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Abstract

Background: Primary blast lung injury (PBLI) presents as a syndrome of respiratory
distress and haemoptysis resulting from explosive shock wave exposure and is a
frequent cause of mortality and morbidity in both military conflicts and terrorist
attacks. The optimal mode of mechanical ventilation for managing PBLI is not
currently known, and clinical trials in humans are impossible due to the sporadic and
violent nature of the disease.

Methods: A high-fidelity multi-organ computational simulator of PBLI pathophysiology
was configured to replicate data from 14 PBLI casualties from the conflict in
Afghanistan. Adaptive and responsive ventilatory protocols implementing low tidal
volume (LTV) ventilation and airway pressure release ventilation (APRV) were applied to
each simulated patient for 24 h, allowing direct quantitative comparison of their effects
on gas exchange, ventilatory parameters, haemodynamics, extravascular lung water
and indices of ventilator-induced lung injury.

Results: The simulated patients responded well to both ventilation strategies. Post 24-h
investigation period, the APRV arm had similar PF ratios (137 mmHg vs 157 mmHg),
lower sub-injury threshold levels of mechanical power (11.9 J/min vs 20.7 J/min) and
lower levels of extravascular lung water (501 ml vs 600 ml) compared to conventional
LTV. Driving pressure was higher in the APRV group (11.9 cmH2O vs 8.6 cmH2O), but
still significantly less than levels associated with increased mortality.

Conclusions: Appropriate use of APRV may offer casualties with PBLI important
mortality-related benefits and should be considered for management of this
challenging patient group.

Keywords: Primary blast lung injury, Acute respiratory distress syndrome, Low tidal
volume ventilation, Airway pressure release ventilation, Ventilator-induced lung injury,
Computational modelling

Background
Primary blast lung injury (PBLI) results from explosive shock wave exposure and is a

frequent cause of mortality and morbidity in both military conflicts and acts of terror-

ism [1]. It is particularly associated with explosions in confined spaces, such as terrorist

attacks on public transportation systems [2]. Defined as “acute lung injury within 12 h
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of blast exposure which is not due to penetrating or blunt injury” [3], it presents as a

syndrome of respiratory distress and haemoptysis and is frequently complicated by

pneumothoraces. Severe cases progress as acute respiratory distress syndrome (ARDS).

The majority of casualties with the condition will require ventilatory support in an in-

tensive care unit (ICU) [4] and so it can generate unpredictable and significant de-

mands on medical resources. As PBLI is by nature a sporadic disease born out of

conflict, randomized controlled clinical trials to investigate alternative management

strategies are not feasible—clinical care has been, and will continue to be, guided by

surrogate models of the disease. Such models have traditionally been in vivo animal

models [5–7], but there has recently been increasing interest in the use of in silico

models of human PBLI pathophysiology [8–10].

Currently, the globally recognised best practice for mechanical ventilation in casual-

ties with acute lung injury (including PBLI) is the approach advocated by the ARDS

network (ARDSnet) group [11]. The ARDSnet “protective ventilation” approach utilises

low tidal volumes (LTV) and relatively high positive end-expiratory pressure (PEEP) to

minimise mechanical volutrauma and limit atelectasis. It advocates using the lowest ac-

ceptable inspired concentration of oxygen to prevent oxygen toxicity and tolerates hy-

percapnia within the limits of cardiovascular stability (assuming the patient has not

suffered a head injury).

Airway pressure release ventilation (APRV) is an alternative mode of ventilation

which is also currently in use for the management of hypoxic respiratory failure includ-

ing ARDS in mechanically ventilated patients [12]. APRV is widely available on existing

mechanical ventilators and may be adopted as a second-line therapy if ventilatory pa-

rameters continue to deteriorate despite LTV. It consists of the application of continu-

ous positive airway pressure with scheduled, short, intermittent pressure releases that

facilitate ventilation of carbon dioxide but are too brief to allow alveolar collapse and

thus atelectasis [13–15].

Recent work utilising a porcine model of sepsis-induced ARDS compared LTV venti-

lation with APRV [16, 17]. The results of this study suggested that APRV was poten-

tially superior to LTV in a number of significant ways. In particular, APRV prevented

clinical and histological lung injury by preserving alveolar epithelial integrity, reducing

lung oedema, preserving pulmonary surfactant and maintaining alveolar stability. In a

recent clinical trial involving 138 human subjects, early application of APRV in patients

with ARDS improved oxygenation and respiratory system compliance, decreased plat-

eau airway pressures and reduced the duration of both mechanical ventilation and ICU

stay, compared with LTV [18]. However, significant uncertainty still exists regarding

the precise mode of action of APRV, optimal ventilator settings for its implementation,

and its effect on key VILI indicators such as driving pressure [19].

The optimal mode of mechanical ventilation in PBLI is not currently known as this is

the first work of this type. However, if we extrapolate findings from the ARDSnet trial

(which was open to all causes of severe acute lung injury), we can postulate that redu-

cing inspiratory plateau pressures, inspired concentration of oxygen, extravascular lung

water (EVLW) and ventilator-induced lung injury (VILI) may result in improved patient

outcomes. In this study, we employ a high-fidelity computational simulator, trained to

replicate data from 14 real human PBLI casualties, to compare the efficacy of APRV

and LTV ventilation over the first 24 h following injury.
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Methods
Our PBLI simulator is a high-fidelity iterative computational model of human cardio-

pulmonary pathophysiology [10]. It can accommodate both mechanical and spontan-

eous ventilation, evolving acute lung injury including non-cardiogenic pulmonary

oedema as well as ventilator-induced lung injury (VILI). The simulator can be cali-

brated to match individual patient data using a high-performance computing cluster

(eight servers, each with 2 x ten-core Intel Xeon processors with 128 GB RAM) based

at the University of Warwick. The model had previously been shown to accurately pre-

dict the cardiorespiratory effects of moderate to severe primary blast lung injury in a

large animal model [20–22]. It has been validated against human cardiopulmonary

physiology [23] and is used in a broad range of clinical research [24–27]. In the absence

of medical intervention, application of PBLI in the simulator produces the same natural

history detailed in the animal modelling referenced above. A detailed description of the

mathematical principles and equations underlying the simulator is available in the on-

line data supplement.

For this study, we generated a bank of 14 in silico human casualties to act as virtual

study subjects. A detailed clinical database describing 14 military casualties with PBLI

was used to re-create each replica casualty [28]. Clinical data consisted of arterial blood

gas and ventilator settings recorded at irregular time points throughout the patients’ in-

tensive care unit admission. From this clinical data, single time points were selected for

each patient based on the following criteria: (1) the time point was recorded at the

earliest possible moment after hospital admission, and (2) the dataset across the arterial

blood gas values and ventilator settings was most complete. The PBLI computational

model was then calibrated using advanced global optimisation algorithms to accurately

replicate the pathophysiological conditions of each individual patient at these time

points. This calibration process involves finding a distinct combination of model pa-

rameters that reproduce the clinical data most accurately. The model parameters in-

clude airway resistances, alveolar compliances, vascular resistances, and permeabilities

of the alveolar membranes.

According to the Berlin definition [29], seven of our casualties had severe ARDS and

seven had moderate ARDS. The 14 in silico subjects are assumed to have no other in-

jury, be euvolaemic and weigh 70 kg. We also assume that any pneumothoraces have

been adequately drained. Table 1 gives the baseline settings of the patients.

One hour following injury (replicating the time required to reach a hospital and

undergo initial casualty management), each subject was modelled for 24 h in each

of the two ventilatory modes studied. Flexible, responsive and clinically realistic

ventilation strategies were implemented for each mode, as described in Table 2.

Ventilator settings were adjusted on an hourly basis following interrogation of

current in silico arterial blood gas values with the aim of achieving an arterial par-

tial pressure of oxygen of 9.0 kPa (67.5 mmHg). The simulator applied constant

pressure generated mechanical ventilation when applying APRV and constant flow

generated mechanical ventilation when applying ARDSnet ventilation. The simula-

tions are performed with a time step of 10 ms. Measurements of key pulmonary,

ventilatory and cardiovascular physiological parameters were made at one hourly

intervals. Additionally, driving pressure (ΔP) and mechanical power (MP) were also

calculated at one hourly intervals. These novel indices are independent, dynamic
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and patient-centric targets for reducing VILI (and potentially mortality) in ARDS

[30–32]. Driving pressure (ΔP) is defined as the difference between plateau pres-

sure (Pplat) and the total positive end expiratory pressure (PEEPt):

ΔP ¼ Pplat � PEEPt ð1Þ

Table 1 Baseline characteristics of patients

Parameters Mean Std

FiO2 0.67 0.2

Tidal volume, ml 580 94

PEEP, cmH2O 6 1.8

Vent rate, bpm 16 3.0

Duty cycle 0.44 0.1

PaO2, kPa 13.49 7.4

PaCO2, kPa 5.83 1.0

PF ratio, mmHg 171 113

SpO2, % 92 7.6

pH 7.35 0.1

Base excess, mmol/l -2.05 3.5

Haemoglobin, g/dl 11.5 2.4

Mean art. pressure, mmHg 95 14

Heart rate, bpm 93 9

Mean pulmonary art. pressure, mmHg 20 4

Cardiac output, l/min 5.4 0.7

EVLW, ml 708 155

Table 2 Ventilatory protocol applied by the simulator over the 24-h duration of the study

Ventilatory parameters ARDSnet (LTV) APRV

Initial settings Tidal volume of 6 ms/kg
Respiratory rate 16 bpm
PEEP 10 cm H20
Plateau pressure limited to 30
cmH2O
FiO2 50%
I:E ratio 1:1

PHigh–25 cmH2O (20–30 cmH2O)
PLow–0 cmH2O
THigh–5 s (4–6)
TLow–0.5 s (0.35–0.6)*
PHigh limited to 30 cmH2O
FiO2 50%

One hourly adjustments If PaO2 < 9.0 kPa, increase FiO2

along scale below.
If PaO2 > 10.0 kPa, decrease
FiO2 along scale below.
Minimum FiO2–30%

If PaO2 < 9.0 kPa, increase FiO2 along the scale
below and increase PHigh by 1 cmH2O. If pressure
limit is reached, increase THigh by 0.1 s.
If PaO2 > 10.0 kPa, decrease FiO2 along scale below
and decrease PHigh by 1 cmH2O. If PHigh is 20
cmH2O or less, decrease THigh by 0.1 s.

FiO2 scale 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FiO2-based adjustments FiO2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
PEEP
6 8 10 12 14 16 18 20

pH-based adjustments** If pH is 7.25 or less, increase
respiratory rate by 2 (up to 34
bpm).
If pH is 7.5 or greater, decrease
respiratory by 2 (down to 12)

If pH is 7.25 or less, increase PHigh by 1 cmH2O. If
PHigh ≥ 25 and Thigh < 6, increase THigh by 0.1 s.
If pH ≥ 7.5 – if PHigh > 20, decrease PHigh by 1
cmH2O.
If PHigh ≥ 25 and THigh ≥ 5.5, decrease THigh by 0.1 s.

*T low will approximate to 75% peak-expiratory flow rate
**If casualty pH deviates above 7.5, an alkalotic management strategy will be introduced to the protocol
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The value of Pplat is calculated directly from the simulator and represents the end-

inspiratory lung pressure. The PEEPt is taken as the end-expiratory lung pressure. A

value of ΔP of 15 cmH2O or greater is strongly associated with mortality [33].

Mechanical power is an index that attempts to describe the total energy delivered to

the lungs by the ventilator and is calculated as:

MP ¼ 0:098� VR� VT � Ppeak−0:5� ΔP
� � ð2Þ

where VR is the ventilator set respiratory rate, VT is the tidal volume and Ppeak is the

peak inspiratory pressure. Values of MP greater than 22 J/min have been shown to in-

dependently predict VILI and increased mortality [34]. All data are presented as mean

(± SE).

Results
Figure 1 shows the results of model calibration to values obtained from data for arterial

partial pressures of oxygen and carbon dioxide (PaO2, PaCO2) and arterial pH, as Bland

Altman plots. The model was also calibrated to nominal values of cardiac output (CO),

extravascular lung water (EVLW), mean arterial pressure (MAP) and mean pulmonary

arterial pressures (MPAP) at the same time. These additional parameters are recorded

in Table 1. The physiology of one of the in vivo casualties was too deranged to model.

Casualty number 9 had initial PaCO2 values ranging from 12.0 to 14.3 kPa over the first

4 h of hospital treatment, and in the absence of a clinical explanation, the simulator

was unable to replicate the data. The remaining 13 in silico casualties completed 24 h

of ventilatory modelling with each ventilatory mode. An alkalosis management strategy

to correct a pH of greater than 7.5 was not required.

Effect of ventilation mode on gas exchange

Figure 2 shows the hourly results for inspired concentration of oxygen (FiO2), PaO2,

PaCO2 and PF ratios (PaO2/FiO2). Values for both FiO2 and PaO2 stabilise by approxi-

mately hour 12 of the study and then remain static for the remainder of the trial. By

the end of 24 h, a mean FiO2 of 0.70 (± 0.08) and 0.67(± 0.08) was applied, achieving a

mean PaO2 of 10.24 (± 1.14) kPa and 9.58 (± 0.54) kPa in the LTV and APRV arms, re-

spectively. This mean value is skewed above the trial target value of achieving a PaO2

of 9.0 kPa by two moderate cases responding very well to mechanical ventilation on the

lowest FiO2 permitted by our ventilatory protocol (0.3). PaCO2 in the LTV arm remains

lower than that seen in the APRV arm throughout the study with final mean values of

Fig. 1 Bland Altman plots for simulator outputs with reference to data. Mean is represented by the solid
line, while the dashed lines indicate ± 1.96 standard deviation from the mean
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7.20 (± 0.45) kPa and 8.11 (± 0.40) kPa, respectively. PF ratios diverge and stabilise after

approximately 10 h of mechanical ventilation with final mean values of 157 (± 42)

mmHg and 137 (± 26) mmHg for LTV and APRV, respectively.

Effect of ventilation mode on ventilatory parameters

Figure 2 also shows the hourly results for end-expiratory lung volume (EELV) and peak

ventilatory pressures. Predictably, EELV quickly increases in our casualties once they

are mechanically ventilated. Values then remain relatively constant throughout the

remaining 24-hour period. Casualties in the LTV arm had a mean EELV of 2103 (±

165) ml at the end of the trial compared to a mean EELV of 2385 (± 85) ml in the

APRV group. Peak airway pressure in the LTV group remains slightly higher than that

seen in the APRV group throughout the trial period with mean values of 30.4 (± 2.2)

cmH2O and 27.1 (± 1.2) cmH2O, respectively. As dictated by our ventilatory protocol,

mean tidal volume in the LTV group is 420 (± 2.79) ml (approximating to 6 ml/kg) at

the end of the trial.

Effect of ventilation mode on haemodynamics

Figure 3 demonstrates the course of mean arterial pressure, cardiac output and mean

pulmonary artery pressure during the study. Mean arterial pressures are relatively con-

stant in both modes of ventilation with final mean values of 97.0 (± 3.1) mmHg in the

LTV group and 94.3 (± 4.0) mmHg in the APRV group. Similarly, there is little differ-

ence in mean pulmonary arterial pressure with final mean values of 22.8 (± 1.5) mmHg

for LTV and 22.6 (± 1.1) mmHg for APRV. Mean cardiac output at the end of the trial

is 5.38 (± 0.22) l/min and 5.23 (± 0.23) l/min in the LTV and APRV arms, respectively.

Fig. 2 Graphical results for hourly changes in arterial partial pressures of a oxygen, b carbon dioxide, c end
expiratory lung volume, d inspired concentration of oxygen, e PF ratios, and f peak ventilatory pressures
(Ppeak). The LTV arm is represented in blue and the APRV arm is in red
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Effect of ventilation mode on VILI indices and extravascular lung water

Figure 4 shows the hourly results for driving pressure, plateau pressures and extravas-

cular lung water. The driving pressure increases to a steady state mean value of 8.6 (±

0.85) cmH2O and 11.9 (± 0.8) cmH2O in LTV and APRV, respectively, within 8 h of

mechanical ventilation. The mean plateau pressure in the LTV group is 25.1 (± 2.2)

cmH2O. Predictably, extravascular lung water decreases in both arms of the study once

mechanical ventilation is initiated and again reaches a stable value following approxi-

mately 8 h of mechanical ventilation. At 24 h, the mean extravascular lung water con-

tent in the LTV group is 600 (± 41) ml and 501 (± 38) ml for the APRV group. Figure 5

shows the changes in ventilator-delivered mechanical power and its constituent parts,

including the VR, VT and the pressure component Ppeak − 0.5 × ΔP, separately. Figure 5

also displays the mechanical energy delivered by the ventilator in a single breath, calcu-

lated by removing VR from the power equation (Fig. 5b). Final values of mechanical

power were calculated to be 20.7 (± 2.6) J/min for LTV and 11.9 (± 1.0) J/min in APRV.

Discussion
This study presents an examination of the potential outcomes for a cohort of patients

suffering PBLI managed with two different ventilatory strategies during their first 24 h

of mechanical ventilation. Our ventilatory protocol proved to be a reliable and robust

decision-making framework. It achieved stable ventilated casualties within approxi-

mately 8–10 h despite significant lung injury in most cases.

The study suggests a good response to both LTV-directed mechanical ventilation and

APRV in young otherwise healthy adults with PBLI. Epidemiological data gathered

Fig. 3 Graphical results for hourly changes in a cardiac output (CO), b mean arterial pressure (MAP), and c
mean pulmonary arterial pressure (MPAP). The LTV arm is represented in blue and the APRV arm is in red

Fig. 4 Graphical results for hourly changes in key indices of ventilator-induced lung injury: a driving
pressures, b plateau pressures (Pplat), and c extravascular lung water (EVLW). The LTV arm is represented in
blue and the APRV arm is in red
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following the conflict in Afghanistan demonstrates a good response to LTV in young

adult males with PBLI. This response is replicated in this modelling study. APRV also

performs well and achieves the target arterial oxygenation and greater functional re-

sidual capacity implying reduced atelectasis. Our most important mortality-related out-

comes are driving pressure and mechanical power. APRV applied a greater driving

pressure than LTV throughout the study; however, in this cohort of patients, driving

pressure in both modes of ventilation remained comfortably below the 15 cmH2O ceil-

ing above which mortality is predicted to increase. Applied mechanical power, on the

other hand, is significantly lower in the APRV group. Patients ventilated with APRV ex-

perienced lower levels of applied mechanical power to the respiratory system, with all

the patients in the APRV arm below the 22 J/min threshold for increased mortality. In

comparison, 4 out of 13 patients in the LTV arm breached this threshold. As an index

of risk for VILI, the concept of mechanical power is of growing interest within the clin-

ical community [35, 36]. Our results indicate that LTV delivers a higher mechanical

power to the lung than APRV (20.7 J/min vs 11.9 J/min). A closer examination of the

component parts of the mechanical power applied by the ventilator to our casualties

(Fig. 5 c–e) reveals that the mechanical ventilatory rate required in the APRV cohort

was consistently less than in the LTV group. Removing the effect of ventilatory rate

from the mechanical power calculation (as seen in Fig. 5b), we see that in both modes

of ventilation, the energy delivered in a breath then approximates in value. This high-

lights the importance of ventilatory rate as a factor in the mechanical power delivered

to the respiratory system during mechanical ventilation.

While APRV performs as well as, and in some important respects better than LTV in

this study, the clinically and statistically significant benefits relating to oxygenation that

Fig. 5 Graphical results for hourly changes in a mechanical power and b mechanical power without the
ventilatory rate component. The figures also show hourly changes in the main components of the power
equation (Eq. 2 in the text), including c ventilatory rate (VR), d tidal volume (VT) and e the pressure
component. The LTV arm is represented in blue and the APRV arm is in red
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have been demonstrated in animal models of acute lung injury were not seen [16, 17].

Note, however, that such models use sepsis or applied chemical injury to induce acute

lung injury. Sepsis (or other ongoing inflammatory processes) produce a persisting sys-

temic epithelial failure and inflammatory cascade unlike the more geographic injury

seen in primary blast lung injury. Indeed, trauma-related acute lung injury is recognised

as a milder and more responsive disease compared to non-trauma-related acute lung

injury [37, 38]. Thus, we can expect that differences related to oxygenation between ef-

fective treatments will be more marginal in PBLI. Additionally, these animal trials pre-

date our understanding of the importance of driving pressure and applied mechanical

power as predictors of VILI and patient outcomes. Human trials of APRV do demon-

strate more modest outcomes for APRV when compared to LTV ventilation and are

more consistent with our results [39–41]. When combined with the application of an

adaptive and responsive ventilatory protocol, as would be experienced by human cas-

ualties in intensive care, rather than a fixed ventilatory pattern typically seen in animal

modelling, the results for APRV reported here seem both credible and promising.

The study has a number of limitations. The size of the study is limited to 13 patients,

constrained by the availability of adequate clinical datasets. This represents the best

data currently available and facilitates our observational and iterative study in which we

do not seek to offer outcomes of statistical significance. The casualties are all young

adult males with no prior physical co-morbidity and no other injuries. This should be

considered when extrapolating the results described to the wider population. The

pharmacological effects of the sedative drugs that would be required to facilitate mech-

anical ventilation are not modelled. As a result, our in silico casualties have an artifi-

cially normal native mean arterial blood pressure and cardiac output. To attenuate the

effects of confounding factors, we further assume that the patients are fully sedated,

autonomic reflex modules are not enabled and patient ventilation is fully determined

by the ventilator, potentially reducing the impact on indices of VILI [42]. Although the

extensive computational model allows for the calculations of surrogate markers of VILI

such as mechanical power and driving pressure, these need to be supported by direct

histological evidence from clinical studies. Additionally, no changes were made to the

underlying pathological insult suffered by each casualty over the 24 h of ventilation in

which this study occurs.

Conclusions
The results of this study suggest that PBLI casualties will respond well to either of the

two modes of mechanical ventilation considered. APRV achieved the specified ventila-

tory targets with a lower PF ratio, sub-injury threshold levels of mechanical power, and

lower levels of extravascular lung water compared to conventional LTV. Use of APRV

may therefore offer casualties with PBLI important mortality-related benefits.
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