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Introduction
Acute respiratory distress syndrome (ARDS) was first described in 1967 as a case 
series. Amongst 272 adult patients receiving respiratory support, twelve patients did 
not respond to usual management [1]. These twelve patients presented with acute 
hypoxemic respiratory failure due to non-cardiogenic pulmonary edema with reduced 
lung compliance and increased work of breathing. The ‘causes’ of acute hypoxemic 
respiratory failure in these patients included pancreatitis, pneumonia, trauma or aspi-
ration. In 1992, the first consensus definition of ARDS was formalized as the Ameri-
can–European Consensus Conference (AECC) criteria [2], which were updated in 
2012 at another consensus conference in Berlin (referred to as the Berlin Definition; 
Table 1). The concept of acute hypoxemic respiratory failure due to non-cardiogenic 
pulmonary edema was retained as the ARDS construct within the Berlin Definition 
[3], with acute defined as within 7  days of insult, and hypoxemia categorised using 
partial pressure of oxygen/fraction of inspired oxygen concentration ratio (PaO2/FiO2 
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ratio), on a positive end-expiratory pressure (PEEP) or equivalent continuous posi-
tive airway pressure (CPAP) of 5 cm water. The identified risk factors for ARDS are: 
pneumonia, aspiration, smoke inhalation, drowning, sepsis, systemic inflammatory 
response for example in patients with pancreatitis, trauma or surgery, transfusion and 
toxic medication. These first “hits” are frequently accompanied by a second insult, 
such as fluid overload, high stress and/or strain on lung tissue or additional blood 
transfusions.

Upon histopathological evaluation, patients in the original description of ARDS all 
had diffuse alveolar damage (DAD) [1]. DAD is the result of a destructive process and 
injury to all of the alveolar structures is observed. The presence of hyaline membranes 
(dense eosinophilic amorphous material plastered along the alveolar septa) is one of 
the hallmark features of DAD, which is frequently seen in combination with white 
blood cell infiltration, fibrin deposition and collapsed alveoli. Only 45% of patients 
who fulfilled the Berlin definition of ARDS actually show DAD upon post-mortem 
histopathological evaluation [4]. ARDS patients without DAD mostly had histopatho-
logical features consistent with pneumonia. The introduction of low tidal volume 
ventilation seemed to decrease the incidence of DAD [4], suggesting that progres-
sion towards DAD may not only relate to the disease itself but also reflects ventila-
tion induced lung injury. It is very difficult to predict which patients have DAD based 
on clinical characteristics alone [5]. It may, therefore, be unreasonable to state that 
DAD is the histopathological equivalent of what we nowadays consider to be ARDS. 
Combined with the difficulty of obtaining histopathological samples in patients with 
ARDS, we will not consider DAD as the reference sample for ARDS in this review 
(Table 2).

The pathophysiology of ARDS includes the accumulation of protein-rich pulmo-
nary edema in the air spaces and interstitial areas of the lung, variable degrees of lung 
epithelial injury, variable degrees of endothelial barrier disruption, transmigration of 
leukocytes, alongside impaired fluid and ion clearance [6]. These pathophysiological 
features differ between patients, contributing to substantial biological heterogeneity. 
In this context, it is perhaps unsurprising that a wide range of pharmacological inter-
ventions targeting these pathophysiological processes have failed to improve patient 
outcomes [7, 8]. This biological hetergeneity has another important consequence—it 
is highly improbable that a single measurement would sufficiently capture the com-
plexity of ARDS to serve as a definitive and reliable diagnostic marker. Therefore, an 

Table 1  Berlin definition

PEEP positive end expiratory pressure, CPAP continuous positive airway pressure

Timing Within 1 week of a known clinical insult or new or worsening respiratory symptoms

Chest imaging Bilateral opacities—not fully explained by effusions, lobar/lung collapse, or nodules

Origin of edema Respiratory failure not fully explained by cardiac dysfunction or fluid overload

Oxygenation Mild 200 mmHg < PaO2/FiO2 ≤ 300 mmHg with 
PEEP/CPAP ≥ 5cmH2O

Moderate 100 mmHg < PaO2/FiO2 ≤ 200 mmHg with 
PEEP ≥ 5cmH2O

Severe PaO2/FiO2 ≤ 100 mmHg with PEEP ≥ 5cmH2O
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approach to incorporate relevant biology into the current definition of ARDS would 
be to assess the relative impact of the main contributing pathophysiological com-
ponents of ARDS, namely, endothelial barrier disruption, epithelial injury, and both 
systemic and within lung inflammatory responses. Specifically, in this manuscript, 
our goal is to provide a narrative summary of the potential methods to capture the 

Table 2  Summary of biological domains

Ang angiopoietin, sRAGE soluble Receptor for Advanced Glycation End Product, SP-D Surfactant protein D, BALF broncho-
alveolar lavage fluid, EBC exhaled breath condensate, HME heat moist exchanger, IL interleukin, TNFRI tumor necrosis factor 
receptor

Domain Sample material Example 
biomarkers

Advantage Disadvantage

Endothelial injury Plasma Ang2 Easy to obtain
Pathophysiological 
contributor to lung 
injury development

Reflective of all 
endothelial dysfunc‑
tion, not only in lung

Epithelial injury Plasma sRAGE. SP-D Easy to obtain
Pathophysiological 
contributor to lung 
injury development

Not only related to 
epithelial injury but 
also to, i.e., clearance 
by the kidney

Epithelial injury BALF sRAGE Not influenced by 
clearance
Evaluation at site of 
injury

Difficult to obtain 
sample
Local injury may not 
be reflective of the rest 
of the lung

Protein rich pulmo‑
nary edema

BALF Total protein Direct measurement 
of hallmark of ARDS

Difficult to obtain 
sample
Local injury may not 
be reflective of the rest 
of the lung
May not be targetable 
and reflective of injury 
to endothelium and 
epithelium

Protein rich pulmo‑
nary edema

EBC Total protein Non-invasive collec‑
tion of EBC
Direct measurement 
of hallmark of ARDS

Requires specialized 
equipment that is not 
widely available
May not be targetable 
and reflective of injury 
to endothelium and 
epithelium

Protein rich pulmo‑
nary edema

HME fluid Total protein Non-invasive collec‑
tion using standard 
HME
Direct measurement 
of hallmark of ARDS

Novel technique that 
needs to be validated 
further
May not be targetable 
and reflective of injury 
to endothelium and 
epithelium

Systemic host 
response

Plasma IL-6, IL-8, TNFRI Easy to collect
Used to classify 
subphenotypes

Not unique to ARDS 
and influenced by 
other organ dysfunc‑
tion
Unclear contribution 
to lung injury
Not reflective of alveo‑
lar inflammation

Alveolar host 
response

BALF Neutrophils, mac‑
rophages
IL-6, IL-8, TNFR1

Direct measurement 
of hallmark of ARDS
Pathophysiological 
contributor to lung 
injury development

Difficult to obtain 
sample
Local injury may not 
be reflective of the rest 
of the lung
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underlying biological heterogeneity of ARDS and discuss how this information could 
inform future ARDS redefinitions. We will also discuss the logistical and technical 
challenges of using biological diagnoses in the clinical setting. While there are no 
guarantees that a biologically cognizant definition of ARDS will lead to better thera-
pies, it does seem intuitive that identifying more biologically uniform subgroups may 
make it easier to identify modifiable targets. Finally, in line with the most prominent 
pathophysiological changes seen in ARDS, we discuss the biological tests that are 
available to identify patients with any of the following predominant biological pat-
terns: (1) lung epithelial and/or endothelial injury, (2) protein rich pulmonary edema 
and (3) systemic or within lung inflammatory responses (Fig. 1).

Epithelial and endothelial injury
Damage to the alveolar–capillary membrane, which is composed of endothelial, inter-
stitial, and epithelial components, allows for protein-rich pulmonary edema to accumu-
late in the airspaces of the lung. Measurements of specific biological protein markers in 
plasma can be used to assess lung epithelial injury (such as surfactant protein-D (SP-D) 
[9], club cell secretory protein (CC-16) and soluble receptor for advanced glycation end-
products (sRAGE) [10]), or endothelial injury (such as angiopoietin-2 (Ang-2) [11] or 
von Willebrand factor [12]).

Plasma sRAGE is increased in patients with trauma-related ARDS [13] and sepsis-
related ARDS [14] and sRAGE has been identified as a promising biomarker for ARDS 
in several meta-analyses [15, 16]. Increased plasma concentrations of sRAGE and Ang-2 

Fig. 1  There are many ways to parse ARDS into subgroups. Different ways to parse the ARDS population 
into subgroups some of which are subphenotypes. One patient can, therefore, belong to many different 
subgroups simultaneously, each of which could be a treatable trait. Top row from left to right: unselected 
ARDS; Berlin severity with mild, moderate and severe ARDS based on PaO2/FiO2 (light to dark blue); 
pulmonary (dark blue) and non-pulmonary (light orange) causes for ARDS; Focal (green) and non-Focal 
(yellow) ARDS based on chest CT. Bottom row from left to right: patients with (red) and without (yellow) 
apparent endothelial dysfunction; with (dark blue) and without (light blue) apparent epithelial injury; 
hyperinflammatory (orange) and hypoinflammatory systemic host response; hyperinflammatory (dark 
purple) and hypoinflammatory (light purple) alveolar host response
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are associated with increased risk for ARDS [11, 17, 18]. While these studies used single 
biomarkers, others have used panels of biomarkers that reflect the multiple pathophysi-
ological aspects of ARDS. A combination of plasma sRAGE and Ang-2 was superior to 
clinical assessment for ARDS diagnosis in patients with severe trauma [13], and a panel 
that included sRAGE, SP-D, and CC-16 was useful for diagnosis in patients with severe 
sepsis [14, 19]. Elevated plasma concentrations of Ang-2 and sRAGE were positively 
associated with increased risk of ARDS development, even after multivariable adjust-
ment, in a systematic review of 35 studies involving 10,667 patients at risk for ARDS 
[16]. More recently, another systematic review of diagnostic methods for ARDS found 
that plasma CC-16 and sRAGE had good diagnostic accuracy in low-bias studies that 
compared patients with ARDS to an unselected population of critically ill patients [15]. 
Higher plasma sRAGE concentrations correlate with impaired alveolar fluid clearance 
and the severity of lung epithelial injury [20–22], and vary with response to therapeutic 
interventions in patients with ARDS [23, 24].

sRAGE has been identified as a potential causal intermediate conferring risk for sepsis-
associated ARDS in a Mendelian randomization study [25]. This could imply that sRAGE 
not only is a biomarker of ARDS but that in specific patients, lung injury is driven by 
sRAGE itself. Similar observations have been made for ANG2 [26]; in one study, plasma 
ANG2 was found to mediate 34% of the ARDS risk in patients with a specific muta-
tion in the ANG2 receptor gene. These findings suggest that sRAGE and ANG2 are not 
merely markers reflective of epithelial and endothelial damage, but are pathophysiologi-
cal contributors to ARDS, at least in a subgroup of individuals.

Assessing the degree of lung epithelial and endothelial injury may be useful to under-
stand heterogeneity to help identify subphenotypes of ARDS [27, 28]. For example, 
patients with ARDS due to direct pulmonary causes such as pneumonia or aspiration 
(direct ARDS) have more severe lung epithelial injury, as reflected by higher plasma 
levels of SP-D and sRAGE, while patients with ARDS due to extrapulmonary causes 
(indirect ARDS) have more severe endothelial injury, as assessed by plasma Ang-2 [29]. 
Subphenotypes of ARDS can also be grouped based on the morphology of lung injury 
into focal and nonfocal ARDS [30], with higher plasma levels of sRAGE and plasmino-
gen activator inhibitor-1 (a marker of endothelial injury) in nonfocal compared to focal 
ARDS [31]. These two examples illustrate that epithelial and endothelial injury patterns 
differ in the context of variation in important clinical features.

Pulmonary permeability and protein rich pulmonary edema
Direct measurement of alveolar–capillary permeability requires measurement of the 
transit of fluid and protein from the circulation into the alveoli. Elevated alveolar pro-
tein concentrations are an excellent surrogate for increased alveolar capillary barrier 
permeability [32]. While assays to assess alveolar–capillary barrier permeability, such as 
total protein, albumin, immunoglobulin G and M, and other inflammatory proteins are 
straightforward and widely available, sampling the distal airspaces to collect pulmonary 
edema fluid for analysis is more challenging [33], and is seldom part of the clinical work-
flow. Other approaches for assessing the distal airspaces, and the barriers to their imple-
mentation as a clinical diagnostic tool in ARDS, are discussed in detail below.
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Broncho‑alveolar lavage fluid

Broncho-alveolar lavage fluid (BALF) is an important method for sampling the distal 
airspaces in patients with ARDS. Specifically, BALF has been used for identifying caus-
ative pathogens; understanding cytological composition; quantifying markers of inflam-
mation, epithelial and endothelial injury; and evaluating the extent of alveolar capillary 
barrier dysfunction. More recently, BALF has been studied using high-throughput bio-
logical measurement platforms (“omics”) with the aim of better understanding host 
responses and the lung microbiome [34–38].

BALF from patients with ARDS has a significantly higher BALF / plasma protein 
ratio compared to that of patients with cardiogenic pulmonary edema [39]. Using non-
bronchoscopic, minimally invasive approaches to alveolar fluid acquisition, significantly 
elevated airspace protein concentrations have been shown in ARDS, when compared to 
cardiogenic edema fluid [33]. Markers of lung epithelial injury have been studied exten-
sively in BALF. Surfactant proteins are known to be decreased in BALF of patients with 
ARDS compared to patients with other critical illness [40–42]. sRAGE, a marker of 
injured alveolar type I cells, is elevated in BALF of patients with ARDS [10].

Two factors have limited the clinical and research use of BALF in ARDS. First, bron-
choscopy is an invasive procedure associated with risks, albeit risks that are low in 
patients with acute respiratory failure [43], but can be followed by hypoxemia due to 
derecruitment. Second, there are considerable limitations in interpreting protein bio-
marker measurements in BALF or mini-BALF due to inconsistencies in the dilution of 
the acquired BALF samples [44, 45] and regional heterogeneity. The procedure of the 
lavage can itself be a determinant of the findings despite consistent procedures [46]. In 
the absence of therapeutic benefit or interventions made directly as a consequence of 
BALF findings, its justification as a routine diagnostic intervention is challenging. Yet, 
studying fluid from the alveolar space should be integral to understanding the biology of 
ARDS, given its close proximity to the site of injury.

Exhaled breath condensate

Exhaled breath condensate (EBC) may be useful for characterizing the airspace [47], but 
current collection equipment is costly, sample volume is limited, and sample collection 
is labor-intensive [48]. Several studies have measured biomarkers in EBC from patients 
with ARDS, but few are directly applicable to alveolar capillary barrier integrity. For 
example, nitrite concentrations increase linearly with tidal volume [49], and proinflam-
matory cytokines including TNF and IL-8 are elevated in exhaled breath from patients 
with ARDS, when compared to healthy volunteers [49]. There are no studies of exhaled 
breath condensate that specifically measure markers of barrier dysfunction, such as total 
protein or albumin.

Heat moisture exchange filter fluid

Another more recent non-invasive approach to sampling the airspace in ARDS is 
extracting fluid from the heat moisture exchange (HME) filter, an inline disposable 
hygroscopic bacteriostatic sponge routinely placed between the patient and the venti-
lator. Two recent studies have shown that fluid collected from HME filters reflects the 
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distal airspace in ARDS. Proteomic analysis of HME fluid and fluid collected from direct 
aspiration of the airspace (as described above) from patients with ARDS or hydrostatic 
pulmonary edema showed that the proteomic profile of HME fluid is very similar to 
directly aspirated alveolar fluid [50]. Importantly, total protein can be measured in HME 
fluid and is higher in patients with ARDS compared to hydrostatic edema [50, 51]. HME 
fluid analysis may pave the way for incorporating bedside measures of alveolar capillary 
barrier dysfunction into the definition of ARDS.

Systemic and alveolar inflammatory response
ARDS is a multifaceted process, which involves both alveolar and systemic inflam-
mation. Inflammation in ARDS is likely influenced by several factors including etiol-
ogy, host factors (co-morbidities and genetics), immunomodulation (e.g., steroids), the 
impact of secondary insults (e.g., ventilator-induced lung injury and nosocomial infec-
tion) and many others. ARDS also encompasses intra- and inter-individual heterogene-
ity with respect to spatial and temporal kinetics, and this heterogeneity and the dynamic 
clinical phenotype of ARDS has challenged the research community with respect to dis-
secting the role of inflammation. Hence, conceptual frameworks for inflammatory defi-
nitions will also need to consider criteria for sampling site, technique, assay specificity/
sensitivity, as well as the longitudinal kinetics of alveolar and systemic inflammatory bio-
marker measurements. Indeed, such approaches will require rapid high throughout bed-
side assays to enable real-time mapping of disease progression. The ongoing PHIND trial 
(ClinicalTrials.gov Identifier: NCT04009330) is testing a point of care plasma assay to 
identify inflammatory subphenotypes of ARDS. Initial data in the setting of ARDS due 
to COVID-19 provides proof of concept that bedside patient phenotyping in the criti-
cally ill may be feasible [52].

Alveolar concentrations of biomarkers of the pro-inflammatory innate immune 
response, such as interleukin (IL)-1b, IL-6, IL-8 and tumor necrosis factor (TNF) are 
increased in patients with ARDS [53]. The same challenges associated with obtaining 
BALF for analysis of protein rich pulmonary edema discussed above also apply for the 
analysis of intra-alveolar inflammatory markers [54]. Hence, plasma markers are at pre-
sent studied most frequently as a convenient surrogate to assess pulmonary inflamma-
tion, even though a direct association between singular cytokines in both compartments 
has not been found [53, 55–60].

Plasma concentrations of pro-inflammatory mediators such IL-6, IL-8, TNF receptor 1 
(TNFR1) and protein C have driven the identification of ARDS subphenotypes [61–65]. 
Statistical models that identify homogeneous subgroups of patients (latent class analysis; 
LCA, and cluster analysis) have consistently identified two subphenotypes, a hyperin-
flammatory and a hypoinflammatory subphenotype. The hyperinflammatory subpheno-
type is associated with increased systemic organ dysfunction (as defined by sequential 
organ failure score), longer ICU stays, and increased mortality [61–65]. Gene expression 
profiles from blood leukocytes from patients with a more hyperinflammatory subpheno-
type are reflective of profound neutrophil activation [66]. These systemic inflammatory 
subphenotypes showed a differential treatment response to PEEP strategy, fluid manage-
ment, simvastatin administration, and corticosteroids (in patients with COVID-19-re-
lated ARDS) [61–65, 67], highlighting their potential importance in the subclassification 
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of patients with ARDS. However, there are also data suggesting that these subpheno-
types are not unique to ARDS and might be more widely applicable to critical illness [68, 
69].

Catch 22
One central problem limiting the wide application and implementation of the above dis-
cussed biomarkers is that none of these are measured in routine practice, which limits 
evaluation in large data sets and, therefore, disqualifies them for inclusion in a consen-
sus definition of ARDS. They are currently not measured, because (1) clinical laboratory 
testing is unavailable and (2) we do not understand the treatment consequences result-
ing from measurement of these biomarkers. Before we can assess if they would result in 
superior treatment choices, we need to define the patient population of interest using 
these biological tests. Hence the Catch 22 of only using routinely available clinical vari-
ables is that they only indirectly reflect the underlying injury processes. While ARDS is 
defined using these variables because of their availability, they do not capture the under-
lying pathophysiology and biological heterogeneity of the syndrome. Until we can recon-
cile these two, we will be hampered in our ability to identify distinct biological subtypes 
within the clinical syndrome of ARDS.

Focus on treatable traits
Treatable traits are observable biological abnormalities that can be modified such that 
outcomes are improved. Considering the challenges discussed above, reaching consen-
sus on a fully biological definition of ARDS may be implausible in the short term. Biolog-
ical data may, however, advance our understanding and treatment of ARDS without the 
need to reformulate the consensus criteria for ARDS. Thus, the aim of a biological defini-
tion should be that it identifies subsets of patients with homogeneous biological charac-
teristics who respond similarly to specific interventions. Rather than trying to generate a 
biological ARDS definition, we could persist with the broad ARDS diagnosis, as per the 
Berlin definition, but identify subsets with similar biological features. The corresponding 
inclusion criteria of an interventional trial would combine the Berlin definition and the 
biological abnormality of interest (such as increased alveolar capillary barrier permeabil-
ity). If the intervention were to be beneficial in this subset, this would be considered a 
treatable trait within ARDS. In Fig. 1, we summarise how potential treatable traits can 
co-exist within subsets of the population and thus are not mutually exclusive.

Figure  2 shows how the biological processes that underly potential treatable trait 
relate. We speculate that the position of an individual, based on information pertaining 
to these component parts in alveolar fluid relative to the circulation, becomes critical in 
understanding a patient’s biological signature and may inform targeted treatment at a 
given moment in time. Finally, insights of mechanistic signatures through integration of 
biological data from other progressive pulmonary pathologies could offer opportunities 
for drug repurposing in different phases of ARDS, for instance, from interstitial pulmo-
nary fibrosis to ARDS related fibroproliferation [70].

In this regard, we can learn from the progress made in asthma [72]. Although 
asthma was considered to be a disease mostly driven by eosinophilic inflammation, 
the current definition is a syndromic description much like ARDS. Within the most 
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severe forms of ARDS, both neutrophilic and eosinophilic inflammation can be 
observed resulting in biological heterogeneity. However, the trials of the past dec-
ade that showed benefit in asthma only focused on patients with proven eosinophilic 
inflammation to test antibodies interfering in IL-4 and IL-5 signaling. This treatable 
trait is now widely recognized and has been included in all guidelines for the treat-
ment of asthma. For ARDS, biological subsets are starting to emerge. When testing 
an intervention that limits permeability, we could use biomarkers listed in the sec-
tion on permeability and edema to identify patients who are most likely to respond to 
the intervention. Yet, when testing an anti-inflammatory intervention, we might want 
to include patients who show evidence for pulmonary or systemic activation of the 
pathway that is being targeted. Such central alteration of one of the features that leads 
to lung injury is what we refer to when we discuss a “similar dominant pattern”. This 
heuristic approach may of course be false: patients with the most activated response 
are not necessarily the ones who respond most favorably, and these hypotheses need 
to be verified in prospective randomized controlled trials. At this stage, those trials 
should generally include both patients who have biomarker evidence of a particular 
treatable trait and those who do not, so as to specifically test whether or not treat-
ment benefits are confined to those with the purported “treatable trait”.

Fig. 2  Biological integration of potential treatable traits. The described domains of biological variation do 
not exist in isolation of each other (Fig. 1). An individual patient could, therefore, be classified according to 
a conceptional framework that evaluates the three major components of an alveolar unit (endothelium, 
interstitium with extra-cellular matrix, and epithelium) and the balance of host response between alveolar 
and blood compartment [71]. We speculate that the position of an individual, based on information 
pertaining to these component parts in alveolar fluid relative to the circulation, becomes critical in 
understanding a patient’s biological signature and may inform targeted treatment at a given moment in 
time. Finally, insights of mechanistic signatures through integration of biological data from other progressive 
pulmonary pathologies could offer opportunities for drug repurposing in different phases of ARDS, for 
instance, from interstitial pulmonary fibrosis to ARDS fibrosis [70]
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How to reach the goal of biological treatable traits?
Several steps, outlined below, can be made to bring biological treatable traits closer to 
reality.

1.	 Large, inclusive and collaborative biobanks of plasma and alveolar samples from 
patients with ARDS. Biobanks will need large sample numbers to allow for the iden-
tification of subphenotypes, which typically requires hundreds of samples. They 
ought to be inclusive of the diversity of the patient population experiencing ARDS, 
because selective sampling would result in biases. Longitudinal sampling can pro-
vide additional insights into biological dynamics [73, 74]. To achieve such large and 
inclusive biobanks, collaborative networks with harmonized collection and process-
ing protocols are needed. Recent NHLBI and ERS workshop reports on Precision 
Medicine in ARDS made a similar recommendation [28, 75].

2.	 Biological materials can be used for reverse translational studies, such as in  vitro 
stimulations of alveolar macrophages, neutrophils, endothelial or alveolar epithelial 
cells. Pharmacological therapies should be tested in such an in vitro setup to inform 
the pathophysiological changes that can be reversed with this treatment. Subse-
quently, patients with a similar dominant biological pattern could be selected for 
participation in intervention studies and the in vitro tests could be used to evaluate 
intermediate treatment effects in such studies.

3.	 Biological materials should ideally be collected as part of all RCTs in ARDS patients 
to allow for testing of heterogeneity of treatment effect in biological subphenotypes.

4.	 Finally, we should perform intervention studies in cohorts that specifically include 
patients with ARDS and measure the biological factors that enrich the population. 
Clinical use of such an intervention that only works in a biological subphenotype 
requires a rapid test for the biomarkers of interest to facilitate inclusion into the trial 
and time to start treatment and inclusion of selective patients are, therefore, con-
flicting priorities. Importantly, identifying heterogeneity of treatment effect in post-
hoc subgroup analysis of RCT is insufficient and these effects should be confirmed in 
enriched RCTs.

Conclusions
To conclude, a true biological definition of ARDS may be out of reach at present due 
to constraints in data availability and granularity as well as limited understanding of 
the mechanisms underlying the development of ARDS. With widely inclusive diag-
nostic criteria, progress could be made through the identification of subgroups with 
similar biological abnormalities who may have an increased likelihood of responding 
similarly to specific interventions. This perspective paper provides an overview of the 
currently available biological data that may be considered in the formulation of such 
subgroups in a next consensus definition of ARDS. We envision a future where the 
diagnosis of ARDS is the start of further phenotyping and identification of biological 
subsets of patients.
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