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Abstract

Background: Continuous external negative pressure (CENP) during positive pressure
ventilation can recruit dependent lung regions. We hypothesised that CENP applied
regionally to the thorax or the abdomen only, increases the caudal end-expiratory
transpulmonary pressure depending on positive end-expiratory pressure (PEEP) in lung-
injured pigs. Eight pigs were anesthetised and mechanically ventilated in the supine
position. Pressure sensors were placed in the left pleural space, and a lung injury was
induced by saline lung lavages. A CENP shell was placed at the abdomen and thorax
(randomised order), and animals were ventilated with PEEP 15, 7 and zero cmH,0 (15
min each). On each PEEP level, CENP of — 40, — 30, — 20, — 10 and 0 cmH,0 was
applied (3 min each). Respiratory and haemodynamic variables were recorded. Electrical
impedance tomography allowed assessment of centre of ventilation.

Results: Compared to positive pressure ventilation alone, the caudal transpulmonary
pressure was significantly increased by CENP of < 20 cmH,O at all PEEP levels. CENP of
— 20 cmH,0 reduced the mean airway pressure at zero PEEP (P = 0.025). The driving
pressure decreased at CENP of < 10 at PEEP of 0 and 7 cmH,0 (P < 0.001 each) but
increased at CENP of — 30 cmH,O during the highest PEEP (P = 0.001). CENP of — 30
cmH,0 reduced the mechanical power during zero PEEP (P < 0.001). Both elastance
(P < 0.001) and resistance (P < 0.001) were decreased at CENP < 30 at PEEP of 0 and 7
cmH-,0. Oxygenation increased at CENP of < 20 at PEEP of 0 and 7 cmH,0 (P < 0.001
each). Applying external negative pressure significantly shifted the centre of aeration
towards dorsal lung regions irrespectively of the PEEP level. Cardiac output decreased
significantly at CENP -20 cmH,0 at all PEEP levels (P < 0.001). Effects on caudal
transpulmonary pressure, elastance and cardiac output were more pronounced when
CENP was applied to the abdomen compared with the thorax.
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Conclusions: In this lung injury model in pigs, CENP increased the end-expiratory
caudal transpulmonary pressure. This lead to a shift of lung aeration towards dependent
zones as well as improved respiratory mechanics and oxygenation, especially when
CENP was applied to the abdomen as compared to the thorax. CENP values < 20 cmH,O
impaired the haemodynamics.

Keywords: Continuous external negative pressure, CENP, Negative pressure ventilation,
Mechanical ventilation, Acute respiratory distress syndrome, ARDS, Lung mechanics,
Pleural pressure, Transpulmonary pressure, Electrical impedance tomography

Background

In controlled mechanical ventilation, a positive pressure is applied to produce an
inspiratory flow into the lungs (positive pressure ventilation, PPV). Although PPV
may be lifesaving, it has the potential to damage the lungs, a phenomenon that
has been termed ventilator-induced lung injury (VILI). PPV can cause over-
distension of gravitationally non-dependent lung regions (volutrauma), as well as a
cyclic collapse and reopening in gravitationally dependent regions (atelectrauma)
[1]. During PPV, mechanical stress is transferred to the lungs and further ampli-
fied at the interface between opened and collapsed alveoli. These mechanisms are
especially relevant in acute respiratory distress syndrome (ARDS), where lung aer-
ation is usually inhomogeneous. Furthermore, PPV frequently induces circulatory
depression due to increased intrathoracic pressure [2]. While healthy subjects may
tolerate these changes [3, 4], they can be clinically relevant in patients with re-
spiratory or haemodynamic impairment.

Negative pressure ventilation (NPV) mimics physiologic spontaneous breathing
and is a possible alternative of conventional PPV. NPV applies alternating external
negative pressure to move the chest wall and induces an intrathoracic negative
pressure, leading to an inflow of air, and was shown to reduce atelectasis and to
increase oxygenation compared with PPV [5, 6]. NPV with a continuous negative
instead of alternating external pressure, in the following referred to as continuous
external negative pressure (CENP), and as performed with a whole-body chamber,
was shown to improve oxygenation in rabbits [7]. In piglets, CENP in addition to
PPV was as effective in recruiting and stabilising alveoli as positive end-expiratory
pressure (PEEP) [8]. CENP in addition to PPV was further shown to improve lung
function, to reduce lung injury and to selectively recruit dependent lung areas in
pigs [9, 10], as well as to improve lung function in ARDS patients [11]. In con-
trast to whole-body chambers, CENP can be obtained with a shell covering only
the ventral thoracic-abdominal wall [12].

In this study, we aimed to determine whether CENP, as applied regionally on
the thoracic or abdominal wall, and combined with PPV, improves the respiratory
function and mechanics, as well as haemodynamics in a model of lung injury in
pigs. We hypothesised that, depending on the level of PEEP, regional CENP would
increase the end-expiratory transpulmonary pressure in dorsal-caudal lung regions
(TPcauq), leading to a redistribution of aeration and ventilation, as well as im-

proved oxygenation and respiratory system mechanics.
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Methods

The protocol of the study was approved by the local animal welfare committee and the
Government of the State of Saxony, Germany (DD24.1-5131/394/76; DD24.1-55131/
394/8; TVV 5/201; NTP-ID: 00014251-1-0). All animals received the best care in com-
pliance with the federal Principles of Laboratory Animal Care.

Anaesthesia and instrumentation

Eight female pigs (57.96 + 9.44 kg) were anaesthetised with intravenous (i.v.) midazolam
(1 mg/kg/h) and ketamine (15 mg/kg/h, iv.). The trachea was orally intubated (inner
diameter 8.0, Riisch, Germany), and animals were mechanically ventilated (Evita XL, Dré-
gerwerk AG & Co. KGaA, Liibeck, Germany). Continuous muscle paralysis was achieved
by atracurium (3 mg/kg/h, i.v.). During anaesthesia, a balanced crystalloid solution was in-
fused continuously. Arterial blood pressure was maintained > 60 mmHg by continuous
iv. infusion of norepinephrine as necessary. Surgical instrumentation included surgical
preparation and catheterization of the right jugular vein and carotid artery, as well as the
urinary bladder. A thermo-dilution pulmonary artery catheter was placed through an
8.5 Fr. central venous sheath. A gastric feeding tube as well as a commercially available
oesophageal balloon catheter were introduced into the oesophagus, and the correct pos-
ition of the latter was confirmed as described elsewhere [13].

Mechanical ventilation

Initially, the lungs were ventilated with intermittent PPV (IPPV) with tidal volume (V1)
of 6 mL/kg, the flow of 35 1/min, inspired fraction of oxygen (F;O,) of 1.0, and inspira-
tory to expiratory time ratio (I to E) of 1:1. Respiratory rate (RR) was set to achieve
PaCO, of 35 to 45 mmHg. PEEP was set to 5 cmH,O and airway pressure was limit of
45 ¢cmH,O0.

Placement of pleural pressure sensors

Custom-made pleural pressure sensors were placed into the left pleural space by video-
assisted thoracoscopy (VATS) with animals placed in the right lateral decubitus pos-
ition. To allow surgical access, a bronchial blocker (Riisch EZ Blocker, Teleflex, Wayne,
PA, USA) was placed and one-lung ventilation conducted. During one-lung ventilation,
V1 was set to 5 mL/kg and RR was adjusted to achieve PaCO, of 35 to 45 mmHg. After
the collapse of the left lung was achieved, three pressure sensors were placed as de-
scribed recently [14]. Briefly, one sensor was placed each at the 4th to 5th rib ventral,
4th to 5th rib dorsal and the 8th to 9th rib dorsal. Two-lung ventilation was then re-
established, and the lungs were re-expanded using continuous positive airway pressure
(CPAP) of 40 cmH,O for 30 s.

Induction of lung injury

Lung injury was induced by lung lavage with warmed (37 to 39 °C) 0.9 % saline
(35 mL/kg). Four lavages were performed in the prone position; animals were turned to
the supine position, and another four lavages were performed. During the induction of
lung injury, the norepinephrine infusion was adjusted to keep mean arterial pressure
> 60 mmHg, while the ventilator settings were kept unchanged. The procedure was
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stopped if PaO,/F;O, < 100 mmHg for at least 30 min or the total number of lavages

(n = 8) was achieved.

Experimental protocol

The CENP shell was placed in thoracic or abdominal position, and the sequence of
positions was randomised using sealed envelopes. In each position, PEEP levels of
15 ¢cmH,0, 7 cmH,0 and zero cmH,O were applied in this sequence (15 min each).
Other ventilator settings were identical as previously described for two-lung ventilation.
The lung volume history was reset prior each PEEP level by disconnection of the venti-
lator circuit, followed by a lung recruitment manoeuvre. The recruitment manoeuvre
consisted of a stepwise increase of Vt at a constant PEEP of 15 ¢cmH,0O, until airway
plateau pressure exceeded 40 cmH,0O, as described elsewhere [4]. At each PEEP level,
CENP of - 40, - 30, — 20, - 10 and 0 cmH,O was applied in this sequence (3 min each,
Pegaso Vent, Dima, Italy). The sequence of interventions is illustrated in Fig. 1.

Measurements

Respiratory as well as haemodynamic variables, including cardiac output (CO), were
measured after 3 min of stabilisation at each CENP level. Maps of ventilation by elec-
trical impedance tomography (EIT), flow, airway pressure and pleural pressures were
recorded continuously, and tracings for the last 30s of each step were used for this

analysis.

Gas exchange and haemodynamics

Arterial blood gas analyses (aBGA) were performed just before starting each PEEP level
as well as during CENP of - 40, — 20 and zero cmH,O using the ABL 80 Flex Basic
(Radiometer, Denmark). Mean arterial (MAP), mean pulmonary artery pressures
(MPAP), thermodilution CO and heart rate were obtained from the haemodynamic
monitor (Philips IntelliVue MP70, Boblingen, Germany).

A)  Induction of Anaesthesia Randomisation End of Experiment B)

Instrumentation | Lavage

Randomised Intervention (A-B or B-A)

Baseline 1  Baseline 2

PEEP 15 cmH,0 PEEP 7 cmiH,0 PEEP 0 cmH,0
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Fig. 1 Time course of the experiment (a) and positioning of the shell on the pig thorax (b). Legend: VATS,
video-assisted thoracoscopy; PEEP, positive end-expiratory pressure; CENP, continuous external
negative pressure
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Respiratory signals and regional pleural pressure measurement

Airway pressure (Pay) and flow were acquired from the ventilator (Evita XL, Drager-
werk AG & Co. KGaA, Liibeck, Germany) using a custom-build software interacting
with the EvitadLab protocol. Regional pleural pressure at ventral, dorsal and caudal po-
sitions were measured continuously through custom-made air-tight chambers (30 x 30
x 1 mm each) connected via thin incompressible tubings to pressure transducers [14].
Furthermore, Paw at the Y-piece and oesophageal pressure were measured continu-
ously using pressure transducers (163PC01D48-PCB, FirstSensors AG, Berlin,
Germany). The signals were analogue-to-digital converted and recorded for off-line
analysis using a custom software (LabVIEW, National Instruments, Austin, TX, USA).

Respiratory system mechanics and mechanical power

Respiratory system elastance (E) and resistance (R) were determined by fitting of the
equation of motion to the acquired respiratory signals by means of multiple linear re-
gression. Additionally, the percentage of volume-dependent elastance was determined
(%E,) [15, 16]. Regional transpulmonary pressures (TP) in the aforementioned regions
were calculated by subtracting the corresponding pleural pressure from Pavw. Mechan-
ical work (MW) and energy (ME) were determined by numerical integration of the tidal
pressure-volume curve by the trapezoidal rule [17]. Mechanical power per cycle (MP)
was determined by multiplying ME and RR: MP = MW RR [18].

Distribution of aeration and ventilation

The distributions of aeration and ventilation were assessed by EIT (PulmoVista® 500,
Dragerwerk AG & Co. KGaA, Liibeck, Germany) with an operating frequency of
130 kHz and 50 frames - s™'. Raw measured EIT data were 50-Hz filtered and recon-
structed using the manufacturer’s commercially available software. Reconstruction was
done using the Dréger EIT Data Analysis Tool, Version 6.3. The reference slice for EIT
reconstruction was manually set to correspond with the lung during the disconnected
ventilator circuit just before the start of each PEEP level. Each EIT image of the result-
ing reconstructed temporal image series consisted of 32 x 32 pixels. The global region
of interest (ROI) was defined a priori as a centred circle with radius of 16 pixel. This
ROI was subdivided into four ROIs from ventral to dorsal, e.g. ventral, mid-ventral,
mid-dorsal and dorsal. The centre of aeration (CoA) and the centre of ventilation
(CoV) was determined as the position of the median impedance at end-expiration, and
of the median impedance change, respectively, along the ventral-dorsal axis.

End of experiment
At the end of the protocol, pigs were killed under deep anaesthesia with 2 g thiopental
i.v. followed by potassium chloride i.v. (50 mL, 1 M).

Statistical analyses

Values are displayed as mean + standard deviation (SD) or median [1* to 3 quartile],
as appropriate. Repeated measures ANOVA was applied to a linear mixed-effects model
with factors position, PEEP and CENP [19]. Post hoc comparisons between CENP steps
were adjusted according to Sidak [20]. Comparisons for each CENP step were
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performed using paired ¢ test. Statistical significance was accepted at P < 0.05. All tests
were conducted with the R statistical programming language [21].

Results

All animals survived until the end of the protocol. In seven animals, injury was
achieved with eight saline lavages, while one animal received seven lavages. The se-
quence of CENP shell positions did not affect the following results (P > 0.99).

Regional pleural and transpulmonary pressures

Both the shell position and the CENP levels significantly influenced pleural pressures
(Table 1). At zero PEEP and CENP of — 30 cmH,O, end-expiratory TP.,.q was sig-
nificantly higher when the shell was placed in abdominal than in thoracic position
(P < 0.001) (Fig. 2). At PEEP of 7 cmH,0O, mean TP,,,q became positive at CENP
of — 10 cmH,O with the shell in abdominal position, but only at CENP of — 30 cmH,0O
in thoracic position. Depending on PEEP, lower CENP resulted in increased end-
expiratory TP,q (Table 1). Transpulmonary pressure gradient from ventral to caudal
(TPyent-TPcaua) decreased significantly with lowering CENP.

Other respiratory variables

Respiratory variables are summarised in Table 2. V1 and RR did differ neither between
CENP levels nor between shell positions. Minute ventilation was significantly lower
with the shell in thoracic position at PEEP of both zero and 15 cmH,0. Peak Pay was
reduced at CENP < 20 cmH,0 at PEEP of 0 and 7 cmH,O, but not affected by shell
position. The effects of the shell position on driving pressure (APavw) did not reach
statistical significance in post hoc tests. However, the driving pressure decreased at
CENP of < 10 with PEEP of 0 and 7 cmH,O (P < 0.001 each), but increased at CENP
of — 30 cmH,O during highest PEEP (P = 0.001). Compared to zero CENP, the applied
MP was significantly lower at CENP levels lower than — 30 cmH,O and zero PEEP
(Table 2).

The respiratory system mechanics are described in Table 3. The elastance was lower
with the shell in abdominal than in thoracic position at CENP of — 30 cmH,O when
combined with PEEP of 7 cmH,0O. CENP < 30 cmH,O significantly decreased E at
PEEP of 0 and 7 cmH,O (Fig. 2), but post hoc tests did not reveal differences at PEEP
of 15 cmH,0. While the resistance was not significantly affected by the shell position,
CENP < 30 cmH,O decreased R at PEEP of 0 and 7 cmH,O but not at PEEP of
15 cmH,0. The index of over-distension (%E,) was not affected by the shell position or
CENP level (Table 2).

Gas exchange

Following lung lavage, PaO,/F;O, dropped from 672.63 + 57.27 to 57.74 + 19.58 mmHg
(P < 0.001). At PEEP of 7 cmH,0O and CENP of — 20 cmH,0, PaO,/FO, was sig-
nificantly higher with the shell in abdominal than in thoracic position (Fig. 3). CENP
of - 40 and — 20 cmH,O significantly increased PaO,/F;O, at PEEP of 0 and 7 cmH,O0,
respectively, but not at PEEP of 15 cmH,O. Further variables of gas exchange during
interventions are described in Table 3. PaCO, and arterial pH did not differ between
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Fig. 2 End-expiratory caudal transpulmonary pressure (left) and respiratory system elastance (right). Legend:
CENP, continuous external negative pressure; PEEP, positive end-expiratory pressure. Triangles indicate
different shell positions (abdomen and thorax), colours represent different PEEP levels, super-posed
numbers indicate significance (P < 0.05) of the respective CENP level compared with the CENP level of the
number and stars indicate difference between both positions

shell positions or CENP levels. Accordingly, arterial pH was similar between CENP
levels.

Distribution of aeration and ventilation

CENP shifted the CoA and CoV towards dependent (dorsal) lung regions at every PEEP
level (Fig. 3). While a CENP of — 10 cmH,O induced significant changes at PEEP of
7 cmH,0, a CENP of — 20 cmH,O redistributed aeration at PEEP of 15 cmH,0O.

Haemodynamics

CO and MPAP were lower during abdominal compared to thoracic CENP at zero PEEP
and CENP of — 30 cmH,O (Fig. 4, Table 3). At zero PEEP, CO decreased with both
lowest CENP and highest PEEP levels. MAP was not affected by shell position, but de-
creased significantly at CENP < 20 cmH,O and PEEP of 15 cmH,O.

Discussion

We found that in this model of acute lung injury in pigs under PPV, CENP (1)
increased transpulmonary pressures in dorsal lung regions, (2) shifted aeration and
ventilation towards dependent zones, (3) increased oxygenation, (4) reduced driving
pressure and mechanical power and (5) decreased mean arterial pressure and cardiac
output. These effects were dependent on PEEP, but observed mainly with CENP
< 20 cmH,O and applied to the abdomen.
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Fig. 3 Arterial oxygenation (PaO,, left) and cardiac output (CO, right). Legend: CENP, continuous external negative
pressure; PEEP, positive end-expiratory pressure. Triangles indicate different shell positions (abdomen and thorax),
colours represent different PEEP levels, super-posed numbers indicate significance (P < 0.05) of the respective
CENP level compared with the CENP level of the number and stars indicate difference between both positions

To the best of our knowledge, this was the first study examining the effects of region-
ally applied CENP on respiratory function and mechanics in experimental lung injury.
Our study has strengths. Both the animal species and the lung injury model represent
established methods of experimental investigations on mechanical ventilation and VILI
[22]. The saline lung lavage induced a significant impairment of oxygenation, which
met the severe ARDS criteria according to the Berlin definition [23]. Of note, a lavage-
only model cannot replicate all characteristics of clinical presentation of ARDS. How-
ever, this was not necessary herein as we sought to use a model of recruitable atelec-
tasis to investigate the effects of CENP levels and positions and did not analyse
pulmonary inflammation [24]. The appropriateness of the model was underlined by sig-
nificant differences in the distribution of ventilation and oxygenation, which depended
upon the shell position, as well as CENP and PEEP levels.

Confirming our main hypothesis, CENP resulted in higher end-expiratory TP ,,q.
This finding is in line with another study showing that CENP applied to the thorax and
abdomen increased transpulmonary pressures [10]. However, in our study, such effects
were achieved with the regional application of CENP instead of a whole-body chamber.
In our trial, TP.,.q obtained with PEEP of 7 cmH,O and CENP of — 20 cmH,O was
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Fig. 4 Centre of aeration (left) and centre of ventilation (right) as a percentage from dorsal. Legend: CENP,
continuous external negative pressure; PEEP, positive end-expiratory pressure. Triangles indicate different
shell positions (abdomen and thorax), colours represent different PEEP levels, super-posed numbers indicate
significance (P < 0.05) of the respective CENP level compared with the CENP level of the number and stars
indicate the difference between both positions

similar to that achieved with PEEP of 15 cmH,O without CENP. Accordingly, our re-
sults are in line also with another study showing that improved lung recruitment was
achieved at lower distending pressures when external negative pressure was applied to
PPV with PEEP [25]. Our EIT analyses revealed namely that the ventilation of dorsal
zones increased when CENP was applied. In fact, the distribution of ventilation and
TP auq Obtained with PEEP of 7 cmH,O combined with CENP of — 20 cmH,O were
similar to that observed with PEEP of 15 cmH,O without CENP. Differences between
PPV alone and PPV + CENP may be explained by the non-selective increase of the glo-
bal transpulmonary pressure and consecutive persistence of the physiologic dorso-
ventral pleural pressure gradient during PPV with PEEP. In fact, the application of ex-
ternal negative pressure on the abdomen CENP decreased the ventro-dorsal pleural
pressure gradient in another experimental study [25]. The vertical gradient of transpul-
monary pressure, which is associated with lung collapse in dependent lung regions, is
induced by gravitational forces [26]. One hypothesis of applying local negative pressure
externally to the thorax is to decrease or even invert this vertical gradient to reduce
derecruitment and shift the ventilation towards dependent lung regions. Indeed, the
transpulmonary pressure gradient from ventral to caudal regions decreased with lower-
ing CENP.

It is worth noting that CENP more effectively increased TP,,q when CENP was ap-
plied to the abdomen than to the thorax. A possible explanation is that the shape and
stiffness of the porcine thorax differs from that of humans. Also, abdominal CENP may
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more effectively dislocate the diaphragm [10], resulting in more pronounced effects on
pleural pressures. The dislocation of the diaphragm increased end-expiratory lung vol-
ume (EELV) in a bacterial infection model in sheep [26]. Although EELV was not
assessed in our study, the results of the gas exchange suggest an increase EELV com-
parable to that resulting from PEEP alone.

CENP increased end-expiratory TP.,,q, which reached positive values at certain com-
binations of CENP and PEEP levels. Indeed, at PEEP of 7 cmH,0, TP,,,q was signifi-
cantly higher with CENP of — 20 cmH,0O than without CENP. Accordingly, the CoA
was significantly shifted towards dorsal regions and oxygenation was significantly
higher with these settings. These results indicate effective recruitment induced by
CENP on moderate PEEP and are in line with other experimental studies [9, 10]. Al-
though TP.,.q increased and ventilation was shifted towards dependent lung zones with
CENP, oxygenation improved only at the lowest level of CENP during zero PEEP and
did not improve further during the highest PEEP. Possibly, the recruitment of lungs
achieved a maximum at those CENP and PEEP levels. Our observation that CENP did
not improve the respiratory system elastance but driving pressure increased at a PEEP
of 15 ¢cmH,0, further supports this hypothesis. In fact, this behaviour resembles the
sigmoidal relationship between lung volume and airway pressure. Worthwhile noting,
for a high PEEP of 15 cmH,0, a value well above PEEP corresponding to best compli-
ance (values not shown), both transpulmonary pressure and airway driving pressure in-
creased with CENP possibly indicating increased VILI. However, the tidal movement
was possibly constrained at high PEEP values by the shell and additional CENP might
have had no additional effect of stabilisation, at a fully recruited lung. Prolonged expir-
ation or a more unstable heterogeneous model of ARDS is needed for a thorough
evaluation of this effect.

Mechanical power was only significantly affected by CENP during zero PEEP, while
there were no differences during PEEP of 7 and 15 cmH,O. The fact that CENP re-
duced mechanical power during zero PEEP is likely explained by decreased elastance
and resistance, while two other variables contributing to MP, e.g. V1t and RR, did not
differ between CENP levels. During PEEP of 15 cmH,O, the significant but small in-
crease of the driving pressure obviously did not result in increased mechanical power,
while no other determinants of MP did differ between CENP levels during the highest
PEEP.

It is worth noting that the reduction of CO and MPAP depended on the position of
the shell, that is, the region CENP was applied, as well as its pressure level. This obser-
vation might be explained by differences in venous pooling. These findings contrast
with the results of a trial in patients with ARDS showing that locally applied external
negative pressure improved cardiac indexes and blood pressure [11]. However, in the
latter study, CENP was applied using a poncho-like system wrapping the complete
upper thorax and upper abdomen. Similarly, MAP and CO did not differ between PPV
with and without CENP, while it decreased over time during conventional PPV without
CENP in an iron lung-like cast wrapping pigs from the lower limbs up to the xiphoid
level [9]. Additionally, in that study [9], a CENP of — 5 cmH,O was applied, which is
considerably higher than the pressures used in the present trial. In a bacterial infection
model in sheep, CENP ranging between — 60 and — 80 cmH,O induced significant
haemodynamic impairments [26]. It is worth of note that while a CENP of — 20 cmH,O
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increased TP.,,q, shifted the CoV and increased oxygenation, haemodynamic impair-
ment occurred only at lower CENP levels.

Limitations

This study has limitations. First, it was explorative in nature, due the lack of pre-
existing data, which precluded sample size estimation. However, it suggests that re-
gional, that is, non-whole-body CENP has important effects on respiratory mechanics,
distribution of ventilation and oxygenation. Second, the results have been gained using
a lavage-only model mimicking only the homogenous loss of surfactant feature of
ARDS, which is known for its good recruitability. This limits extrapolation to other
ARDS models as well as to the clinical scenario. However, the recruitability of this
model was intended, as we sought to investigate the effects of a wide range of applied
negative pressures on different PEEP levels. Furthermore, this model allowed significant
respiratory impairment but stable haemodynamic conditions. Third, trans-
diaphragmatic and intra-abdominal pressures, as well as end-expiratory lung volumes,
were not measured, and we were not able to explain the differences between thoracic
and abdominal shell position. Fourth, each CENP was applied for a relatively short
time, and therewith, the duration of each PEEP level was limited to 15 min. Thus, we
cannot exclude that prolonged CENP would have more pronounced effects, especially
on haemodynamics. Sixth, conductivity drift between EIT belt electrodes and skin may
have led to an overestimation of the effect of CENP on CoA. Seventh, the crossover de-
sign of the study precluded the assessment of lung injury. Therefore, we do not know
whether the beneficial effects on respiratory function and mechanics are compatible
with lung protection.

Conclusions

In this model of acute respiratory distress syndrome in pigs under PPV, CENP in-
creased the end-expiratory caudal transpulmonary pressure. CENP led to a shift of lung
aeration and ventilation towards dependent zones as well as improved respiratory me-
chanics and oxygenation, especially when applied to the abdomen as compared to the
thorax. CENP values < 20 cmH,O impaired the haemodynamics.
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