mode, the optimal level of support (“unloading”), or the rate

of support reduction for patients is currently unknown. Spontaneous breathing is well

maintained with so-called effort-adapted modes [127], for example neurally adjusted

ventilatory assist (NAVA) or adaptive support ventilation (ASV). ASV seems to mitigate

deleterious effects of mechanical ventilation on the diaphragm of piglets [128–130].

NAVA provides support in unison with the patient’s inspiratory neural effort [131]. As the

support level is titrated against the patient’s respiratory demand, patients are protected

against over-assist [132, 133]. This approach was successfully used in various clinical ICU

settings, especially in patients with critical illness myoneuropathy [134, 135].

Pharmacological agents

Methylxanthines, especially aminophylline and theophylline, have been widely prescribed

in poorly controlled asthma or COPD based on some of their pathophysiological
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mechanisms of action. These drugs mainly relax airway smooth muscle by inhibiting

phosphodiesterase-3 activity, leading to bronchodilation [136]. They antagonize adenosine

A1 and A2 receptors, which also results in bronchodilation; they act as anti-inflammatory

agents increasing the effect of interleukin-10 and preventing the translocation of the

proinflammatory transcription factor nuclear factor-B [137]. Theophylline also enhances

histone deacetylase-2 activity, which is reduced by oxidative stress.

The increased histone deacetylase-2 activity reduces formation of peroxynitrite

radicals, stimulates the respiratory neuronal network, and increases the activity of

respiratory muscles, including the intercostal and transversus abdominis muscles, as

well as the diaphragm [138–142].

These findings suggest that methylxanthines may have a role as therapeutic agents in

ventilated patients with weaning difficulties associated with VIDD [143–146].

A study using phrenic nerve conduction showed that theophylline infusion rapidly

reversed the reduction of transdiaphragmatic pressure resulting from resistive loaded

breathing in normal human subjects [147].

In subjects with severe COPD, theophylline significantly increased the maximal trans-

diaphragmatic pressure and suppressed diaphragmatic fatigue when compared with

placebo [148]. Several studies have shown the favorable effects of theophylline on

human respiratory muscle function, and the drug is commonly used in patients

weaning from mechanical ventilation. However, few studies have reported clinical

experience with theophylline with regard to clinical outcomes such as weaning from

mechanical ventilation. Recently, a clinical trial found that low-dose (median, 200 mg/d

intravenously) theophylline treatment significantly improved the diaphragmatic move-

ments in ventilated patients with evidence of VIDD [149]. In this study, no significant

adverse effects were reported. This effect may be related to the relatively low serum

concentration [mean 4.6 mg/L on day 3] of theophylline compared with studies that

used higher doses of theophylline (mean serum concentration ≥ 10 mg/L) due to a

proven pathophysiological effect even at these low concentrations. Another study

analysis from a Taiwanese group included 160 patients that required invasive mecha-

nical ventilation longer than 21 days and compared retrospectively 84 patients that

received aminophylline (200 mg/twice a day) with 76 patients included in the nontheo-

phylline group. The mean treatment duration was 23 [9–34] days, and the mean serum

concentration of theophylline after the 3rd day of treatment, which was checked in 49

(58%) of the 84 patients, was 9.3 ± 3.3 mg/ml [150].

The investigators found that the primary outcome (PImax) was significantly better in

the theophylline group than in the nontheophylline group (30.1 ± 9.7 cm H2O vs.

26.9 ± 9.1 cm H2O; p value = 0.034), but no statistically significant differences in clinical

outcomes were found (successful weaning in the aminophylline group 66/84, 79%,

versus 50/76, 66%, in the control group, p = 0.071; duration of mechanical ventilation

in the aminophylline group mean 20 ± 14 days, 79%, versus mean 23 ± 14.5 days, in

the control group, p = 0.192), and with no significant adverse reactions among the

study patients.

The finding that low-dose theophylline significantly improved VIDD is encouraging,

considering that the drug is often withheld due to concerns over its adverse effects,

and therefore, further large randomized clinical trials are needed to implement this

pharmacological approach in the management of VIDD.
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Although the ultimate pathophysiological mechanisms are not as yet fully under-

stood, changes in intracellular calcium level also appear to be an important basis for

VIDD. In a murine model of VIDD, a rapid remodeling of the sarcoplasmic reticulum

(SR) Ca [2+] release channel/ryanodine receptor (RyR1) in the diaphragm has been

found [151]. Calcium sensitizers have been developed to treat similar pathology in

cardiac muscle [152]. Indeed, levosimendan is the only calcium sensitizer approved for

the treatment of heart failure in patients.

Experimental studies have shown that levosimendan improves calcium sensitivity of

diaphragm muscle fibers in patients with COPD [153]. In healthy subjects, levosimendan

reverses diaphragm fatigue and improves neuromechanical efficiency of the diaphragm

[154]. In an experimental model of endotoxemia and mechanical ventilation, levosimen-

dan decreased markers of oxidative and nitrosative stress in the diaphragm of endotoxe-

mic mechanically ventilated mice, but did not attenuate diaphragmatic and systemic

inflammatory responses [155].

However, in a recent trial [156] in which levosimendan was tested to prevent acute

organ dysfunction in sepsis, patients who received the drug were more likely to fail

weaning from mechanical ventilation [95%CI 0.60 to 0.97, p = 0.03].

Further studies are therefore needed to elucidate the potential indication of levosimen-

dan in patients with diaphragm dysfunction.

Finally, a randomized clinical trial [ClinicalTrials.gov identifier NCT01721434] is

currently investigating whether levosimendan facilitates liberation from the ventilator

in patients difficult to wean from the ventilator.

In contrast to levosimendan, the effectiveness of other calcium sensitizers has so far only

been studied in vitro. For example, exposure to EMD 57033 [a troponin activator] partially

restored calcium sensitivity in diaphragm fibers isolated from piglets after 5 days of me-

chanical ventilation [157]. Taken together, calcium sensitizers might trigger a beneficial

effect on diaphragm work [158]. However, further clinical trials are needed to prove the

benefits of these calcium sensitizers in ICU patients with respiratory muscle weakness, and

they are currently not recommended for the management of difficult-to-wean patients.

Pharmacological interventions aimed at restoring protein balance during muscle

dysfunction in the critically ill patient seem a consistent pathophysiological approach. The

most important endogenous anabolic hormones are growth hormone, insulin-like growth

factor-1, insulin, and the anabolic steroid testosterone and its analogues. Although several

trials have been conducted in patients with chronic disease, no clear clinical benefits have

been identified and they are not indicated in ICU patients [159, 160].

Non-pharmacological alternatives

It is well known that invasive mechanical ventilation may suppress the electrical activity

of disused diaphragm muscle [9, 161]. Indeed, mechanical ventilation in a fully controlled

support mode can abolish electrical activity in the diaphragm [56]. Even with an intact

phrenic nerve function, there is no diaphragmatic stimulation during mechanical venti-

lation. A clinical study [56] found that 3 days of controlled mechanical ventilation (CMV)

in the rabbit diaphragm completely inhibited the electromyogram signal compared with

those animals randomized to continuous positive airway pressure (CPAP) for 3 days. In

the rabbits that received CMV, there was accompanying histological changes in the
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diaphragm consisting of myofibril injury, findings which were not observed in the soleus

muscle of the same animals.

Similar findings have been consistently demonstrated in different studies in rat [59],

piglet [162], and both healthy humans and patients [163, 164]. As a result of these find-

ings, an attractive hypothesis emerged some years ago that electrically pacing the dia-

phragm could prevent VIDD [165, 166].

Diaphragm pacing can be applied through a transvenous phrenic nerve pacing system

designed for percutaneous placement into the left subclavian vein. In an experimental

study, pigs subjected to mechanical ventilation that received transvenous phrenic nerve

pacing in synchrony with ventilation exhibited less diaphragm atrophy [167]. Identifying

the population who would benefit from this strategy will be the next clinical challenge.

Surgically implanted systems for pacing the phrenic nerves and diaphragm have been used

for the last 40 years in more than 2500 adult and pediatric patients with high-level

spinal cord injury [167] and in patients with late-stage amyotrophic lateral sclerosis.

Implanted systems are not suitable for critically ill patients because of the invasive and

complex surgical procedure.

Brief transcutaneous stimulation of phrenic nerves is often used for diagnostic

purposes, but is not suitable for therapeutic purposes. Critically ill patients requiring

prolonged mechanical ventilation are not ideal candidates for surgically implanted

systems, but may benefit from short-term phrenic nerve pacing to diminish VIDD.

Transvenous unilateral phrenic nerve stimulation has been shown to be safe in the

treatment of central sleep apnea [168]. Another option is intermittent magnetic

stimulation of the phrenic nerves, which is painless and noninvasive [169]. In rats,

bilateral phrenic nerve stimulation preserved diaphragmatic force production after 18 h

of mechanical ventilation [170]. A pilot study of unilateral phrenic nerve stimulation in

sheep showed reduced atrophy and muscle fiber injury in the stimulated hemi-

diaphragm after 72 h of mechanical ventilation [171]. Another observational study

[172] performed unilateral phrenic nerve stimulation in patients undergoing mecha-

nical ventilation during cardiothoracic surgery and reported increased mitochondrial

respiration rates in the stimulated hemidiaphragm.

Recent investigations based on a semiblinded, nonrandomized preclinical interven-

tional study test the hypothesis that early phrenic nerve pacing stimulation is a means

of increasing diaphragmatic activity during mechanical ventilation [173]. Further

research is needed to determine whether phrenic nerve stimulation is effective and

feasible as a strategy for preventing VIDD in ICU patients. Phrenic pacing has the

potential to provide full ventilatory support for ventilator-dependent patients who have

bilateral diaphragmatic paralysis and intact phrenic nerves. Candidates for this treat-

ment method are primarily patients with high cervical cord quadriplegia or patients

with central hypoventilation.

Despite technical improvements in phrenic-pacing systems, activation of the diaphragm

does not provide sustained, full ventilatory support [174], and evaluation for phrenic pacing

should be performed in specialized centers with experience in the technique. Newer methods

that use laparoscopic mapping of motor points and intramuscular stimulation of the dia-

phragm have shown promising results in patients with non-pulmonary diseases [175–179].

As described above, diaphragm pacing is a novel method that can stimulate the dia-

phragm. This method could be viewed as an effort to support, maintain, and strengthen
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the diaphragm in patients with weaning failure. It is in these situations that diaphragm

pacing (DP) could be proposed in order to remove positive pressure ventilation and

restore a more “physiological” breathing obtained through diaphragm contraction [180].

The pathophysiological basis underlying electrical intramuscular DP is seen in experi-

mental studies that have demonstrated that DP increases type 1 slow-twitch fatigue-

resistant fibers, thereby reinforcing the resistance of the muscle to fatigue [181]. The

process through which an unused muscle progressively reacquires contractile efficiency

and resistance to fatigue is called conditioning. This is a well-known process in

diaphragm muscles subjected to pacing [182, 183]. It has been known for some time

now that such electrical stimulation has an effect on the muscle fiber of patients with

spinal cord injuries [184, 185]. These studies support evidence that diaphragm pacing

can be used to remodel the composition of the muscle fiber itself.

The use of DP has been proven in canine animal models to provoke the conversion

of diaphragm muscle fibers into slow-twitch muscle fibers [186].

These studies portray a clear model of muscle atrophy from disuse and how electrical

stimulation (i.e., pacing) can have effects in its own right, independently of any superior

voluntary control. The inactivation of a skeletal muscle, due to disuse or direct trauma,

seems to lead to the transformation of type I muscles (slow-twitch, fatigue-resistant,

oxidative metabolism) into type II muscles (fast twitch glycolytic metabolism) [187, 188].

The two techniques for the implantation of the intramuscular DP system are the

thoracic approach, which has been regularly performed with success in a few centers

around the world [189], and a laparoscopic approach, which was developed following

anatomical studies [190, 191].

Recently, this technique has also been tested as a temporary tool to avoid diaphrag-

matic amyotrophy in patients requiring MV for whom spontaneous breathing recovery

seemed possible. Thus, these two approaches have led to broadened indications not all

validated to date. In fact, some controversy exists as the DP system has been accepted

in the USA under compassionate use for some non-pulmonary diseases [191], and

recently approved in Europe as first medical device for the treatment of VIDD (CE

Mark Approval). Currently, there are two ongoing randomized clinical trials

(ClinicalTrials.gov Identifier: NCT03107949 and NCT03096639) to investigate the

safety, effectiveness, and performance of a temporary percutaneous phrenic nerve pacing

device. The Lungpacer Diaphragm Pacing Therapy System™ (DPTS, Lungpacer Medical

Inc.) is a central venous catheter that incorporates pacing electrodes.

The current clinical trials include patients undergoing invasive mechanical ventilation

≥ 7 days and/or have failed two or more spontaneous breathing trials [SBT]. The pacing

was performed by stimulating the diaphragm through daily therapy sessions, with

the intention of exercising and rehabilitating the diaphragm muscle and with the

objective of accelerating the process of liberation from mechanical ventilation. A

multicenter, randomized, controlled, and open-label interventional study [192] will

carry out (ClinicalTrials.gov Identifier NCT03096639) to investigate the safety and

effectiveness of a temporary transvenous diaphragm pacing (TTVDP). The aim is

to improve weaning from MV in up to 88 mechanically ventilated adult patients

who have failed at least two spontaneous breathing trials over at least 7 days.

Patients will be randomized to TTVDP as the intervention group or standard of care

as the control group. The primary endpoint is time to successful extubation with no
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reintubation within 48 h. Secondary endpoints include physiological parameters such as

the maximal inspiratory pressure and ultrasound-measured changes in diaphragm

thickness and diaphragm thickening fraction over time. It is expected that enrollment

will be completed by September 2019, and this will be the first clinical trial of TTVDP

in critically ill patients with difficultly weaning.

Considering the current evidence, there are limitations regarding the effectiveness

and safety on the use of DP in critically ill patients with VIDD.

Until more results are available from forthcoming clinical and translational studies in

this patient population, this therapy should for the moment be considered as a rescue

intervention and always performed in specialized centers with experience.

Future directions
The majority of critically ill patients admitted to the ICU require mechanical ventilation,

and a substantial amount of time spent in the ICU is dedicated to withdrawal from the

ventilator [1–3]. It is during the weaning process that diaphragmatic function becomes so

important, as it is a major determinant of weaning success and clinical outcomes [192].

The novel concept of myotrauma may have several implications for research and

practice [193]. First, future observational studies and clinical trials regarding acute

respiratory failure should consider investigating myotrauma as an explanatory mecha-

nism underlying treatment effects.

The concept of “bundling” adjunctive therapies is well established in the ICU, and

one could even envision the concurrent use of several interventions such as diaphragm

pacing with pharmacological interventions to prevent or treat VIDD in the future

(Fig. 3). Until further research addresses these clinical challenges, clinicians are left with

limited options: to reduce where possible controlled mechanical ventilation through

the use of assisted modes and frequent reassessments of the patient’s ability to resume

effective spontaneous breathing [194, 195].

Fig. 3 A practical approach for the management of diaphragm dysfunction in critically ill patients.
Abbreviations: DU, diaphragmatic ultrasound; DE, diaphragmatic excursion; PIM maximum inspiratory
pressure; TFdi, thickening fraction. Asterisk refers to reference [196]
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While using interventions that might affect patient inspiratory effort or patient–ven-

tilator synchrony—i.e., invasive or non-invasive ventilation strategies, sedation stra-

tegies, high-flow oxygen therapy, and extracorporeal life support techniques— the

possibility of myotrauma should be considered as a mechanism which may impact on

outcomes. The benefits of early mobilization and sedation avoidance strategies might,

in part, result from improved recruitment of respiratory muscle effort and avoidance of

over-assistance myotrauma.

Ultrasound is a powerful tool used to diagnose VIDD in the clinical setting—it

enables assessment of both respiratory effort and detection of structural changes in the

muscle and the development of muscle weakness. Future studies should consider

incorporating simple diaphragm ultrasound measurements to explore the role of the

various forms of myotrauma and diaphragm weakness in the determination of

outcomes and hence integrate ultrasound in algorithms for decision-making process.

Concerns about myotrauma are further increased by the possibility that it might

contribute to long-term functional disability in ICU survivors.

The major implication of the myotrauma paradigm might be to provide a conceptual

framework for how to titrate ventilator support to prevent diaphragm injury.

Evidence suggests that the optimal level of respiratory muscle effort might be that of

healthy individuals breathing at rest, equivalent to a respiratory muscle pressure swing

of 5–8 cm H2O [197]. The aforementioned mediation analyses provide further support

for a potential causal relationship between optimal effort and clinical outcome. Impor-

tantly, the potential impact of modulating inspiratory effort on major outcomes re-

mains uncertain because of the wide confidence intervals associated with the data

regarding effect mediation by diaphragm injury.

Monitoring of respiratory effort should become a routine aspect of clinical prac-

tice in the ICU. In view of the current evidence, clinicians should attend to patient

inspiratory effort and minimize the duration of diaphragm inactivity during invasive

mechanical ventilation. If there is no clear indication for neuromuscular blockade,

clinicians should aim to maintain a normal level of spontaneous inspiratory effort

as well as minimize the volume and transpulmonary pressure applied to the lung

in accordance with the paradigm of protective ventilatory strategy. Indeed, the

implementation of a diaphragm-protective ventilation strategy aimed in avoiding

changes in diaphragm structure, function and myotrauma should be examined in

further clinical translational studies.

Conclusions
Ventilator-induced diaphragmatic dysfunction is a common deleterious effect of

invasive mechanical ventilation and a current relevant clinical challenge. The patho-

physiological pathways include several alterations mainly produced by a protein im-

balance and oxidative stress. VIDD is often associated with poor clinical outcomes. A

thorough evaluation is required to identify its origin and properly manage its effects on

symptoms, sleep homeostasis, and exercise capacity.

The increasing availability of diaphragmatic ultrasound has provided a simple and

effective means of routinely evaluating diaphragm function at the bedside that should

help clinicians identify the optimal treatment for the correct patient.
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Referral to a center with experience in this disease and access to diaphragmatic ultra-

sound, phrenic stimulation or pacing and surgical expertise in diaphragm stimulation

should be considered, where applicable.

The integration of evidence from a large body of research based on preclinical and

experimental studies of animal models and critically ill patients should allow us to

develop a conceptual framework for understanding VIDD. Implementing this knowledge

to patient management will eventually result in improved clinical outcomes.
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