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Effectiveness of intensive care must be evaluated not only by short-term survival after a 
critical illness, but also by the recovery to an adequate quality of life. The increased evi-
dence of long-term functional disabilities in intensive care survivors led to the definition 
of post-intensive care syndrome (PICS) [1]. Early diagnosis and effective treatments for 
these newly recognized conditions are warranted. However, most of the initial efforts 
to limit long-term sequelae have not yielded satisfactory results [2]. The objective of 
this review is to identify the molecular mechanisms that lead to organ dysfunction after 
intensive care and to summarize them into several plausible unifying hypotheses. From 
these mechanisms, novel therapeutic targets with the potential to prevent PICS may 
arise [3], allowing for earlier interventions during acute organ failure aimed to improve 
the quality of life of intensive care unit (ICU) survivors. Cost-effective strategies based 
on growing pathogenetic evidence on PICS would hence allocate research efforts and 
funding to implement preventive treatments, to impede pathogenetic mechanisms trig-
gered during ICU stay, rather than exclusively rehabilitate long-term sequelae when they 
are already established.

The spectrum of postintensive care syndrome
The improvement of mortality rates in the ICU has evidenced that survivors to a critical 
illness face a number of long-term severe complications and sequelae that can impair 
their quality of life [4]. Several factors, including the population aging along with the 
emergence of invasive therapies that may improve the outcomes, have increased the 
interest in these long-term conditions [5]. An expert panel in 2012 defined PICS as 
the “new or worsening impairments in physical, cognitive or mental health status aris-
ing after critical illness and persisting beyond acute care hospitalization” [1]. It must 
be noted that this definition provides a framework to improve awareness, research and 
diagnostic and therapeutic approaches, rather to define a classical syndrome [6].

PICS covers several dimensions, including physical, cognitive and emotional 
aspects (Fig. 1), for many of which there is no standard definition or diagnostic cri-
teria. Long-term respiratory sequelae include impairments in lung volumes, ventila-
tory dynamics and diffusion [7]. Although some studies report a mild impairment 
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in most of the cases, the recent COVID-19 pandemic has highlighted the relevance 
of the long-term, post-acute respiratory distress syndrome (ARDS) respiratory 
sequelae [8]. Musculoskeletal impairments are included under the concept of “ICU-
acquired weakness” (ICUAW), defined as a “diffuse, symmetric, generalized muscle 
weakness, detected by physical examination and meeting specific strength related 
criteria) that develops after the onset of critical illness without other identifiable 
cause”. ICUAW may result in a severe limitation of daily activities and a significant 
worsening in quality of life. Although some improvements may occur during the first 
year after ICU discharge, weakness is persistent in a significant proportion of cases 
[9]. Finally, neuropsychological alterations regarding cognitive declines in ICU sur-
vivors have been also described by several authors. Up to 80% of critically ill patients 
experience delirium while in the ICU, and a significant number of ICU survivors 
show signs of moderate cognitive impairment or other neurological, emotional and 
mental health conditions related to PICS include depression, anxiety, post-traumatic 
stress disorder and cognitive impairment [10, 11]. Again, these disarrangements may 
persist well above the first year and cause a severe limitation of patients’ activities.

Several ICU-related risk factors and short-term complications have been related to 
these long-term outcomes (highlighted in Fig. 1). However, as pathogenetic factors 
are mostly unknown, it is not clear if these short- and long-term symptoms are time-
dependent manifestations of a common disease, independent diseases with shared 
etiologies or independent sequelae caused by the systemic response to a severe 
injury.
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Fig. 1  Spectrum of postintensive care syndrome. Many of the long-term conditions that constitute the 
postintensive care syndrome have been related to specific syndromes that appear during acute care. 
However, it is not known if this relationship reflects a common primary cause, a pathogenetic association or 
simply an association due to underlying confounders
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Mechanisms of chronic lung dysfunction
The need of respiratory support is one of the main reasons for ICU admission, either due 
to lung injury or ventilatory failure. These critically ill patients often require mechanical 
ventilation. Previous organ damage, along with the use of ventilation, may lead to the 
development or worsening of lung injury [12], which involves epithelial barrier dysfunc-
tion, inflammation and matrix remodelling. In this context, failure to correctly resolve 
these processes might be involved in the development of long-term sequelae. However, 
the specific mechanisms by which acute lung damage becomes chronic are yet to be 
fully elucidated. Most of the knowledge on this topic comes from research on prevalent 
chronic lung diseases, such as idiopathic pulmonary fibrosis, which may hint to underly-
ing pathogenetic mechanisms. These same processes may play a role in the development 
of chronic lung dysfunction in the context of post-ICU sequelae (Fig. 2).

Inflammation and matrix remodelling are well described processes involved in the 
resolution of acute lung injury [13]. However, their perpetuation can be a relevant 
pathogenetic mechanism of many chronic lung diseases [14]. Persistence of the local 
inflammatory response has been linked to the development of fibrosis, as released Th2 
cytokines (IL-4, -5, -13) have a well-known pro-fibrotic effect and may recruit fibrocytes 
from the systemic circulation. Moreover, other pro-inflammatory mediators such as 
IL1b or IL-6 may promote collagen deposition mediated by IL-17 [15].

In this setting, alveolar macrophages, inflammatory cells and fibroblasts release 
profibrotic molecules during acute injury, such as transforming growth factor-β 
(TGFβ), Insulin-like growth factor (IGF-1), platelet derived growth factor (PDGF) 
or connective tissue growth factor (CTGF) among others [16–19]. TGFβ activates 
intracellular SMAD complexes via binding to serine/threonine kinase heterodi-
mers in the cell surface. Activated SMAD complexes enter the nucleus and act as 
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Fig. 2  Mechanisms of chronic lung dysfunction after critical illness. Local inflammation, changes in cell 
populations and matrix remodeling promote a pro-fibrotic state that may cause long-term respiratory 
impairment. TRPV4 transient receptor potential cation channel, subfamily V, member 4. BBB blood–brain 
barrier, DRD2 dopamine receptor type 2
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transcription factors regulating a wide range of cellular processes. In fibrosis, these 
pathways include extracellular matrix deposition and fibroblast division and differ-
entiation into myofibroblasts [20]. These cells, characterized by an increase in the 
intracellular content of α-smooth muscle actin (α-SMA), modify the matrix com-
position by increasing deposition of collagen and disorganizing elastin, generating 
scar-like lesions [21].

Activation of coagulation and fibrin deposition is another pathogenetic mecha-
nism activated during acute lung injury that has been linked to long-term sequels. It 
has been shown that patients with lung interstitial diseases have an increased expres-
sion of procoagulant factors within the lung, including tissue factor or thrombin, or 
a decrease in protein C. Activation of proteinase-activated receptors (PARs) by the 
proteinases from the coagulation cascade (thrombin, trypsin, cathepsins…) provides 
the mechanistic link between coagulation and fibrosis. Downstream signaling fol-
lowing PAR1 activation results in the expression of several profibrotic growth fac-
tors (CTFG, PDGF) and perpetuates the local release of proinflammatory cytokines 
and TGFβ [22].

Epithelial–Mesenchymal Transition (EMT) has also gained relevance in this sce-
nario, where massive tissue remodeling takes place. EMT is a process in which a 
polarized epithelial cell acquires a mesenchymal phenotype, that includes synthesis 
of extracellular matrix components [23]. During EMT, epithelial cells lose part of the 
epithelial characteristics, such as expression of E-cadherin and cytokeratin, and gain 
mesenchymal markers including N-cadherin, vimentin or α-smooth muscle actin 
[24]. At a physiological level, all these processes favour the accumulation of exces-
sive fibrous tissue, decreasing lung compliance and impairing ventilatory dynamics 
and diffusion. In vivo models of lung injury and mechanical ventilation have shown 
the activation of EMT, possibly by a Wnt-dependent mechanism [25], suggesting a 
relationship between EMT-like processes and the later development of pulmonary 
fibrosis [26].

Another common feature in these chronic conditions is epithelial barrier dysfunc-
tion, characterized by altered cell composition of the pseudostratified respiratory 
epithelium with basal and goblet cell hyperplasia and metaplasia [27, 28]. In addi-
tion, after the initial lung insult, persistence of epithelial dysfunction is associated 
with a proinflammatory secretory phenotype due to the activation of airway epithe-
lial cells, dendritic cells and type 2 Innate Lymphoid Cells, and release of epithelial 
derived cytokines, including thymic stromal lymphopoietin (TSLP), interleukin (IL)-
25, and IL- 33 [29]. The resulting sustained inflammation and shift in cellular com-
position could play an important role in post-ICU lung dysfunction.

Finally, cell renewal is a key feature of chronic lung diseases. Excessive stem 
cell activation leads to accumulation of DNA damage and cell senescence [30]. In 
patients with idiopathic pulmonary fibrosis, epithelial cells show an increase expres-
sion of senescence markers, such as P16 or P21 and a proinflammatory phenotype 
[31]. Recently, we have shown the activation of this pathway in response to acute 
lung injury [32]. These senescent cells have been related to stem cell exhaustion with 
an impaired regenerative capacity [33] and an increased secretion of inflammatory 
and matrix remodeling molecules, which in turn may perpetuate fibrosis.
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Molecular mechanisms of cognitive impairment
There are several mechanisms that may lead to brain injury in critically ill patients [34]. 
The central nervous system (CNS) receives signals from neural afferences and circulat-
ing factors and cells. Regarding the former, the vagus nerve constitutes the main ascend-
ent pathway from peripheral organs. Distal vagal sensors are responsive to a variety of 
stimuli, including stretch (via transient receptor potential cation channel, subfamily V, 
member 4 [TRPV4] and Piezo receptors) [35], or inflammation (via toll-like receptor 
(TLR)-4, IL1R or tumor necrosis factor [TNF]-receptor present in vagal sensory neu-
rons) [36, 37]. Once these signals reach the brain stem, multisynaptic pathways along 
the CNS are activated [38, 39]. For instance, lung stretch activates alveolar TRPV4 and 
purinergic receptors, that, in a vagus-dependent manner, increase dopaminergic sign-
aling and triggers hippocampal apoptosis [40]. Blockade of triggering receptors in dis-
tal organs or circulating mediators could decrease the risk of long-term impairment. 
In animal models, inhibition of peripheral mechanosensation with TRPV4 antagonists, 
unspecific blockade of nerve conduction with lidocaine or inhibition of type 2 dopamine 
receptors have decreased hippocampal apoptosis [35].

Circulating molecules and cells may also reach the brain during critical illness. The sys-
temic inflammatory response decreases blood–brain barrier permeability [41] and facili-
tates the translocation of circulating mediators and/or cells that further promote brain 
injury. Heparan sulfate fragments released from the endothelial glicocalix during sepsis 
may translocate to the hippocampus and inhibit brain-derived neurotrophic factor sign-
aling, that results in memory impairment in mice [42]. Circulating IL-6 may also play a 
role in this setting, as peripheral blockade of IL-6 with a monoclonal antibody prevented 
ventilator-induced brain injury [43]. In line with these findings, intratracheal instillation 
of lipopolysaccharide increases the expression of proinflammatory cytokines Il1b and Il6 
in the brain stem [44]. Interestingly, only the increase in Il1b expression was abolished 
after vagotomy, suggesting the simultaneous activation of different mechanisms.

The link between these brain responses and functional outcomes has also been 
assessed. In a large animal model of prolonged protective mechanical ventilation, hip-
pocampal damage was demonstrated [45]. Acute lung damage and mechanical ventila-
tion in mice caused brain inflammation, hippocampal injury and memory impairments, 
in an steroid-preventable manner [41]. Similarly, conditioning responses, a surrogate 
marker of memory in mice, were absent 3 days after mechanical ventilation, but not in 
anesthetized, non-ventilated controls [46]. Although translation of these experimen-
tal results into clinical evidence is challenging and remains elusive, this model of brain 
injury in response to systemic insults (summarized in Fig. 3) provides a framework for 
prevention, diagnosis and treatment of long-term cognitive dysfunction in critically ill 
patients.

Mechanisms of ICU‑acquired weakness
ICUAW is a bilateral and symmetrical neuromuscular involvement, common in 
critically ill mechanically ventilated patients. Clinical studies in critical care settings 
involving electrophysiological tests and muscle histopathology suggest that both 
polyneuropathy and myopathy may coexist in ICU patients, being myopathy more 
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frequently identified as the cause of weakness [47]. Critical illness neuropathy has 
been described as a distal axonal sensory-motor polyneuropathy affecting limb and 
respiratory muscles. Some evidence suggests that weakness recovery could be wors-
ened and/or delayed when neuropathy accompanies myopathy, being persisting dis-
ability associated with polyneuropathy and myopathy coexistence [48, 49]. Because 
nerve conduction studies and needle electromyography do not accurately discern 
between both entities, and given the sufficiently relevant clinical problem of muscle 
weakness in these patients [50], the term ICUAW emerged regardless of its causa-
tive nature. Although physical disability related to ICUAW is highly prevalent among 
ICU survivors, its clinical spectrum varies not only in severity but also in recovery 
trajectories [51]. Muscle atrophy in the critically-ill has been demonstrated to begin 
within the first hours after ICU admission in mechanically ventilated patients [52] 
and its development has been related to several factors, such as systemic inflamma-
tion, severity of the underlying disease, use of neuromuscular blockers or mechanical 
ventilation itself [49, 53, 54].

Multiple molecular mechanisms, either independent or interacting, are involved in 
muscle wasting and evolve over time, from the onset of critical illness till the long-
term recovery phase around 6  months after ICU discharge [55] (Fig.  4). Muscle 
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wasting results from an increased proteolysis triggered in the acute phase, over-
whelming the regenerative capacity of the injured tissue [52, 56]. Early activation of 
proteolytic pathways, however, is not sustained over time, but instead it may alter 
muscle biology resulting in an impaired muscle regrowth [57].

Inflammatory cytokines have been suggested to play a relevant role in the develop-
ment of ICUAW. TNFα has been widely studied in this setting. In differentiated myo-
tubes, TNFα stimulates catabolism by binding to TNF receptor subtype 1 and activating 
nuclear factor-kB. This transcriptional factor is essential for TNFα-induced reduction in 
muscle protein and loss of adult myosin heavy chain content [58], which is specifically 
found in critically ill patients [59]. This pathway is also sensitive to reactive oxygen spe-
cies, which appear to function as second messengers for TNFα in skeletal muscle [58]. 
TNFα/nuclear factor-kB signaling is also involved in the differentiation process, repre-
senting a mechanism that could be responsible for satellite cells activation and skeletal 
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muscle recovery following the acute phase [60–62]. TNFα binding to its receptor also 
stimulates apoptosis and Jun-N-terminal kinases and mitogen-activated protein kinases 
(MAPKs) in differentiated myotubes. In muscle cells, these signaling events stimulate 
the expression of genes related to the ubiquitin–proteasome pathway [63, 64], triggering 
massive intracellular proteolysis [65]. Finally, TNFα is also known to affect the force of 
muscle contraction even in the absence of atrophy [66] via TNFR1 and mediated by an 
increased cytosolic oxidant activity [67, 68].

Elevated levels of IL-1 are commonly found in critically ill patients’ serum and repre-
sent a potential stimulus for protein loss and muscle atrophy. The suggested underlying 
mechanisms are related to both protein synthesis and degradation [69, 70]. Interestingly, 
IL-6 has been proven to drive the systemic compensatory anti-inflammatory response 
syndrome, by inhibiting TNFα release and stimulating IL-10 [71]. In skeletal muscle, 
IL-6 is involved in myogenesis, lipid metabolism, glucose uptake and both protein syn-
thesis and degradation [72–74]. Skeletal muscle cellular niche has been recognized itself 
as a myokine secretor organ and even a potential regulator of immune system [75]. In 
mechanically ventilated patients who developed myopathy, the inflammation-induced 
acute phase response resulted in a marked increase in IL-6 production in skeletal muscle 
[76].

Histologic and molecular analyses performed in skeletal muscle biopsies of critically 
ill patients suggest that recovery failure may be associated with satellite/progenitor cells 
loss and fibrosis [57], but it is unclear which are the underlying mechanisms leading to 
the satellite cell depletion or what is the role of the whole skeletal muscle cell niche. In 
other scenarios, where muscle injury may occur, muscle tissue repair is a complex bio-
logical process that necessarily involves activation of stem cells. Myogenic stem cells, 
so-called satellite cells, reside beneath the basal lamina of muscle fibers [77] and express 
both NCAM/CD56 and early myogenic cell markers, such as M-cadherin, PAX7, and 
MYF5 [78]. Satellite cells remain quiescent in skeletal muscle, but they can proliferate 
and further differentiate into myoblasts in response to activating signals, achieving mus-
cle regeneration [79]. Activated satellite cells may interact with macrophages recruited 
at the site of muscle regeneration and receive mitogenic signals from these immune 
cells, mediated by the release of different soluble factors [80]. Myoblasts, and to a higher 
extent myotubes, also receive cell-contact-mediated pro-survival signals from mac-
rophages [81].

Similarly, the microvascular niche seems to be another partner of satellite cells. Chris-
tov et al. have suggested quiescent satellite cells to easily interplay with endothelial cells 
upon activation to set up coordinated angio-myogenesis in a functional manner [82]. 
Indeed, angiogenesis and myogenesis could share regulatory factors such as vascular 
endothelial growth factor (VEGF) [83] or insulin-like growth factor type 1 (IGF1) [84] 
that reciprocally signal both processes pivotally involved in muscle regeneration.

Apart from inflammation and stem cell depletion, several other mechanisms may be 
involved in the development of persistent muscle weakness in survivors of critical illness. 
Distal axonal sensory-motor damage/dysfunction has also been described in ICUAW, 
being attributable to a reduced membrane excitability resulting from membrane depo-
larization and ion channel dysfunction [85, 86], together with an altered calcium homeo-
stasis [87]. In critically-ill patients with demonstrated polyneuropathy, motor axons are 
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depolarized. Chronic membrane depolarization could be related to tissue hypoperfusion 
or to increased extracellular potassium in patients with kidney failure, and may lead to 
muscle atrophy [88]. Reduced compound motor action potentials are present in neu-
ropathy and myopathy. In addition, there have been described fibrillation potentials or 
positive sharp waves that could be explained by denervation or by muscle sodium chan-
nel dysfunction [89]. Mitochondrial dysfunction could be a contributing defect involved 
in energy-dependent processes [90], and a dysregulation in autophagy [91] has also been 
described to play a role in muscle repair.

In critically ill patients, the limited sample size of the muscle specimens precludes 
the identification of different mechanism-specific subphenotypes of muscle weakness, 
with different histopathological findings and driven by different mechanisms, though 
leading to the wide clinical spectrum of long-term functional disability. These different 
pathogenetic subphenotypes could explain the heterogeneous recovery observed among 
survivors of critical illness. For instance, the activated pathways could be promoting pro-
liferation of satellite cells in some patients while related to fibrotic repair and satellite cell 
depletion in others. Understanding these mechanisms is crucial to identify therapeutic 
targets that, interfered at the beginning of the process, could modify the clinical course 
of ICUAW before the 6-month plateau has been achieved, either at the acute phase or 
during recovery.

Unifying hypotheses
Long-term sequelae included in the PICS framework may be the consequence of organ-
specific mechanisms, as described in the previous sections. However, the variety of 
symptoms included in PICS in response to common triggers (the critical disease and 
its managements) and the observed links and correlations amongst the different dimen-
sions of the syndrome [92] raise the hypothesis that PICS is the long-term result of 
underlying mechanisms activated by severe diseases, that become systemic and lead to 
different degrees of multi-organ dysfunction. There are several stereotypical biological 
responses and mechanisms that could be involved in the development of PICS. Identifi-
cation of these shared mechanisms could help to identify patients at risk of developing 
sequelae. Moreover, this knowledge could lead to novel therapeutic interventions that 
might prevent the whole spectrum of PICS by interfering with upstream regulators.

Systemic inflammation

The most characterized and studied mechanism in this setting is the inflammatory 
response. Inflammation is a physiological response necessary to fight against infections 
or injury and, therefore, restore homeostasis. During the acute phase of the inflam-
matory response, the presence of damage or pathogen-associated molecular patterns 
(DAMPs and PAMPs respectively) induces an initial systemic inflammatory response, 
mediated by the release of pro-inflammatory mediators, such as growth factors (i.e., G/
GM-CSF, FltL) and cytokines (i.e., IL-1, IL-6, IL-17) as well as through mesenchymal or 
immune cells [93]. This coexists with a compensatory anti-inflammatory response syn-
drome, which is mainly carried out by myeloid suppressor cells (MDSCs) that secrete 
anti-inflammatory cytokines (e.g., IL-10 and TGFβ) and cytokine antagonists (e.g., 
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IL-1ra and sTNFRI) and decrease inflammation without eliminating all protective innate 
immunity [94].

During chronic inflammation, an unbalance between pro- and anti-inflammatory 
mediators makes homeostasis impossible to restore. The persistence of stimuli that 
modify the inflammatory response, either directly or indirectly, may perpetuate the 
release of inflammatory mediators not only to the lung but also to the systemic compart-
ment, as the increased alveolo-capillary permeability facilitates their translocation. This 
persistent inflammation has been demonstrated in ARDS survivors even after clinical 
improvement or recover and related to worse physical recovery [95].

Senescence

Other potential mechanism which might be involved in PICS is related to the activation 
and spread of senescent responses. Cell senescence is defined as the cell cycle arrest in 
response to a stimulus, and a shift towards a specific phenotype characterized by the 
loss of several cell functions and the paracrine release of a variety of molecules (termed 
senescence-associated secretory phenotype—SASP), including proinflammatory media-
tors and senescence inductors (thus activating a positive feedback) [96]. There are several 
molecular pathways that lead to senescence in response to injury (including oxidative 
stress, release of DAMPs, proinflammatory cytokines, such as TNFα or IL-1α), most 
of which depend on the activation of P53, P21 and their downstream factors [97]. In a 
model of acute lung injury, we demonstrated that activation of these pathways results in 
short-term protection against apoptosis (as senescent cells have an inherent resistance 
to programmed cell death) [32, 98]. However, the resulting senescent state could lead 
to long-term sequelae, both locally and in distant organs (in response to SASP). Several 
of the previously described mechanisms of organ-specific PICS could be manifestation 
of these senescent responses. Senescence is an emerging pathogenetic pathway in idio-
pathic lung fibrosis [31], but their involvement in secondary fibrosis is unknown. Several 
forms of acute lung injury can trigger senescence in response to DNA damage. The pre-
viously described satellite cell exhaustion in ICUAW could be also a manifestation of the 
systemic release of pro-senescent factors. Recently, it has been described the deposition 
of brain amyloid fibers, a known trigger of neuronal senescence, in response to critical 
illness [99].

Of note, there is a positive feedback between inflammation and senescence. Inflam-
mation causes activation of senescence through several mediators, such as IL-6. In turn, 
SASP includes the release of proinflammatory molecules, thus promoting a sustained 
response [100].

Integrated stress response

A third mechanism potentially involved in the development of PICS is the so-called 
integrated stress response (ISR). ISR is a conserved cell response to different patho-
logical conditions that results in a general decrease in protein synthesis and expression 
of a specific gene signature. Its activation is necessary to maintain cell homeostasis in 
the presence of different stress signals [101]. This response may be activated by four 
stress-sensing kinases (protein kinase R [PKR], Eukaryotic translation initiation factor 
2-alpha kinase 4 [EIF2AK4], heme-regulated inhibitor [HRI] and PKR-like endoplasmic 
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reticulum kinase [PERK]) that phosphorylate the eukaryotic initiation factor elF2α, 
which ultimately leads to a decrease in protein synthesis and the induction of selected 
genes (such as ATF4 and CHOP) that eventually take part in the cellular response to 
stress.

ISR plays an important role during acute lung injury or mechanical ventilation. Alveo-
lar overdistension induced by mechanical ventilation results in PERK phosphorylation 
and subsequent phosphorylation of the factor elF2α. This alters epithelial permeability, 
induces proinflammatory cytokine release and cell death [102]. ISR may have a dual role 
deciding cell fate. Although its main function is maintaining cell survival, exposure to 
a continuous stress could lead to cell death [103]. In this context, the stress-inducible 
phosphatase GADD34 dephosphorylates elF2α and induces a negative feedback mech-
anism, ceasing the activation of ISR [104]. However, in pathological conditions, ISR is 
activated but GADD34 expression is attenuated, thus preserving phosphorylated elF2α 
[105] and perpetuating this response [106] due to the lack of negative feedback.

From common triggers to cellular and tissue dysfunction

Finally, all these pathways converge in a reduced number of cell responses that medi-
ate tissue dysfunction. The most studied response is apoptosis. There is substantial evi-
dence showing disseminated apoptosis during the acute response to critical illness [107]. 
This programmed cell death is activated by binding of extracellular signaling molecules 
(i.e., TNFα) to membrane receptors or intracellular release of cytochrome c from injured 
mitochondria (i.e., after oxidative stress). These pathways converge in the activation of 
caspases, that lead to DNA fragmentation and cell death. Although apoptosis is a major 
pathogenetic mechanism in acute organ failure, and anti-apoptotic drugs may prevent 
organ damage in this setting, the relationship of acute apoptosis and development of 
PICS remains to be fully elucidated. Animal models have shown a correlation between 
apoptosis and later development of pulmonary fibrosis [108] and neurological deficits 
[46], but human data is scarce. Patients with ICUAW show activation of proapoptotic 
pathways in peripheral muscles [109].

Activation of senescence, that render cells resistant to apoptosis [110], may be a com-
pensatory mechanism in this setting, but at the price of the promoting persistence of 
senescent, dysfunctional cells. Senolytics, a heterogeneous family of compounds that 
inhibit pro-survival kinases in senescent cells (such as BCL2 or tyrosine-kinases), may 
promote the selective death of these cells, facilitating a delayed repair [111]. Although 
promising, these pathways have not been explored in critically ill patients.

Emerging PICS domains
Rather than a settled syndromic condition, PICS is an evolving concept that cov-
ers a large variety of symptoms and conditions experienced by ICU survivors. Clinical 
research in this topic may help to better identify, characterize and manage the long-term 
consequences of critical illness from the early onset of acute illnesses. The main com-
ponents of PICS have been covered in the previous sections, but the systemic nature of 
acute severe diseases may cause other organ injuries.

Critical illness may increase the risk of cardiovascular events after ICU and hospital 
discharge. Greater rates of atrial fibrillation, heart failure, and myocardial infarction 
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have been described after sepsis [112]. However, no clear organ-specific mechanisms 
have been identified to date [113]. Systemic persistent inflammation is a major driver 
of cardiovascular disease, but a clear causative link is missing [114]. Recently, the role of 
stress-triggered senescence has been highlighted in this setting [115].

Similarly, there is increasing evidence of long-term impaired kidney function after 
critical care, even in patients without acute renal failure [116]. The development of kid-
ney fibrosis during the repair phase has been proposed as a major pathogenetic mech-
anism [117]. In addition, cell cycle arrest, a hallmark of senescence, promotes fibrosis 
during kidney repair [118]. The previously described cardiovascular impairment could 
contribute to further deteriorate kidney function.

Finally, transgenerational effects of critical illness, requiring modification of the 
genome or epigenome of germline cells, have barely been explored. It has been shown 
that experimental sepsis changes the sperm methylome, mainly in intergenic regions 
or development-related genes [119]. Both systemic and local inflammation can modify 
the expression of methyltransferases and thus facilitate cell reprogramming. The conse-
quences of these changes in offspring, however, are controversial [120]. Besides, mater-
nal prenatal exposures in human studies have focused on pregnancy, rarely assessing 
long term effects of exposures of maternal non-pregnant progenitor in later offspring 
[121].

Conclusions
The objectives of intensive care must go well beyond ICU survival and aim to provide 
critically ill patients with the best achievable quality of life. This includes prevention, 
treatment and/or palliation of the long-term sequels derived from their ICU stay. The 
complex organ crosstalk and the pleiotropic effects of most of the responses triggered 
by critical illness make difficult to find treatments that translate into a clinical benefit. In 
this difficult scenario, knowledge of the underlying biological mechanisms may allow cli-
nicians and researchers to identify novel biomarkers, therapeutic targets and strategies 
that ultimately will facilitate the identification and treatment of these long-term sequelae 
even at early and acute stages, thus contributing to improve long-term outcomes.
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