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Abstract 

Nitric oxide (NO) is a key molecule in the biology of human life. NO is involved in 
the physiology of organ viability and in the pathophysiology of organ dysfunction, 
respectively. In this narrative review, we aimed at elucidating the mechanisms behind 
the role of NO in the respiratory and cardio-cerebrovascular systems, in the presence of 
a healthy or dysfunctional endothelium. NO is a key player in maintaining multiorgan 
viability with adequate organ blood perfusion. We report on its physiological endog-
enous production and effects in the circulation and within the lungs, as well as the 
pathophysiological implication of its disturbances related to NO depletion and excess. 
The review covers from preclinical information about endogenous NO produced by 
nitric oxide synthase (NOS) to the potential therapeutic role of exogenous NO (inhaled 
nitric oxide, iNO). Moreover, the importance of NO in several clinical conditions in 
critically ill patients such as hypoxemia, pulmonary hypertension, hemolysis, cerebro-
vascular events and ischemia–reperfusion syndrome is evaluated in preclinical and 
clinical settings. Accordingly, the mechanism behind the beneficial iNO treatment 
in hypoxemia and pulmonary hypertension is investigated. Furthermore, investigat-
ing the pathophysiology of brain injury, cardiopulmonary bypass, and red blood cell 
and artificial hemoglobin transfusion provides a focus on the potential role of NO as a 
protective molecule in multiorgan dysfunction. Finally, the preclinical toxicology of iNO 
and the antimicrobial role of NO—including its recent investigation on its role against 
the Sars-CoV2 infection during the COVID-19 pandemic—are described.

Take home message 

Nitric oxide (NO) is a key molecule involved in the vascular homeostasis and a key 
player in maintaining multiorgan viability. The therapeutic role of inhaled NO ranges 
from cardio-cerebrovascular to respiratory diseases to antimicrobial properties.

Keywords:  Nitric oxide, Endothelial dysfunction, Pulmonary hypertension, Cardiac 
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Introduction
In the 1980s, nitric oxide (NO, nitrogen monoxide or nitrogen oxide) was considered 
just a toxic molecule, an environmental pollutant found in cigarette smoke and smog. 
It was known to have a role in destroying the ozone layer, and as a suspected carcino-
gen [1] and a precursor of acid rain. However, in the early 1990s an increasing amount 
of evidence showed that NO is an essential player in pathophysiology of mammals. Its 
activity was discovered to be fundamental in the brain, arteries, immune system, liver, 
pancreas, uterus, peripheral nerves, and lungs. In 1992, NO was declared the “Molecule 
of the Year” [2] and “initiated a new chapter in biomedical research” as Prof. Sten Lind-
hal stated in 1998, when the Nobel Prize in Physiology and Medicine was awarded to 
Robert Furchgott, Louis Ignarro and Ferid Murad for discovering NO’s role as a cardio-
vascular molecule [3].

NO in the environment

NO is a colorless and odorless gas, poorly soluble in water [4]. Atmospheric NO concen-
tration ranges between 10 and 500 parts per billion (ppb). However, its concentration is 
estimated to rise up to 1.7 parts per million (ppm) in highly polluted areas [5]. Further, 
cigarettes, combustion and lightning can significantly increase NO concentration in the 
surrounding environment [6]. NO is an unstable gas and undergoes oxidation to more 
toxic nitrogen oxides (e.g., NO2, N2O4).

NO delivery systems

NO can be generated and delivered in different ways [7]: 1. pressurized cylinders are 
the most widely used system to store NO, delivery is regulated by sensors to control the 
concentrations of NO and NO2; 2. electric NO generators produce NO from ambient 
air using high-voltage electrical discharge to ionize air, which leads to the formation 
of NO and other byproducts filtered by a scavenging system; 3. chemical generators 
can produce NO by the reduction of NO2 by ascorbic acid; 4. NO-releasing solutions, 
release NO under specific chemical conditions; and 5. solid nanoparticles contains 
either NO or an inactive NO precursor in a stable form that releases NO in a controlled 
manner.

Furthermore, endovenous NO-donors (e.g., nitroglycerin, sodium nitroprusside) are 
commercially available drugs aimed at administering NO although not selectively (i.e., 
into the bloodstream)—like in the case of iNO. Despite mentioning NO-donors in this 
review to clarify certain mechanisms of action of NO, a comprehensive description of 
systemic NO-donors is out of the scope of the present review and may be consulted in 
other scientific reports [8, 9].

Nitric oxide synthase (NOS)

Endogenous NO is produced by nitric oxide synthases (NOS), the enzymes that catalyze 
nicotinamide adenine dinucleotide phosphate (NADPH) and tetrahydrobiopterin (BH4) 
dependent oxidation of L-arginine to L-citrulline. NO is one of the end-products of the 
reaction [10, 11]. The cofactor BH4 is essential for NOS to generate NO since its absence 
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causes NOS to shift from a dimeric to a monomeric form, thus becoming uncoupled 
[12].

Three NOS isoforms were discovered in humans: neuronal (nNOS or NOS I), induc-
ible (iNOS or NOS II) and endothelial (eNOS or NOS III).

eNOS is the constitutive form in endothelial cells, thus it is the main contributor to 
vascular NO levels in physiological conditions. eNOS is a dimer containing two identical 
monomers with a reductase domain for NADPH and an oxidase domain for L-arginine.

nNOS is a constitutively expressed form of NOS that was first found in neurons [13]. 
It is also present in other tissues including vascular smooth muscle cells, fibroblasts, 
endothelial cells and cardiomyocytes. nNOS activity is regulated by calcium/calmodulin 
interaction and it is susceptible to feedback inhibition by NO [14]. This feature guaran-
tees pulsatile NO production instead of generating sustained low levels, a process linked 
to its role in synaptic transmission [15]. Moreover, recent evidence showed that nNOS-
derived NO may play an important role in vascular physiology [16].

iNOS activity is mainly regulated by gene transcription and is modestly sensitive to 
NO-dependent autoinhibition, moreover its action is Ca2+-independent compared with 
the other forms of NOS [17]. iNOS is widely expressed in mammalian cells, particu-
larly in immune cells (such as dendritic cells, NK cells, mast cells and phagocytic cells 
including monocytes, macrophages, microglia, Kupffer cells, eosinophils, and neutro-
phils) [18]. NO has a complex function in immune cells since it serves as an antimicro-
bial agent via NO-derived peroxynitrite (ONOO–), a reaction product of ·NO and O2

–, 
as well as an immunomodulator via numerous pathways of lymphocyte inhibition and 
apoptosis [19]. Extensively studied in various pathophysiological processes [20], iNOS 
expression is described also in airway epithelium [21–23] under inflammatory stimuli 
and in blood vessels [24], where iNOS activation can lead to excess NO concentration 
and severe impairment of vascular function due to reduced NO sensitivity [25].

NO physiology

The role of NO as major mediator of vasodilatation has been well established since 1987 
thanks to the work of Ignarro et al. [26] and Palmer et al. [27] The groups in two inde-
pendent studies identified in NO the specific molecule previously known as endothe-
lium-derived relaxing factor (EDRF). Moreover, a variety of nitro-vasodilators (e.g., 
nitroglycerin, sodium nitroprusside) is responsible for smooth muscle relaxation via 
cGMP synthesis, a process attributed to the release of NO [28, 29]. Endothelial cells in 
healthy blood vessels secrete NO tonically and enhance NO production dynamically in 
response to an increased shear stress, by locally controlling the organ perfusion accord-
ing to changes of blood flow [30].

Although discovered as a vasodilator, NO exerts an important protective role on 
endothelium and guarantees vascular homeostasis [31]. Precisely, NO reduces vascular 
smooth muscle proliferation [32], platelet aggregation [33, 34] and leukocyte binding to 
endothelium [35, 36]. Furthermore, NO limits oxidative phosphorylation in mitochon-
dria, a function that may be involved in the regulation of cell bioenergetics and apoptosis 
[37].
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Most of the effects of NO in the cardiovascular system are mediated by the activa-
tion of the enzyme-soluble guanylate cyclase (sGC), which catalyzes the formation of 
the second messenger cyclic guanosine monophosphate (cGMP) from guanosine-5′-
triphosphate (GTP): the activation of GMP‐dependent protein kinase G (PKG) leads to 
vascular relaxation (Fig. 1A).

Soluble guanylate cyclase (sGC) is a heme-containing protein composed of an α and β 
subunits. The presence of heme results in a 100-fold increase of the enzyme activity after 
stimulation with NO, whereas basal enzyme activity is low without heme and does not 
change regardless the addition of NO [38].

NO may directly modulate other signaling systems, including nitrosylation of a wide 
range of proteins, thus modifying their biological activity [39]. The target proteins 
include the transcription factor nuclear factor kinase-B (NFκB), cell cycle-controlling 
proteins, and proteins involved in the generation of tissue factor [40]. Moreover, since 
NO is rapidly sequestered from the circulation, bound and inactivated via redox activ-
ity to nitrate (NO3

−) by heme-iron of hemoglobin (Hb) [41], an additional mechanism 
to preserve NO bioavailability is necessary: NO is activated in vivo, requiring oxidation 
of NO to NO+, to allow its reaction with thiols [42, 43]. S-Nitrosothiols (SNO) and in 
particular S-nitroso-hemoglobin (SNO-Hb) are resistant to heme, thus maintaining its 
ability to perform vasodilatory activity [44]. Accordingly, the systemic hypoxic vasodila-
tion observed by Guyton in the 1960s [45] is better explained by SNO-Hb itself: NO is 
released from SNO-Hb during deoxygenation in the microcirculation to regulate vessels 

Fig. 1  NO biosynthesis and eNOS uncoupling. Endogenous NO is produced by NOS by the oxidation of 
l-arginine to l-citrulline + NO (NADPH and BH4-dependent reaction). NO is one of the end-products of the 
reaction. Most of the effects of NO in the cardiovascular system are mediated by the activation of sGC, which 
catalyzes the formation of the second messenger cGMP from GTP. The activation of GMP‐dependent PKG 
leads to vascular relaxation (A). Several circumstances may alter eNOS activity causing the reduction of NO 
levels and triggering the production of superoxide instead of NO, a process defined as “eNOS uncoupling”. 
For example, the depletion of eNOS cofactor BH4, l-arginine deficiency, and increase in endogenous 
eNOS inhibitor ADMA lead to eNOS uncoupling. This process is largely deleterious and has been linked to 
endothelial dysfunction, ROS increase and other vascular pathologies. Moreover, NO bioavailability is reduced 
by free oxy-Hb. B NO: nitric oxide; NOS: nitric oxide synthase; sGC: soluble guanylate cyclase; cGMP: cyclic 
guanosine monophosphate; GTP: guanosine-5′-triphosphate; PKG: Protein Kinase G; BH4: tetrahydrobiopterin; 
ADMA: asymmetric dimethylarginine; oxy-Hb: oxyhemoglobin
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directly, thus diverting blood flow to the tissues with increased oxygen demand. Further-
more, while SNO serves as the main source of NO in the microcirculation, SNO itself 
has a proper bioactivity that is carried out regardless sGC/PKG [46–48]. S-nitrosylation 
is now recognized as a fundamental post-translational modification and as a major key 
player in the NO bioactivity [49].

NO toxicology

The toxicology of NO is complex since numerous NO-donors show significant side 
effects, particularly hypotension given their ability to vasodilate [50]. Moreover, as stated 
in the section on the ischemia–reperfusion syndrome (IRS), some studies showed del-
eterious effects of NO on brain damage [51–53].

Inhaled nitric oxide (iNO) has a complex interaction between the pharmacological 
properties and toxic effect [54]. Some of the toxic effects are mediated by its second 
messenger cGMP that, among other roles, can modulate DNA synthesis and decreases 
cellular proliferation. The antiproliferative effects of NO has been demonstrated in sev-
eral systems, including vascular smooth muscle and human airway smooth muscle cells 
in vitro [55, 56]. Further studies are necessary to understand if this effect is beneficial 
or deleterious in hypoxic pulmonary vasoconstriction (HPV). The potential genotoxic 
effects of NO is also a concern since chromosomal aberrations in lung cells in rats are 
reported [57]. Similar results were obtained in human lymphoblastoid cells in vitro fol-
lowing nitric oxide treatment [58].

Nitric oxide also reacts with superoxide anion to form peroxynitrite (ONOO−), a 
highly reactive oxidant species [59]. Peroxynitrite can induce lipid peroxidation and 
inhibit mitochondrial respiration [60, 61]. Furthermore, it can also initiate DNA base 
modifications [62, 63]. Moreover, iNO can rapidly react with oxygen in the lung to form 
NO2, which is a potent pulmonary irritant that may alter the surfactant [64]. Trials on 
lambs and rats exposed to high doses of iNO (80 or 100 ppm, respectively) demonstrate 
surfactant dysfunction [65, 66].

iNO is able to exert its toxic effects outside the lung, despite the rapid inactivation by 
circulating Hb. In particular, iNO may cause vasodilation in extrapulmonary circulation 
[67], a process that may be related to the formation of S-nitroso-proteins that maintain 
NO biologically active [68]. Moreover, NO inhibits platelet aggregation and adherence 
to endothelial cells [69]. In rats, iNO (15  ppm) increased bleeding time and reduced 
platelet aggregation [70].

Finally, iNO can combine with hemoglobin to form met-Hb. Toxic levels of met-Hb 
are reached only when high dose of iNO are administered [71, 72], and a rapid clearance 
was demonstrated in rats and rabbits treated with iNO after the return to breathing air 
[73, 74].

NO pathophysiology

iNO may have diverse clinical applications thanks to its ubiquitous role in organ func-
tion and viability. Despite extensive pre-clinical and clinical literature is available, a lot 
of work should be done yet to investigate iNO potential before targeting clinical trials. 
A summary of the highest level of evidence so far available about the iNO potential for 
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Table 1  Highest level of evidence so far available about the iNO potential for clinical applications 
and highlights on research gaps before trialing specific area of research

Clinical 
condition

Endpoint Pre-clinical Clinical

Small animals Large animals Lower evidence 
studies

Higher evidence 
studies

PPHN PAP, PaO2/FiO2 – – – iNO reduces PAP 
and improves 
oxygenation [198]

Mortality – – – iNO reduces 
mortality [198]

ARDS PaO2/FiO2 – – – iNO is superior 
to control group 
[190–193]

Mortality – – n.s [190, 193] n.a

Pulmonary Arte-
rial Hyperten-
sion

PAP – – – iNO improves 
pulmonary hemo-
dynamics [189]

Cardiac arrest Brain and heart 
function

iNO prevents 
neurological and 
cardiac dysfunc-
tion [134]

– n.s. [137] n.a

Mortality iNO reduces 
mortality [135]

– iNO reduces 
mortality [137]

n.a

Myocardial 
infarction

Infarct size after 
reperfusion

iNO decreases 
infarction size 
[144]

iNO decreases 
infarction size 
[145]

– n.s [146]

Stroke Infarct size iNO reduces 
infarct size 
[111–113]

n.a n.a n.a

SAH Brain ischemia iNO reduces 
brain-edema 
formation and 
neuronal loss 
[125]

n.a n.a n.a

Mortality iNO reduces 
mortality and 
improves neuro-
logical outcome 
[125]

n.a n.a n.a

TBI Secondary brain 
damage

iNO reduces 
secondary brain 
injury [131]

iNO reduces 
secondary brain 
injury [132, 133]

n.a n.a

Hemolysis Vasoconstriction – iNO prevents 
hemolysis 
induced 
vasoconstriction 
[149]

n.a n.a

AKI – iNO prevents 
hemolysis 
induced AKI 
[149]

n.a n.a

CPB-associated 
hemolysis

AKI – – – iNO reduces CBP-
associated AKI 
[166]

Transfusion asso-
ciated hemolysis

Pulmonary vaso-
constriction

– iNO prevents 
old blood 
cell induced 
vasoconstriction 
[173]

iNO prevents 
old blood cell 
induced vaso-
constriction (vol-
unteers) [172]

n.a
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clinical applications and highlights on research gaps before trialing in the absence of 
clinical trials in each specific area of research are reported in Table 1.

Endothelial function and vascular homeostasis

Endothelial dysfunction is a disorder characterized by an imbalance between vasodilat-
ing, antimitogenic and antithrombogenic molecules and others with vasoconstricting, 
prothrombotic, and proliferative properties [75, 76]. As already illustrated in the previ-
ous section, NO is one of the key substances involved in vasodilation, platelet aggrega-
tion, leukocyte adhesion activation and smooth muscle cell proliferation.

Several circumstances can alter eNOS activity causing the reduction of NO lev-
els and triggering the production of superoxide instead of NO, a process defined as 
“eNOS uncoupling”. For example, the depletion of eNOS cofactor tetrahydrobiop-
terin (BH4), l-arginine deficiency and increase in endogenous eNOS inhibitor asym-
metric dimethylarginine (ADMA), lead to eNOS uncoupling [77]. This process is 
largely deleterious and has been linked to endothelial dysfunction, ROS increase and 
other vascular pathologies [78]. Particularly, plasma ADMA levels are increased in 
humans with hypercholesterolemia, atherosclerosis, hypertension, chronic renal fail-
ure, chronic heart failure and insulin resistance [79]. Moreover, NO bioavailability is 
reduced by free oxy-Hb (see “18” section) (Fig. 1B).

Studies on eNOS knock-out mice showed that eNOS mediates basal vasodilation 
[80], promotes angiogenesis and helps wound healing [81]. Moreover, the vascular 
protective role of NO is confirmed by studies on eNOS polymorphisms associated 
with reduced NO production: an association of low NO synthesis was found with cor-
onary spasm [82], hypertension [83], pre-eclampsia [84], diabetic nephropathy [85] 
and retinopathy [86], and vascular erectile dysfunction [87]. Thus, endothelial dys-
function contributes to the pathogenesis of cardiovascular disease and there is strong 

Table 1  (continued)

Clinical 
condition

Endpoint Pre-clinical Clinical

Small animals Large animals Lower evidence 
studies

Higher evidence 
studies

Artificial blood 
hemolysis

Vasoconstriction – iNO prevents 
HBOC-induced 
vasoconstriction 
[152]

n.a n.a

Organ transplan-
tation

IR injury iNO during 
ex vivo lung per-
fusion reduces 
lungs wet-to-dry 
ratio [99]

n.a iNO improves 
liver function in 
orthotopic liver 
transplantation 
[103]

n.a

Lack of evidence is highlighted by orange cells, while the dash “–” refers to omitted literature because a study with a higher 
level of evidence is available for the endpoint. When the findings of human trials are conflicting with the data of preclinical 
studies, both studies are reported. The definition of “Lower evidence studies” refers to retrospective studies and pilot 
prospective randomized studies; the definition of “Higher evidence studies” refers to randomized controlled studies and 
meta-analysis

AKI acute kidney injury, ARDS acute respiratory distress syndrome, CPB cardiopulmonary bypass, HBOC hemoglobin-based 
oxygen carrier, iNO inhaled nitric oxide, IR ischemia–reperfusion, n.a. not available, n.s. not significant, PAH pulmonary artery 
hypertension, PaO2/FiO2 partial oxygen pressure-to-fraction of inspired oxygen ratio, PAP pulmonary arterial pressure, PPHN 
persistent pulmonary hypertension of the newborn, SAH subarachnoid hemorrhage, TBI traumatic brain injury
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clinical evidence that loss of NO bioavailability is a crucial manifestation of endothe-
lial dysfunction [88].

Several methods to measure endothelial dysfunction have been proposed based 
on the concept that healthy arteries dilate consequently to reactive hyperemia (flow-
mediated vasodilatation) or after pharmacological stimuli. In disease states, this 
mechanism is reduced or absent. Since endothelial dysfunction is characterized by 
the inability to produce endogenous NO, to discriminate endothelium-independ-
ent from endothelium-dependent responses, exogenous NO-donors (e.g., sodium 
nitroprusside) or non-NO-donors vasodilators (e.g., acetylcholine (Ach), which is 
the molecule responsible of endogenous vascular NO production and consequent 
vasodilatation) can be applied. Consequently, a vasodilatory response after NO-
donors and absence of response after acetylcholine is typical of endothelial dysfunc-
tion. Impaired endothelial-independent function is indeed associated with structural 
vascular alterations rather than changes in the endothelial function [89].

In 1993, Wessel et al. investigated whether cardiopulmonary bypass may induce pul-
monary endothelial dysfunction and then lead to pulmonary hypertension in children 
with congenital heart disease undergoing surgical repair. To test their hypothesis, the 
authors explored the effects of iNO, as an endothelial-independent smooth muscle 
relaxant, and Ach, as an endothelial-dependent vasodilator. The authors demonstrated 
that Ach failed to reverse pulmonary hypertension. In contrast, iNO reversed increased 
pulmonary pressures bypassing the impaired endothelial signaling pathway of Ach. This 
confirmed the hypothesis that endothelial dysfunction seems to be the cause of the 
altered endogenous NO release. Furthermore, plasma levels of cGMP were unchanged 
after Ach infusion but increased more than threefold during pulmonary vasodilation 
with iNO. This finding was consistent with the hypothesized role of cGMP as the second 
messenger of effective smooth muscle relaxation in this process [90].

Ischemia–reperfusion syndrome

Hypoxia-induced release of NO is one of the major determinants of microvascular blood 
flow modifiers [91–93]. NO may exert this function by Hb S-nitrosylation at Cys93 of 
the β-chain [49]. The release of SNO from the deoxygenated structure of Hb is sup-
ported by data showing that wild-type mice exhibit elevated muscle blood flow after 
brief ischemia (reactive hyperemia), a mechanism markedly impaired in mice expressing 
Hb with a single point mutation in Cys93 of the β-chain, and so unable to carry SNO 
[94]. Also, recombinant Hb unable to carry NO was associated with increased cardiac 
injury and mortality in an animal model of myocardial infarction [95].

Since NO has homeostatic and protective roles on endothelium, several studies tried 
to assess the putative beneficial effect of NO on different organs that may be potentially 
prone to develop injury consequent to ischemia. Both NO-donors and iNOs were stud-
ied in IRS. However, while the mechanism of NO delivery of the former is easy to be 
understood, iNO is rapidly inactivated by Hb-mediated oxidation in the circulation (see 
also the section “18”) and may not reach the target organ. However, long-lived tissue 
metabolites may account for the preconditioning effects of iNO itself [96].

In animal models of myocardial IRS basal NO release was significantly decreased after 
myocardial ischemia and reperfusion compared to non-ischemic control [97]. Further 
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detailed information about myocardial IRS and on the role of NO in myocardial protec-
tion are reported in the section “16” below.

Similar results were obtained on lung IRS in rats where iNO decreased inflammation 
and vascular permeability (i.e., as seen by a decrease in extravascular albumin accumu-
lation) and prevented the increase in lung wet-to-dry weight ratio [98]. Furthermore, 
in a rodent model of ex vivo lung perfusion, iNO administration before and after lung 
retrieval improved lung function by reducing wet-to-dry weight ratio and pulmonary 
vascular resistance, guaranteeing better oxygenation, increasing lung tissue levels of 
cGMP, and by decreasing lung tissue tumor necrosis factor alpha (TNF-α) and iNOS 
[99].

Also, intestinal IRS in animal model may benefit from 80 ppm iNO since it abro-
gates IRS-induced perfusion reduction, the increase in leukocyte rolling, adhesion, 
and emigration, and the endothelial dysfunction [100]. Moreover, exogenous NO 
(both inhaled or via NO-donors) promotes hepatic tissue blood flow after reperfu-
sion, decreases neutrophil accumulation and prevents the excessive production of 
iNOS in hepatic IRS in animals [101].

Despite significant effects in mammals, little evidence of beneficial effects of iNO 
in human models of IRS has been demonstrated. iNO seems to reduce pro-inflam-
matory cytokines after tourniquet application during knee surgery[102] and 80 ppm 
iNO significantly decreases hospital length of stay and accelerates the normalization 
of serum transaminases and coagulation times after orthotopic liver transplantation 
[103]. We further suggest that the time of iNO administration might play a key role 
in relation to the different pathogenetic stages of IRS. This may be crucial to inter-
pret the findings on outcome in clinical studies.

NO and the brain

Cerebral ischemia and stroke

Cerebral blood flow (CBF) is tightly regulated since neuronal activation requires 
large amounts of energy. Autoregulation and neurovascular coupling are the two 
main determinants of CBF, and both are affected by NO [104]. Autoregulation main-
tains CBF stable regardless of the changing of cerebral perfusion pressure. Inhibition 
of NO synthesis in eNOS knock-out mice results in the right shift of the hypotensive 
portion of the cerebral autoregulatory curve, thus impairing CBF at lower perfusion 
pressures [105]. Neurovascular coupling is the process by which the neurovascular 
unit (i.e., a functional structure composed by neurons, glial cells and blood vessels) 
modulates local CBF according to local metabolic demands [106]. nNOS inhibi-
tion in rats causes significant attenuation of the cerebral blood flow response to the 
somatosensory stimulation, suggesting disruption of neurovascular coupling [107].

Despite its fundamental role in brain physiology, NO activity in cerebral ischemia 
is extremely complex due to the interaction between the toxic effects of nitrates, the 
release of free radicals, and the neuroprotective effects on the vascular bed homeo-
stasis [51–53]. iNOS can be stimulated by stress, inflammation, and infection. Under 
these conditions, NO can be generated in large quantities and has detrimental 
effects on the CNS increasing permeability of the blood–brain barrier [108].
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The role of NO in stroke is controversial since a multitude of animal studies 
reported both neurotoxic and neuroprotective effects. Most of the neuroprotective 
effects of NO as reduction of infarct size in models of middle cerebral artery occlu-
sion are associated with eNO [53, 105]. In contrast, the neurotoxicity is primarily 
related to nNOS and iNOS, by a mechanism related to the production of nitrates and 
the release of free radicals [109, 110]. However, in recent years evidences showed 
that overall NO has a predominant beneficial role in stroke [51], and iNO showed to 
be effective in reducing the cerebral infarct size in rodents models [111–113].

Subarachnoid hemorrhage

An interesting implication of NO in the pathogenesis of delayed cerebral ischemia fol-
lowing subarachnoid hemorrhage (SAH) has been proposed, suggesting both eNOS and 
nNOS dysfunctions are among the mechanisms of the disease [114]. Driven by immu-
nological and nonimmunological processes, red blood cells (RBCs) of the subarachnoid 
clot hemolyze resulting in delayed occurrence of cell-free Hb in the cerebrospinal fluid. 
Elevated concentrations of cell-free Hb in the cerebrospinal fluid are associated with a 
delayed ischemic neurological damage in patients with subarachnoid hemorrhage [115]. 
In addition, delayed cerebral ischemia is associated with reduction of NO levels in the 
cerebrospinal fluid [116]. The NO-scavenging effect of cell-free Hb might disrupt the 
endothelial NO signaling of cerebral arteries leading to vasoconstriction and consecu-
tive delayed vasospasm [117, 118]. Systemic NO-donors have shown a role in delayed 
cerebral ischemia prevention in animal models [119, 120]. Furthermore, sequestration 
of cell-free Hb in large hemoglobin–haptoglobin complexes prevented the interaction of 
cell-free Hb with endothelial and tissue NO and restored physiological NO signaling in 
cerebral vasculature in an experimental setting [121].

Interestingly, recent findings showed that early cerebral ischemia after SAH may be 
due to constriction of pial arterioles [122–124]. In a rodent model of induced SAH, iNO 
significantly reduced early micro-vasospasms, while only having limited effect on large 
artery spasms. This resulted in less brain-edema formation, less hippocampal neuronal 
loss, mortality reduction, and improvement of neurological outcome [125].

Traumatic brain injury

Inappropriate inflammatory response is a major determinant in secondary brain damage 
after traumatic brain injury (TBI) [126]. The mechanism behind the hazardous increase 
of NO production in TBI is the upregulation of iNOS [127]. The exaggerated NO lev-
els in the brain contribute to the TBI-associated glutamate cytotoxicity, including the 
pathogenesis of neuronal apoptosis and mitochondrial dysfunction [128].

However, opposite results were obtained in animal models of TBI. TBI may increase 
arginase activity, which competes with eNOS for L-arginine, thus limiting NO produc-
tion [129]. Moreover, iNOS-deficient mice showed enhanced oxidative stress compared 
to the control group [130], suggesting the antithetical effect of this molecule in the brain.

Nevertheless, iNO exhibited a significant role in preserving cerebral autoregulation 
and secondary brain injury after TBI in murine [131] and porcine models [132, 133].
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NO and the cardiovascular system

Cardiac arrest

Cardiac arrest (CA) is the prototype of a global IRS of the whole body. Organs with a 
high metabolic demand—such as brain and heart—are particularly prone to IRS. As 
already illustrated in the former section of the review, NO seems to have a protective 
role in preclinical models of IRS. Similarly, several pharmacological interventions that 
increase NO bioavailability have been reported to improve outcomes in preclinical CA 
models [134]. Breathing 40 ppm NO for 23 h after potassium-induced CA in mice pre-
vented neurological and cardiac dysfunction. Indeed, iNO attenuated brain edema as 
measured by magnetic resonance imaging at 24  h after resuscitation, while decreased 
apoptosis of hippocampal neurons and induction of inflammatory cytokines in the cor-
tex. Moreover, treatment of mice with iNO markedly improved the survival rate from 31 
to 85% compared to air breathing controls [135]. Finally, among the mechanisms respon-
sible for the beneficial effect of NO in CA, sGC seems to be critically important since 
deletion of its 1α subunit abolished the protective effects of iNO on neurological func-
tion and survival after CA [135].

In addition, pharmacological prevention of the reduction of S-nitrosylated proteins in 
brain occurring after CA improves the survival rate in mice with ischemic brain injury 
[136]. In humans the literature is limited; however, in a pilot study on patients with 
intra-hospital CA, iNO was associated with significantly higher rates of survival, but 
no difference in favorable neurologic outcome was observed [137]. As a note of inter-
est, preclinical evidence suggests that how cardiopulmonary resuscitation is delivered 
(i.e., mechanical versus manual chest compression) may decrease oxygenation after the 
return of spontaneous circulation because of lung edema [138–140]. The role of iNO in 
this setting to potentially improve oxygenation might be a field of future investigation.

Myocardial infarction

As already illustrated in the IRS section, NO deficiency is associated with tissue dam-
age after reperfusion. This phenomenon is particularly relevant in a myocardial ischemia 
model [97].

Interestingly, the pharmacological correction of NO depletion has demonstrated bet-
ter myocardial protection, which was defined as reduced ischemic area and neutrophil 
adherence, in a trial of myocardial IRS in dogs (i.e., NO-donor vs. placebo) [141]. Fur-
thermore, myocardial IRS is exacerbated in the absence of eNOS [142] and—in con-
trast—the cardiomyocyte-specific eNOS overexpression protects myocardium [143].

Furthermore, iNO administered during myocardial IRS at 40–80  ppm reduces the 
infarct size and improves the left ventricular function in mice [144]. Similar results were 
obtained in a porcine model of myocardial infarction treated with iNO at 80 ppm 10’ 
before reperfusion during the subsequent 4 h. iNO improved the microvascular perfu-
sion, reduced the infarct size, and reduced the myocardial leukocyte infiltration [145].

In humans, the inhalation of NO at 80 ppm for 4 h after reperfusion in STEMI did not 
reduce the infarct size at 48–72 h [146].
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NO and hemolysis

Hemolysis

Heme-containing proteins avidly bind to NO. Under physiological conditions, NO scav-
enging is slow because Hb is confined to inside red blood cells (RBCs). However, dur-
ing intravascular hemolysis, free-Hb in plasma is able to rapidly bind to vascular NO, 
thus affecting vasomotor tone and consequently organ perfusion [147]. Particularly, this 
occurs by the di-oxygenation reaction of plasma oxy-Hb (Fe2+) with NO to form bio-
inactive nitrate and met-Hb (Fe3+) [148].

In 2005, Minneci et al. demonstrated that intravascular hemolysis in a canine model 
produces dose-dependent systemic and pulmonary vasoconstriction [149]. In order to 
understand the mechanism behind the reduced vasoreactivity in the presence of free-
Hb, the authors showed that the delivery of 80 ppm of iNO reverted the vasoconstric-
tive effect of plasma Hb. These observations indicate that the acute pulmonary and 
systemic vasoconstriction by intravascular hemolysis occurs secondarily to the accel-
erated di-oxygenation reaction of plasma oxy-Hb with NO to form bio-inactive nitrate 
and met-Hb. However, the concentration of plasma Hb itself is not the single parameter 
responsible to this effect because only the oxidizing biochemical form (oxy-Hb) is able 
to bind to NO, subsequently causing vasoconstriction and becoming vascular inactive as 
met-Hb.

In their same manuscript, Minneci et al. also demonstrated that the amount of hemol-
ysis is associated with impairment of renal function assessed by a reduced creatinine 
clearance at 6 h from the insult. This evidence was suggested to unveil a potential link 
between the onset of hemolysis and organ perfusion: the greater the oxy-Hb concentra-
tion, the greater the vasoconstriction, the greater the reduction in organ perfusion with 
the consequent drop in creatinine clearance. Notably, creatinine clearance was restored 
in the hemolysis group treated with iNO, confirming its role in oxy-Hb inactivation 
(Fig. 2).

Intravascular sequestration of cell-free Hb by the Hb-binding protein haptoglobin was 
shown to protect vascular NO signaling [150]. Interestingly, in the presence of endothe-
lial dysfunction such as in models of diabetes mellitus or hyperlipidemia in mice, hapto-
globin was not able to prevent vasoconstriction [151]. Because endothelial dysfunction 
enhances vasoconstriction due to NO scavenging by cell-free Hb, this may suggest that 
in contrast to supplementation of NO, sequestration of cell-free Hb by Hb-binding mol-
ecules is not effective to prevent vasoconstriction in the presence of endothelial dysfunc-
tion [151–153].

In 2004, Gladwin et al. found an association between sickle cell disease and pulmo-
nary hypertension, a process that may be due to NO scavenging by plasma oxy-Hb [154]; 
these findings were confirmed by more recent studies [155]. The protective effect of 
exogenous NO in sickle cell disease has been hypothesized and it may be consequent to 
NO restoration, red cell adhesion reduction and vaso-occlusion prevention [156]. How-
ever, the role of hemolysis in the pathogenesis of pulmonary hypertension in patients 
with sickle cell disease remains controversial [157].

Furthermore, pathophysiological hemodynamic changes during acute pulmonary 
thromboembolism may be partly caused by increased Hb decompartmentalization and 
consequent augmented nitric oxide consumption resulting in vasoconstriction [158].
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Cardiopulmonary bypass‑associated hemolysis

Cardio-pulmonary bypass (CPB) is known to be associated with increased pulmonary 
vascular resistance (PVR) [90, 159] and systemic vascular resistance (SVR) [160] par-
ticularly in the first hour after the procedure [161]. Hemolysis-induced perturbations 
in microcirculatory blood flow and subsequent hypoperfusion or even ischemic dam-
age should be recognized as an important risk factor for organ injury development in 
patients undergoing cardiovascular surgery [162, 163].

In 2016, Rezoagli et al.[164] found that a prolonged duration of CPB (≥ 140 min) was 
associated with higher levels of hemolysis and both systemic and pulmonary vasocon-
striction at 15 min after CPB. The investigators reported an independent linear correla-
tion between the change of nitric oxide consumption and the change of systemic and 
pulmonary vascular resistance within 4 h after CPB. The length of the procedure was 
directly related the level of plasma Hb, and consequently to NO consumption [162], 
resulting in higher pulmonary and systemic vascular resistances. Reduction of NO bio-
availability during CPB is not only consequent to increase in free-Hb NO consumption; 
also, endothelial dysfunction plays a role during this procedure impairing endogenous 
NO production [90].

Fig. 2  NO scavenging in hemolysis. The di-oxygenation reaction: during intravascular hemolysis in 
human disease, oxy-Hb (Fe2+) is able to rapidly bind NO, to form bio-inactive NO3

− and met-Hb (Fe3+). 
The NO scavenging causes consequently vasoconstriction. Exogenous NO can prevent this phenomenon 
by minimizing the scavenging of endogenous NO. The graph represents the different light absorption 
wavelengths of oxy-Hb and met-Hb. NO: nitric oxide; Hb: hemoglobin; RBC: red blood cell; NO3−: nitrate
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Interestingly, the enhanced NO consumption and reduced synthesis after CPB also 
play a role in organ damage such as acute kidney injury (AKI) and intestinal injury [165], 
a process linked to the reduction of organ blood flow due to vasoconstriction already 
studied by Minneci as previously described. Moreover, early exogenous NO administra-
tion during CPB, improving the oxidation of oxy-Hb to met-Hb and therefore reduc-
ing systemic vasoconstriction, reduces the risk of AKI [166]. A clinical trial is currently 
ongoing to evaluate whether administration of 80 ppm iNO during CPB and for 24 h 
after surgery reduces the risk of AKI in patients with endothelial dysfunction [167].

Blood transfusion‑associated hemolysis

Transfusion of erythrocytes stored for prolonged intervals is associated with 
increased morbidity (e.g., increased risk of AKI, sepsis and duration of mechani-
cal ventilation) and mortality [168, 169]. Because storage affects the integrity of the 
red cell membrane, numerous erythrocytes hemolyse during storage or shortly after 
transfusion which is known as the so-called “storage lesion” [170, 171]. Therefore, 
transfusion of prolonged stored red blood cell leads to an increase of plasma Hb 
with consecutive scavenging of endogenous NO resulting in systemic and pulmo-
nary vasoconstriction [151, 171, 172].

In their work, Berra et al. [172] introduced the possibility of reducing the adverse 
effects after transfusion of 40-day-stored packed RBCs by supplementing iNO: in 
obese volunteers, breathing 80 ppm NO prevented the increase of pulmonary artery 
pressure after transfusion of prolonged stored blood. Similarly, inhalation of 80 ppm 
NO prevented the vasoconstrictor response of older RBC infusions in lambs [173].

Moreover, pre-treatment of RBCs with NO-donors seems to guarantee better RBC 
storage quality, reducing the amount of hemolysis (measured as LDH activity) and 
the depletion of vital metabolites (such as 2,3-diphosphoglycerate) [174]. Similar 
results were obtained with RBC pre-transfusion treatment with gaseous NO or NO-
donors [175].

Cell salvage devices are widely used during surgery when a consistent blood loss is 
expected. Hemolysis in these circumstances is a major concern due to the mechani-
cal trauma of washing autologous blood [176, 177]. Although modern cell salvage 
systems can remove the majority of free-Hb during washing, they do not select 
between intact RBCs and damaged RBCs, which are prone to delayed hemolysis 
in vivo [178]. Exogenous NO may play a key role to prevent endothelial dysfunction 
with impaired vasorelaxation because of delayed hemolysis in vivo after administra-
tion of autologous blood by cell salvage [162].

Artificial hemoglobin

Blood transfusion is a common procedure performed during clinical practice and, 
despite all of the measures taken to ensure its safety, there are known risks asso-
ciated with transfusions [178]. In addition, the use of blood products is limited by 
further technical issues such as product availability, need for compatibility testing, 
and storage and transport requirements. Moreover, there are individuals who do not 
accept blood transfusions. Therefore, great efforts were made to develop alternative 
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agents that may reliably and safely replace blood. One of the most studied type of 
artificial blood substitute is the hemoglobin-based oxygen carrier (HBOC). HBOCs 
use free synthetic Hb to carry oxygen throughout the body. Due to its high toxic-
ity, the FDA has not approved any HBOC for clinical use in the United States [179]. 
Since an HBOC is in fact a free-Hb complex, vasoconstriction induced by artifi-
cial blood transfusion seems to be determined by a similar scavenging mechanism 
of endogenous NO as in plasma-free Hb models. In 2008, Yu et  al. showed in ani-
mal models that the administration of iNO could reverse systemic and pulmonary 
HBOC-induced vasoconstriction [152]. In 2010, the investigators further reported 
a relation between endothelial dysfunction and the severity of HBOC-induced side 
effects. Overall, these results support the hypothesis of an inverse relation between 
vascular NO levels and the severity of endothelial dysfunction [153].

NO and the lungs

Pulmonary shunt

HPV was first identified in 1894 by Bradford [180] and later further characterized by Von 
Euler in 1946 [181]. HPV is the consequence of the constriction of small intrapulmo-
nary arteries in response to alveolar hypoxia [182]: this is the cornerstone physiological 
mechanism owing to lung perfusion–ventilation matching. Vasoconstriction in response 
to hypoxia is the hallmark of the pulmonary vasculature. In contrast, systemic vessels 
dilate in response to hypoxia in order to increase tissue oxygen delivery [183, 184].

Extensive literature about the effect of NO during hypoxemia and HPV was provided 
by Professor Warren M. Zapol. The start of his scientific contributions dates back almost 
50 years ago during his physiologic studies on oxygen metabolism in Weddell seals, ani-
mals that can hold their breath for over an hour on dives up to 600 m deep, tolerating 
a high grade of hypoxemia, high pressure and severe cold conditions [185]. The found-
ing hypothesis was the need to treat respiratory failure to reverse hypoxia and enhance 
survival. However, systemic vasodilators had the opposite effect on arterial oxygena-
tion by non-selectively dilating the pulmonary and systemic vascular bed [186]. A great 
advancement for the scientific community in the field of NO was the understanding of 
the physiological mechanism underlying its inhalation thanks to Dr. Zapol intuition. In 
a sheep model of thromboxane-induced and hypoxia-induced pulmonary hypertension 
in 1991, Dr. Frostell and Dr. Zapol with colleagues demonstrated that iNO (5–40 ppm) 
reversed pulmonary hypertension within 3 min; systemic vasodilation did not occur and 
pulmonary hypertension resumed within 3–6 min of ceasing NO inhalation [187]. Simi-
lar effects were obtained in humans with chronic pulmonary hypertension, confirming 
the selectivity of iNO for the pulmonary vasculature, without affecting mean systemic 
arterial pressure [188, 189]. iNO acts selectively on the vasculature associated with ven-
tilated lung units: just those specific vessels that are exposed to the inhaled gas diffus-
ing across the alveolar-capillary membrane. Selective dilatation of these vessels improves 
ventilation–perfusion matching. This effect has gained importance in the treatment of 
severe hypoxemia in patients with acute respiratory distress syndrome (ARDS) [190–
193], the prototype condition of perfusion of dis-ventilated alveoli [194, 195]. Moreover, 
the rapid clearance of NO by Hb guarantees the absence of systemic hypotension from 
systemic vasorelaxation.
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In 1992, Roberts et al. [196] and Kinsella et al. [197] demonstrated that iNO improved 
oxygenation in persistent pulmonary hypertension of the newborn (PPHN) where the 
lack of surfactant determines hypoxemia because of alveolar collapse and reduced venti-
lated alveolar units. Then, the reduction of mortality in patients with PPHN treated with 
iNO confirmed the robust pathophysiological link between iNO treatment and PPHN 
[198].

The In 1993, Rossaint et al. demonstrated that in patients with ARDS, a disease associ-
ated with lung heterogeneity and a high degree of right to left shunt [199], iNO reduces 
pulmonary vascular pressure and right ventricle overload and, by specifically dilat-
ing oxygenated vessels, iNO diverts pulmonary blood flow toward ventilated alveoli, 
therefore reducing pulmonary shunt and increasing arterial oxygenation [200] (Fig. 3). 
While hypoxemia-induced vasoconstriction reduces blood flow to non-ventilated areas 
therefore increasing pulmonary vascular resistance, iNO dilates vessels of better venti-
lated areas thus reducing pulmonary vascular resistance entering from the alveoli to the 
pulmonary vessels. These mechanisms are additive and allows for the reduction of pul-
monary shunt and the increase of arterial oxygenation diverging pulmonary blood flow 
to more ventilated lung units. The selective effect of iNO for ventilated areas may be 

Fig. 3  iNO reversal of hypoxemia and pulmonary hypertension during HPV. iNO is a pulmonary selective 
vasodilator. It diffuses selectively from ventilated alveoli to the adjacent pulmonary capillaries. This reduces 
PVR and the right ventricle afterload. The selective vasodilation of oxygenated vessels diverges pulmonary 
blood flow towards the ventilated alveoli. As a consequence, pulmonary shunt is reduced and arterial 
oxygenation is increased. In physiologic conditions, most of the alveoli are well ventilated and perfused, 
as low PVR ensures that a wide pulmonary capillary bed is recruited (A). If some of the alveoli are poorly or 
not ventilated (e.g., atelectasis, pneumonia), the pulmonary capillaries that perfuse those alveoli constrict 
because of HPV. The increased PVR leads to a consequent reduction of the available pulmonary vascular 
bed. This limits the blood perfusion of the poorly/not ventilated lung areas then limiting V/Q mismatch 
and pulmonary shunt (B). The administration of iNO in the presence of HPV increased the vasodilation of 
pulmonary vessels that are normally ventilated. This condition reduces PVR and reverses hypoxemia by 
diverging the blood flow to ventilated areas, thus reducing V/Q mismatch and pulmonary shunt (C). The 
PAO2-PACO2 graph below, represents the partial pressure of the alveolar gases in each of the conditions 
previously described. In physiologic conditions, the V/Q is optimal (A arrow); when some the alveoli are not 
ventilated, hypoxemia emerges because of pulmonary shunt despite the compensatory mechanism of HPV 
(B arrow). This condition may be partially reverted by the administration of iNO (C arrow). The bottom panel 
was adapted from West JB, Luks AM. West’s Respiratory Physiology. The Essentials. Tenth Edition. Wolters 
Kluwer, 2015. PAO2: alveolar pressure of O2; PACO2: alveolar pressure of CO2; V/Q: ventilation–perfusion ratio; 
PVR: pulmonary vascular resistance; HPV: hypoxic pulmonary vasoconstriction
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mimicked by using intratracheal NO-donors since their administration showed potential 
benefit on hypoxemia in ARDS in animal models, despite, no impact on mortality was 
reported [201, 202].

However, iNO did not show clear mortality benefits in ARDS [203]. Further, some ran-
domized studies failed to demonstrate sustained benefits on oxygenation [191] and iNO 
may worsen oxygenation at high doses [204].

The use of iNO is limited in the clinical practice [205]. Current guidelines do not rec-
ommend iNO in ARDS [206] or provide a weak recommendation against its use [207], 
since no large phase III randomized controlled trials are available on the use of iNO in 
ARDS [208]. Available clinical studies in ARDS do not differentiate whether iNO may 
play a different role on: different etiologies [209], management [210, 211], coexisting 
comorbidities [212] and organ dysfunctions [213, 214] in ARDS; sex [215]; limitation 
of care [216]; and whether these may variably interplay on the effects of iNO on out-
comes. Furthermore, not just the dose may matter [217]. The timing of iNO administra-
tion and the duration of the iNO treatment are yet to be explored [218]. This makes the 
clinical evidence available not conclusive so far. Hopefully, the current insights of the 
ARDS stratification into phenotypes—that are biologically and clinically different fea-
tures within the same definition of ARDS [219, 220]—may help the understanding of the 
effects of numerous pharmacological treatments in ARDS including iNO [221].

NO and sepsis

NO production is dysregulated in sepsis: exaggerated NO production may be responsi-
ble for cardiac, macrovascular, and cellular dysfunction, while reduced eNOS activity is 
a key factor of microvascular dysfunction. The role of NO in sepsis is not part of the cur-
rent review and was extensively recently presented by Lambden [222].

NO and COVID‑19

SARS‑CoV‑2 antiviral effect of NO

NO is an antimicrobial agent. Its role was demonstrated on different viruses [223, 224] 
and other pathogens like bacteria, fungi, and protozoa [225–228]. NO antimicrobial 
activity was measured as a reduction in the cytopathic effect in  vitro against SARS-
CoV-1 in a concentration‐dependent manner as compared to placebo [229].

During the recent COVID-19 pandemic, the scientific productivity on SARS-CoV2 
increased tremendously to better understand, treat and explore treatments that may 
defeat this disease [230]. Among different proposed therapeutic agents, the potential 
viricidal activity of NO on SARS-CoV-2 is under investigation. In vitro studies showed 
that the NO-donor S-nitroso-N-acetylpenicillamine inhibits SARS-CoV-2 replication. 
This effect correlates with both the delay and the prevention of the viral cytopathic 
effects in culture-type Vero E6 cells treated with NO. Akaberi and coworkers proposed 
that the inactivation of SARS-CoV-2 protease by S-nitrosylation is the key mechanism 
behind the therapeutic role of NO [231]. Other protective proposed mechanisms are 
the production of reactive nitrogen intermediates that inhibit the viral replication and 
restore the depleted endogenous NO, thus mitigating the prothrombotic and vascular 
complications of COVID-19 [232].
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Conclusions
NO is a molecule with a key role in human life. Its role as a beneficial agent in governing 
balance in organ perfusion and viability seems to overcome its limited side effects. iNOS 
was first demonstrated to be effective in HPV and in PPHN. However, NOS dysfunc-
tion has been linked to numerous pathologic conditions associated with the impairment 
of vascular homeostasis, such as ischemia, hypoxia, hemolysis, and inflammation. Fur-
thermore, several experimental studies have shown potential beneficial effects of sup-
plementing NO in these pathologic conditions—both as systemic NO-donors and iNO. 
The potential application of iNO in different organ dysfunctions is under investigation 
in humans. These findings may significantly improve our knowledge and understanding 
of the molecular pathophysiology in specific diseases, as well as in complex syndromes 
such as IRS and sepsis, where a specific molecular target has not been identified. The 
promising findings about the use of NO in preclinical research supports the transla-
tion of these results in studies aimed at exploring the effect of NO on clinical outcomes, 
guiding technological advances such as the optimization of organ transplantations and 
the use of CPB, and allowing for the safer transfusion of RBCs and HBOCs by limiting 
their side effects.
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