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Abstract

Background: Alkaline phosphatase (AP), a dephosphorylating enzyme, is involved in
various physiological processes and has been shown to have anti-inflammatory effects.

Aim: To determine the correlation between pulmonary AP activity and markers of
inflammation in invasively ventilated critically ill patients with or without acute respiratory
distress syndrome (ARDS), and to investigate the effect of administration of recombinant
AP on pulmonary inflammation in a well-established lung injury model in rats

Methods: AP activity was determined and compared with levels of various inflammatory
mediators in bronchoalveolar lavage fluid (BALF) samples obtained from critically ill
patients within 2 days of start of invasive ventilation. The endpoints of this part of the
study were the correlations between AP activity and markers of inflammation, i.e.,
interleukin (IL)-6 levels in BALF. In RccHan Wistar rats, lung injury was induced by
intravenous administration of 10mg/kg lipopolysaccharide, followed by ventilation with a
high tidal volume for 4 h. Rats received either an intravenous bolus of 1500 IU/kg
recombinant AP or normal saline 2 h after intravenous LPS administration, right before
start of ventilation. Endpoints of this part of the study were pulmonary levels of markers
of inflammation, including IL-6, and markers of endothelial and epithelial dysfunction.

Results: BALF was collected from 83 patients; 10 patients had mild ARDS, and 15 had
moderate to severe ARDS. AP activity correlated well with levels of IL-6 (r = 0.70), as
well20201218 as with levels of other inflammatory mediators. Pulmonary AP activity
between patients with and without ARDS was comparable (0.33 [0.14–1.20] vs 0.55 [0.21–
1.42] U/L; p = 0.37). Animals with acute lung injury had markedly elevated pulmonary AP
activity compared to healthy controls (2.58 [2.18–3.59] vs 1.01 [0.80–1.46] U/L; p < 0.01).
Intravenous administration of recombinant AP did neither affect pulmonary inflammation
nor endothelial and epithelial dysfunction.
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Conclusions: In ventilated critically ill patients, pulmonary AP activity correlates well with
markers of pulmonary inflammation, such as IL-6 and IL-8. In animals with lung injury,
pulmonary AP activity is elevated. Administration of recombinant AP does not alter
pulmonary inflammation and endothelial or epithelial dysfunction in the acute phase of a
murine lung injury model.

Keywords: Alkaline phosphatase, Acute lung injury, AP, ARDS, Pulmonary inflammation,
Mechanical ventilation

Background
The dephosphorylating enzyme alkaline phosphatase (AP) can affect inflammation [1,

2]. AP attenuates the inflammatory response by successfully disarming lipopolysacchar-

ide (LPS) from Gram-negative bacteria [3], and dephosphorylates extracellular proin-

flammatory adenosine triphosphate (ATP) to adenosine diphosphate (ADP), and

subsequently to the anti-inflammatory and tissue-protective enzyme adenosine [4, 5].

In murine models of sepsis [6, 7], acute kidney injury (AKI) [8], and colitis [9], treat-

ment with AP has been shown to lower the systemic inflammatory response and to

protect against death [6, 7, 10, 11]. In a recent randomized clinical trial, systemic infu-

sion of recombinant AP (recAP) improved renal function and prevented mortality in

patients with sepsis-induced AKI [12, 13].

AP has been detected in lung tissue, though its exact origin remains unclear. Alveolar

type II cells have been suggested as a potential source of AP [14, 15], but also neutro-

phils may exert a role due to the presence of AP in their secretory vesicles [16, 17].

The exact role and effects of AP in pulmonary inflammation is uncertain. Increased

pulmonary AP activity has been demonstrated in animal models of acute lung injury

[16, 18]. One clinical study showed elevated pulmonary AP activity in patients with

chronic pulmonary disorders characterized by neutrophilic inflammation [19]. Treat-

ment with AP yielded so far conflicting results on the pulmonary inflammatory re-

sponse. One preclinical study showed administration of AP to increase the risk of

developing acute lung injury [18], whereas another study suggests a protective role of

AP in pulmonary inflammation [17].

The here presented translational study had two aims. First, it tested the hypothesis

that pulmonary AP activity correlates with levels of markers of inflammation in bron-

choalveolar lavage fluid (BALF) obtained from invasively ventilated critically ill patients.

Second, it tested the hypothesis that administration of recAP diminishes pulmonary in-

flammation and endothelial and epithelial dysfunction in rats subjected to lung injury-

induced intravenous injection of LPS combined with injurious ventilation.

Methods
The clinical study was performed in invasively ventilated critically ill patients expected

to stay in the intensive care unit (ICU) beyond the following day, with some of these

patients having acute respiratory distress syndrome (ARDS) (Fig. 1a). In the preclinical

study, RccHan Wistar rats were subjected to two pulmonary hits inducing lung injury,

and some of the animals were treated with recAP (Fig. 1b).
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The clinical study

Study design and ethical considerations

The clinical investigation concerned a post hoc analysis of the “Biomarker Analysis in

Septic Intensive Care Patients” (BASIC) study, a longitudinal cohort study conducted in

the ICU of the Amsterdam University Medical Centers, location “AMC,” Amsterdam, the

Netherlands. The investigational protocol was approved by the local institutional review

board (METC 2010_335#B201112), and the study was registered at the Dutch Central

Commission for Human bound Research (CCMO) (study identifier NL34294.018.10).

Written informed consent was obtained before any study-related action took place.

Inclusion and exclusion criteria

Patients were included if (a) aged 18 years and older, (b) expected to stay at the ICU for

more than 24 h, and (c) presenting with two or more SIRS criteria with or without

suspicion of an infection. Patients were excluded if (a) treated with antibiotics > 48 h,

(b) readmitted to the hospital, (c) included in another study targeting the inflammatory

pathway, or (d) no written consent was obtained. For the current post hoc analysis,

patients were also excluded if they had not received invasive ventilation.

Data collection, BALF, and blood collection

The database of the BASIC study contains baseline information including age,

gender, reason for admission, type of admission (clinical, elective, or urgent sur-

gery), illness severity (Acute Physiology and Chronic Health Evaluation [APACHE]

IV score), 30-day mortality, and ICU and hospital length of stay. A dedicated team

of trained researchers collected these baseline characteristics and outcomes and

also re-scored presence of ARDS from previously applied AECC guidelines [20] to

the current Berlin definition [21].

Fig. 1 Schematic presentation of methodology for the clinical and preclinical study. a Clinical study. b
Preclinical study. Abbreviations: ARDS, acute respiratory distress syndrome; AP, alkaline phosphatase; BAL,
bronchoalveolar lavage; recAP, recombinant alkaline phosphatase; IL, interleukin; MPO, myeloperoxidase; SP-
D, surfactant protein D; TNF, tumor necrosis factor; W/D ratio, lung wet-to-dry ratio
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Within 48 h after start of invasive ventilation, a miniaturized bronchoalveolar lavage

(BAL) was performed by inserting a standard 50 cm and 14-gage suctioning catheter

via the endotracheal tube until resistance was encountered, and injecting 20ml of saline

over 4–5 s followed by immediate aspiration. At least 4 ml needed to be aspirated, and

aliquots of BAL fluid (BALF) were processed and stored at − 80 °C. Before the BAL,

blood was collected via the arterial line and centrifuged to obtain plasma, which was

stored at − 80 °C.

Alkaline phosphatase activity

AP activity levels were determined in BALF as well as in plasma by a mammal-specific

colorimetric alkaline phosphatase assay using p-nitrophenyl phosphate (pNPP) as a

phosphate substrate (ab83369, Abcam; Cambridge, UK).

Markers of pulmonary inflammation and epithelial dysfunction

The inflammatory cytokines interleukin (IL)-6, IL-8, IL-1β and tumor necrosis factor

(TNF)-α were measured in BALF using a cytometric bead array Flex Set multiplex assay

according to the manufacturer’s instructions (B&D Biosciences, San Jose, California,

USA). Myeloperoxidase (MPO), a specific marker of neutrophil activation, and surfactant

protein D (SP-D), a marker of epithelial lung injury, were determined in BALF using

human-specific enzyme-linked immunosorbent assay (ELISA) kits according to manufac-

turer’s instructions (Cayman Chemical, Ann Arbor, Minnesota, USA [for MPO]; Hycult-

Biotech, Uden, The Netherlands [for SP-D]). Urea levels were assessed in BALF and

plasma using quantitative colorimetric assay (BioAssay Systems, Hayward, CA).

Correction for dilution in human BALF samples

To correct measurements in BALF for the dilution factor induced by BAL, the ratio

between urea in BALF and plasma was utilized as described before [22]. BALF was

considered of insufficient quality if BALF urea levels were under the detection limit of

0.08 mg/dL or if the dilution factor was very high suggesting unreliable sampling. Those

BALF samples were excluded from analysis. AP activity, as well as IL-6, IL-8, IL-1β,

TNF-α, MPO, and SP-D levels were corrected for the dilution factor.

Endpoints

Endpoints of this part of the study were the correlations between pulmonary AP

activity and levels of markers of lung inflammation and injury, such as IL-6, IL-8, IL-

1β, TNF-α, MPO, and SP-D in BALF.

Power analysis

A formal power calculation was not performed. Instead, this post hoc analysis used

BALF samples from all invasively ventilated patients included in the BASIC study. With

the final sample size of 83 patients, a two-sided significance level of 0.05 and a power

of 80% were obtained for a critical correlation coefficient (r) of 0.216.
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Analysis plan

Continuous variables are presented as median with 25th–75th interquartile range

(IQR) according to data distribution and categorical variables as absolute occurrences

with percentages. Comparisons were performed using Mann–Whitney U or χ2 test,

where appropriate.

The correlation between AP activity and IL-6 levels in BALF was assessed by Spear-

man’s correlation coefficient (rho, r), according to data distribution. This was repeated

for the other inflammatory mediators. AP activity and inflammatory mediators were

compared between patients with ARDS and those without ARDS. A correlation was

considered strong if r ≥ 0.70, and moderate, weak, or negligible if r = 0.69–0.50, 0.49–

0.30, and < 0.30, respectively [23].

A p value of < 0.05 was considered statistically significant. Statistical analyses were

performed using the packages “tidyverse,” “dplyr,” and “ggpubr,” and figures were

created with the package “ggplot2,” with R Studio interface (R core team. R: A Language

and Environment for Statistical Computing. 2013. http://www.r–project.org/) from R

Studio Interface.

The preclinical study

This preclinical study follows the “Animal Research: Reporting of In Vivo Experiments”

(ARRIVE) guidelines.

Two-hit lung injury model

The study used a well-established and frequently used rat model of lung inflammation

induced by LPS plus injurious ventilation with a high tidal volume.

The experiment was conducted under protocols approved by the Animal Care and

Use Committee of the Amsterdam University Medical Centers, location “AMC” (LEICA

132–AB and –AD). Animals were used in compliance with Institutional Standards for

Use of Laboratory Animals, were handled 1 week before experiments to diminish stress

activation, and were housed in a specific pathogen-free facility on a 12/12 h light/dark

cycle with two rats per cage. Standard laboratory chow and water were available ad

libitum. Experiments were spread over several weeks, and each day two rats were

handled. The experiments took place in the Laboratory for Anesthesiology and Experi-

mental Intensive Care (L·E·I·C·A) at the “AMC,” between 7:30 AM and 5:00 PM, and

animal welfare was evaluated every 30 min until termination of the experiment. An

online randomization generator was used to allocate animals to the three study groups.

In total, 21 specific pathogen-free male RccHan Wistar rats (Envigo, Horst, the

Netherlands) with a mean ± SD body weight of 322 ± 19 g were used. One animal did

not survive the challenge with LPS and 4 h of invasive ventilation due to prolonged

hypotension that was non-responsive to fluid resuscitation. This animal was replaced to

achieve a similar number of animals per group. Finally, eight rats received 1500 IU/kg

recAP “recAP group”, which was kindly provided by AM Pharma (Bunnik, The

Netherlands)—eight rats received normal saline as a placebo “saline group”—four rats

served as controls and were left untouched “control group”. The recAP and saline

group underwent the two-hit lung injury protocol, as described in detail previously

[24]. The two-hit lung injury model consists of an intravenous injection of 10 mg/kg
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LPS (Escherichia coli serotype 0127:B8, Sigma Aldrich, St. Louis, MO, USA) followed

by high tidal volume mechanical ventilation starting 2 h after LPS injection. Rats were

subjected to ventilation in a volume-controlled mode with tidal volumes between 12

and 15 ml/kg and a positive end-expiratory pressure (PEEP) of 3.4 mbar (Babylog® 8000,

Dräger, Germany). RecAP or saline was administered intravenously directly before start

of high tidal volume ventilation. Adequate depth of anesthesia and analgesia was

checked every 30 min with a short pain stimulus on a toe. Rats were ventilated for a

total of 4 h after which they were sacrificed by exsanguination from the carotid artery,

after a bolus of pentobarbital.

BALF and blood collection

Following exsanguination, the thorax was opened at the sternum and lungs with bron-

chi and trachea were resected in toto. The right main bronchus was clipped before

flushing the left lung three times with 2 ml sterile saline. BALF was then centrifuged

and stored at − 80 °C for further analyses. Arterial blood was drawn during exsanguin-

ation using a heparin-coated syringe, subsequently centrifuged, and plasma was ob-

tained and stored at − 80 °C.

Alkaline phosphatase activity

AP activity was measured as described above for the clinical study.

Markers of pulmonary inflammation and endothelial and epithelial dysfunction

IL-6 and cytokine-induced neutrophil chemoattractant (CINC)-3 were measured in

BALF using rat-specific ELISA kits (R&D systems, Minneapolis, MN, USA and Nordic

Biosite AB, Täby, Sweden) according to manufacturer’s instructions. Myeloperoxidase

(MPO) activity was measured in lung homogenate using a rat-specific ELISA kit

(Hycult Biotech, Uden, the Netherlands). The total protein level in BALF was measured

using the bovine serum albumin (BSA) Lowry method. By weighing the lower lobe

from the right lung directly after excision and dividing it by the weight after 72 h in a

stove with a temperature of 37 °C, the wet-to-dry (W/D) ratio was determined.

Surfactant-associated protein D (SP-D) levels were determined in BALF using a rat-

specific ELISA kit (Bio–Connect, Huissen, the Netherlands).

Endpoints

Endpoints of this part of the study were pulmonary levels of IL-6, CINC-3, MPO and

SP-D, the lung wet-to-dry ratio, and BALF protein levels.

Power calculation

A sample size calculation indicated that eight animals per group was needed to detect a

significant difference in IL-6 levels between intervention and control group, with a

power of 0.8 with an effect size of 1.6 and a double signification level of 0.05.

Analysis plan

Comparisons between control and saline group, as well as saline and intervention

group, were performed using Mann–Whitney U test, according to data distribution.
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For this part of the study, a p value of < 0.05 is also considered statistically significant.

The same software as described above was used for the statistical analyses and

GraphPad Prism (Version 7.03, GraphPad Software, La Jolla, California, USA) for

creation of figures.

Results
The clinical study

Patients

The BASIC study included a total of 142 invasively ventilated critically ill patients.

Patient flow is shown in Fig. 2. After excluding patients in whom BALF was considered

of poor quality, 83 patients remained for the present analysis. Patient demographics are

presented in Table 1. Patients were severely ill according to their APACHE IV scores,

had a long length of ICU and hospital stay, and showed a high 30-day mortality rate.

Only length of ICU stay was different between patients with ARDS and patients not

having ARDS.

Correlation between pulmonary AP activity and inflammatory mediators

Pulmonary AP activity had a strong correlation with IL-6 levels in BALF (Fig. 3a).

Likewise, pulmonary AP activity had a strong correlation with IL-8 levels in BALF

(Fig. 3b). Pulmonary AP activity had a moderate correlation with IL-1β and TNF-α

(Fig. 3 c and d), and with MPO and SP-D levels in BALF (Fig. 3 e and f). Pulmon-

ary and systemic AP activity correlated poorly (Fig. 4). Pulmonary AP activity and

levels of markers of inflammation were not different in patients with ARDS versus

patients not having ARDS (Table 2).

Fig. 2 CONSORT diagram of the clinical study. Abbreviations: BASIC, “biomarker analysis in septic intensive
care patients”; BAL, bronchoalveolar lavage; BALF, bronchoalveolar lavage fluid
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The preclinical study

Two-hit lung injury model

The double hit resulted in pulmonary inflammation, as evidenced by markedly elevated

levels of IL-6, CINC-3, and MPO in the lungs of rats in the saline group compared to

control animals (Fig. 5). Endothelial and epithelial barrier dysfunction was also present,

as evidenced by elevated lung W/D ratios, increased total protein levels, and increased

SP-D levels in BALF (Fig. 6). Lung injury resulted in markedly increased pulmonary AP

activity while systemic AP activity was not altered.

Effects of recAP

Intravenous administration of recAP resulted in higher AP activity, both within the

pulmonary and systemic compartment (Fig. 7). In contrast to what was hypothesized,

recAP administration did neither affect the pulmonary inflammatory response nor the

alveolar–capillary permeability and epithelial dysfunction (Figs. 5 and 6).

Discussion
In this cohort of invasively ventilated critically ill patients, AP activity correlated well

with local levels of IL-6 and other proinflammatory mediators. Pulmonary AP activity

was not different between patients classified as having ARDS and patients not having

ARDS. The animal model confirmed the elevation of pulmonary AP activity along with

increased levels of proinflammatory mediators and endothelial and epithelial dysfunc-

tion in the presence of lung injury. Recombinant AP administration did neither affect

pulmonary inflammation nor endothelial and epithelial dysfunction in this model.

Our study is the first that measures pulmonary AP activity in invasively ventilated

critically ill patients and determines the correlation with pulmonary inflammatory

markers within the pulmonary compartment. It is also the first that translates this into

a lung injury model in rats. AP administration was investigated in a clinically relevant

and validated model mimicking sepsis-induced ARDS. The clinical part exhibits several

strengths. The prospective character and a strictly followed analysis plan reduced bias,

and the clear inclusion and exclusion criteria, of the BASIC study created a

Table 1 Baseline characteristics of included patients on admission

Baseline characteristics Patients with ARDS (N = 25) Patients not having ARDS (N = 58) p value

Age at admission (years) 61 (54–70) 63 (49–73) 0.739

Gender, male 12 (48) 38 (66) 0.161

Admission type 0.268

Medical 20 (80) 41 (71) -

Surgical elective 2 (8) 2 (3) -

Surgical emergency 3 (12) 15 (26) -

APACHE IV score 81 (67–106) 72 (60–95) 0.266

PaO2/FiO2 ratio 161.5 (130.0–209.2) 248.5 (198.5–303.8) < 0.001

30-day mortality 8 (32) 18 (33) 0.912

Hospital length of stay (days) 13 (6–13) 12 (6–23) 0.483

ICU length of stay (days) 4 (8–13) 3 (5–7) 0.017

For continuous variables data are presented as median and interquartile range () according to data distribution, and for
categorical variables as numbers and percentage (%)
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recognizable population of critically ill patients with high severity of illness scores. The

number of included patients was large, and patients underwent a BAL relatively soon

after start of invasive ventilation. The preclinical part was characterized by a well-

established, and in our laboratory frequently used animal model reflecting clinically

relevant lung injury. Systemic administration of recAP resulted in an elevation of pul-

monary AP activity levels, showing that the drug reached the pulmonary compartment.

This study found a strong positive linear correlation between pulmonary AP activity

and the inflammatory mediators IL-6 and IL-8, both playing pivotal role in neutrophil

chemotaxis and apoptosis. Hence, the results of this study are in line with the

Fig. 3 Correlations between AP activity and inflammatory mediators in BALF of invasively ventilated
critically ill patients. a IL-6. b IL-8. c MPO. d IL-1β, e TNF-α. f SP-D. All levels are corrected for the BALF
dilution factor. Abbreviations: AP, alkaline phosphatase; BALF, bronchoalveolar lavage fluid; IL, interleukin;
MPO, myeloperoxidase; SP-D, surfactant protein D; TNF, tumor necrosis factor
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suggestion that AP may exert a role in neutrophil-mediated pulmonary inflamma-

tion. In vitro, neutrophils increase AP expression in response to inflammatory

stimuli, which is associated with enhanced chemotaxis, increased production of

reactive oxygen species, and effective induction of apoptosis [17]. Also, several

studies have shown increased AP expression by neutrophils in case of inflamma-

tion, for example in patients with bacterial infections [25–27] and chronic inflam-

matory conditions such as obesity [28].

The fact that pulmonary and systemic AP activity had a negligible correlation highly

suggests that AP is produced within and stays within the pulmonary compartment. Al-

veolar type II cells have also been proposed to be a source of AP arguing that AP may

function as a marker of epithelial injury [15, 29].. Indeed, pulmonary AP activity corre-

lated with SP-D, a marker of epithelial injury, albeit this association was only moderate.

The lack of a difference in AP activity between patients with ARDS and patients not

having ARDS may seem surprising. However, levels of pulmonary inflammatory media-

tors and clinical illness severity scores were also not different between both groups.

The relatively small sample size or the fact that only critically ill patients with two or

more SIRS criteria were included may attribute to this effect

Fig. 4 Correlation between pulmonary and systemic AP activity in invasively ventilated critically ill patients.
Abbreviations: AP, alkaline phosphatase; BALF, bronchoalveolar lavage fluid

Table 2 AP activity and markers of inflammation and lung injury in BALF, corrected for dilution
factor

Measure Patients with ARDS (N = 25) Patients not having ARDS (N = 58) p value

AP (U/L) 0.33 (0.14–1.20) 0.55 (0.21–1.42) 0.369

IL-6 (pg/ml) 46.57 (7.62–130.77) 17.55 (4.35–52.29) 0.128

IL-8 (pg/ml) 274.48 (108.96–3047.86) 341.91 (126.69–1369.8) 0.666

IL-1β (pg/ml) 17.91 (0.64–55.44) 10.54 (2.03–71.70) 0.603

TNF-α (pg/ml) 1.05 (0.19–7.09) 1.55 (0.44–5.00) 0.732

MPO (ng/ml) 30.62 (7.48–127.56) 98.60 (27.22–266.61) 0.061

SP-D (ng/ml) 14.45 (5.20–94.34) 11.35 (3.89–36.46) 0.308

Data is presented as median with IQR according to data distribution
AP alkaline phosphatase, BALF bronchoalveolar lavage fluid, IL interleukin, MPO myeloperoxidase, SP-D surfactant protein
D, TNF tumor necrosis factor
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AP administration did neither affect pulmonary inflammation nor endothelial or epi-

thelial dysfunction in the preclinical model of lung injury. This contrasts, at least in

part, the results of previous studies showing AP to have anti–inflammatory affects in

models of sepsis [6, 7] and a model of AKI [8]. Two pathophysiological mechanisms

are mainly held responsible for the detoxifying effects of AP in the sepsis models. First,

the ability of AP to disarm LPS, and second, the ability to convert pro–inflammatory

extracellular ATP into the anti-inflammatory and tissue-protective adenosine [13]. Ele-

vated adenosine levels in BALF proved to reduce pulmonary inflammation in murine

lung injury models showing beneficial effect of adenosine on the inflammatory response

[30, 31]. However, in a murine influenza model, increased adenosine production re-

sulted in progression from influenza to acute lung injury [32]. Administration of an AP

inhibitor in this model decreased the inflammatory response, as well as leucocyte infil-

tration and epithelial dysfunction, but not the adenosine levels in BALF [18]. This may

be attributed to the short half-life of adenosine or point to a different mechanism of ac-

tion of AP inhibition, for example a reduced expression of AP in activated neutrophils.

Several weaknesses of the current study need to be addressed. With regards to the

clinical study, it is important to realize that an additional control group, for example a

group of less severe critically ill patients, or patients not under ventilation, is missing.

Regarding the preclinical study, the animal model simulates lung injury within the

acute phase, hence within the first 6 h after induction of lung injury. We cannot ex-

clude the possibility that AP may have anti-inflammatory effects at later time points.

We can also not exclude anti-inflammatory effects with higher dosages of AP, a local

Fig. 5 Markers of pulmonary inflammation in the two-hit lung injury model in rats. a IL-6 levels in BALF. b
CINC-3 levels in BALF. c MPO levels in lung homogenate. Abbreviations: BALF, bronchoalveolar lavage fluid;
IL, interleukin; CINC, cytokine-induced neutrophil chemoattractant; MPO, myeloperoxidase; recAP,
recombinant alkaline phosphatase. *p value < 0.05; **p value < 0.01

Fig. 6 Markers of endothelial and epithelial barrier dysfunction in the two-hit lung injury model in rats. a
Lung wet-to-dry ratio. b Total protein count in BALF. c SP-D levels in BALF. Abbreviations: BALF,
bronchoalveolar lavage fluid; recAP, recombinant alkaline phosphatase; SP-D, surfactant protein D. *p value
< 0.05; **p value < 0.01
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route of administration [33], or when AP would be administered before the challenge

with LPS.

Conclusion
In invasively ventilated critically ill patients, pulmonary AP activity correlates well with

markers of inflammation suggesting a role of AP in neutrophil-mediated pulmonary

inflammation. In animals with lung injury, induced by LPS and injurious ventilation,

pulmonary AP activity is elevated. Additional AP administration does not affect

pulmonary inflammation and endothelial and epithelial dysfunction in this model.

Abbreviations
AP: Alkaline phosphatase; AKI: Acute kidney injury; APACHE: Acute Physiology and Chronic Health Evaluation;
ARDS: Acute respiratory distress syndrome; ATP: Adenosine triphosphate; BAL: Bronchoalveolar lavage;
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