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Abstract 

Background: The gut has been hypothesized to be a protagonist tissue in multiple 
organ dysfunction syndrome (MODS) for the past three decades. Gastric reactance (XL) 
is a potential perfusion marker derived from gastric impedance spectroscopy (GIS), 
which is an emerging tool through which living tissue can be continuously meas‑
ured to determine its pathophysiological evolution. This study aimed to compare the 
performance of XL [positive predictive values (PPV), negative predictive values (NPV), 
and area under the curve (AUC)] against commonly used perfusion markers before and 
during hypovolemic shock in swine subjects.

Methods: Prospective, controlled animal trial with two groups, control group (CG) 
N = 5 and shock (MAP ≤ 48 mmHg) group (SG) N = 16. Comparison time points 
were defined as T‑2 (2 h before shock), T‑1 (1 h before shock), T0 (shock), T1 (1 h after 
shock), and T2 (2 h after shock). Shock severity was assessed through blood gases, 
systemic and hemodynamic variables, and via histological examination for assessing 
inflammation‑edema and detachment in the gastric mucosa. Macroscopic assessment 
of the gastric mucosa was defined in five levels (0—normal mucosa, 1—stippling 
or epithelial hemorrhage, 2—pale mucosa, 3—violet mucosa, and 4—marmoreal 
mucosa). Receiver Operating Characteristic (ROC) curves of perfusion markers and XL 
were calculated to identify optimal cutoff values and their individual ability to predict 
hypovolemic shock.

Results: Comparison among the CG and the SG showed statistically significant 
differences in XL measurements at T‑1, T0, T1, and T2, while lactate showed statisti‑
cally significant differences until T1 and T2. Statistically significant differences were 
detected in mucosa class (p < 0.001) and in inflammation‑edema in the gastric body 
and the fundus (p = 0.021 and p = 0.043). The performance of the minimum XL value 
per subject  per event (XL_Min) was better (0.81 ≤ AUC ≤ 0.96, 0.93 ≤ PPV ≤ 1.00, 
0.45 ≤ NPV ≤ 0.83) than maximum lactate value (Lac_Max) per subject per event 
(0.29 ≤ AUC ≤ 0.82, 0.82 ≤ PPV ≤ 0.91, 0.24 ≤ NPV ≤ 0.82). Cutoff values for XL_Min show 
progressive increases at each time point, while cutoff values for Lac_Max increase only 
at T2.
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Conclusions: XL proved to be an indirect and consistent marker of inadequate gastric 
mucosal perfusion, which shows significant and detectable changes before commonly 
used markers of global perfusion under the hypovolemic shock conditions outlined in 
this work.

Keywords: Electrical Impedance, Hypovolemic shock, Gastric reactance, 
Hypoperfusion

Take home message XL could be a clinically useful marker for early detection of 
hypovolemic shock.

Introduction
Timely recognition of the deterioration of tissue perfusion is a primordial objective 
while treating patients with hemodynamic instability, as failure in conducting prompt 
interventions to restore effective perfusion often results in organ dysfunction and 
death. Notwithstanding its clinical relevance, identifying early signs of hypoperfu-
sion remains a fundamental problem in perioperative and critical care, because most 
standard practice resources (such as mixed venous oxygen saturation  (SvO2), carbon 
dioxide  (CO2) gap, lactatemia, and capillary refill time) frequently fail to identify the 
early signs of end-organ damage [1].

Throughout the past three decades, technological innovations have targeted "canary 
organs", which can be easily and safely accessed and whose perfusion is believed to 
deteriorate before other organ beds, therefore, providing an early warning of sys-
temic hypoperfusion. Pioneering technologies include gastric tonometry [2], sublin-
gual capnometry [3], and microcirculation imaging [4], whereas recent developments 
include gastric impedance spectroscopy (GIS) [5–12], urethral photoplethysmog-
raphy [13], and bladder tissue oxygen monitoring [14]. However, gastric tonometry 
fell out of favor, [15] and sublingual capnometry devices are no longer commercially 
available [16], while microcirculation imaging has acquired increasing relevance in 
intensive care [4]. On the other hand, GIS, urethral photoplethysmography, and blad-
der tissue oxygen monitoring hold promise to provide meaningful information to 
improve patient outcomes.

This study is concerned with GIS, a technique that surveys passive electrical prop-
erties of the gastric wall to provide a continuous marker called gastric reactance (XL). 
The XL marker has been proposed as an early warning of multiple organ dysfunction, 
as it responds to the overall hypoxic status of gastric tissue, which is affected by per-
sistent changes in local and systemic perfusion [5, 7, 10].

XL is measured through a feeding tube provided with an impedance sensor con-
trolled by a bedside monitor that displays instantaneous and trend values of this 
marker. This configuration is advantageous as feeding tubes are routinely used in crit-
ical care settings, and no additional catheterization is needed to keep track of this 
surrogate perfusion marker.

This study aimed to compare the performance of XL against the performance of 
commonly used perfusion markers before and during hypovolemic shock in swine 
subjects divided into two groups: a control group (CG) and a shock group (SG), where 
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shock was defined as MAP ≤ 48  mmHg. A swine hemorrhage model was chosen, 
since cardiovascular and hemodynamic responses [17, 18], as well as gastrointestinal 
physiological properties [19], are comparable to a human. The variables selected for 
this study were based on internationally accepted clinical practice.

Methods
Ethical statement

The study was approved by the Committee on Animal Experimentation at the National 
Institute of Cardiology—Ignacio Chavez (INCICH) in Mexico City (reference number 
09F12). Anesthesia was used in all surgical interventions. Experiments described in 
this study were performed in adherence to Good Laboratory Practices (GLP) [20, 21], 
National regulations NOM-062-ZOO-1999 [22], General Considerations for Animal 
Studies for Cardiovascular Devices [23], and Animal Research: Reporting of In Vivo 
Experiments (ARRIVE guidelines) [24] (Additional file  1: Table  S1). The study was 
monitored by an independent quality assurance unit.

Sample size

Previous experimental protocols in an ischemia–reperfusion swine model have deter-
mined a standard deviation for XL of 0.20 −  jΩ [25, 26], considering a significance 
with a p value < 0.05, a confidence interval of 0.95, and a margin of error of 10%, the 
sample size for the shock group is at least 15 subjects, and 6 subjects for the control 
group.

Experimental protocol

The study screened 25 male York-Landrace swine subjects sourced from a licensed 
vendor (Centre for Education, Research and Extension in Pig Production, Mexico). 
Four subjects were excluded for not meeting inclusion criteria (health certificate, 
27–35 kg, castrated, fasting ≥ 16 h), and only 21 subjects were included (Fig. 1). The 
study was divided into two stages, in the first stage, baseline measurements of gastric 

Fig. 1 Subject’s flow chart
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reactance, vital signs, laboratory tests, and histopathological samples were taken from 
the CG of 5 subjects. In the second stage, the same measurements plus hemodynamic 
variables were taken from the SG of 16 subjects; in this case, baseline conditions were 
followed by induced hypovolemic shock with a controlled hemorrhage at a rate of 
15–20 mL/min until a MAP of 40–30 mmHg was achieved (Additional file 2: Fig. S1).

Housing and husbandry

All swine were transported safely with proper ventilation, and the target tempera-
ture ranges were defined as 10–29 °C. A veterinarian performed the clinical examina-
tion, codification, and placed each subject in a barnyard. The swine were acclimatized 
to the environment under a regular diurnal cycle (12:12 light:dark) with ad  libitum 
access to water and a controlled food intake, chopped corn cob was used as bedding, 
and vital signs were recorded daily until the procedure day. In addition, all animals 
underwent fasting for at least 16 h before surgery but were allowed water ad libitum.

Anesthesia

All subjects were pre-treated with atropine (0.1 mg/kg, intramuscular),  Zoletil® (tile-
tamine hydrochloride and zolazepam hydrochloride [7–10  mg/kg, intramuscular]), 
and azaperone (4 mg/kg, intramuscular). Continuous inhaled isoflurane (1–2%) was 
used to maintain anesthesia during the experiment, and the rate was adjusted as 
needed to provide adequate anesthesia; all variations from this rate were recorded 
(Vaporizer, Datex Ohmeda Tec 4).

Tracheostomy and mechanical ventilation

A midline cervical incision was made, and a tracheostomy was performed to warrant 
adequate ventilation (Modulus II plus, Datex Ohmeda). Initial settings were tidal vol-
ume (VT) 12 (mL/kg), respiratory rate (RR) of 12–14/min titrated to maintain  PaCO2 
within the normal range (35–45 mmHg), fraction of inspired oxygen  (FiO2) of 75%, 
inspiration/exhalation ratio 1:2, and positive end-expiratory pressure (PEEP) of 3 
 cmH2O.

Injury

Hemorrhage in the SG was initiated after a period of 20–40  min baseline stabiliza-
tion. Continuous gravity exsanguination was performed at a target rate of 15–20 mL/
min until reaching a mean arterial pressure (MAP) of 30–40 mmHg, with 40% of the 
total blood volume (TBV) withdrawn. Total blood volume was estimated from each 
subject’s weight in kg (W) according to the formula TBV = 65 mL/kg*W (mL) deter-
mined by [27]. Volume was continuously recorded, and blood was refrigerated for the 
duration of the experiment. Hypovolemia and hypotension conditions were main-
tained for about 4  h by infusing and titrating crystalloids according to the require-
ments of the subject. No vasopressors were administered to the subjects.
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Shock criterion

The shock criterion was established as MAP ≤ 48 mmHg, which is two standard devi-
ations below the mean MAP of the CG. Considering this, the relevant time points to 
be evaluated are T-2: 2 h before shock; T-1: 1 h before shock; T0: shock; T1: 1 h after 
shock; T2: 2 h after shock.

Euthanization

After all study procedures were completed, an intravenous injection of potassium 
chloride solution 1–2 mmol/kg was given to induce euthanasia.

Surgical preparation

After subjects were prepped and draped in a sterile fashion, a left carotid artery cath-
eter was placed for blood chemistry, blood gas measurements (Radiometer, ABL 835), 
and systemic arterial pressure monitoring (Matron, BPM-1000). A double-lumen 
catheter was inserted in the right internal jugular vein for fluid and drug adminis-
tration. A left external jugular pulmonary artery catheter (PAC) (7.5 French, model 
774F75, Edwards Lifesciences) using Medex transducers (Pressure Transducer 
MX9504, Medex) was placed for measuring hemodynamic variables, cardiac output, 
and sampling mixed venous blood gases (Edwards, Monitor Vigilance II), and a Foley 
catheter was also placed. In both groups, temperature was regulated through either 
an electric blanket to avoid hypothermia or through ice bags when subjects drifted 
towards hyperthermia (rectal measurements > 38 °C).

Measurements

Vital signs and hemodynamic

Vital signs such as electrocardiogram, pulse oximetry, temperature, mean arterial 
pressure (MAP), heart rate (HR), and central venous pressure (CVP) were measured 
every 30 min in both groups. Hemodynamic variables acquired through the PAC 
(only from the SG) were:  SvO2, pulmonary artery systolic pressure (PASP), pulmonary 
artery diastolic pressure (PADP), pulmonary artery wedge pressure (PAWP), car-
diac output (CO), systemic vascular resistance (SVR), pulmonary vascular resistance 
(PVR), and stroke volume (SV) among others. Calculated variables such as oxygen 
delivery  (DO2), oxygen consumption  (VO2), arterial oxygen content  (CaO2), venous 
oxygen content  (CvO2), oxygen extraction ratio  (REO2), and mean pulmonary artery 
pressure (MPAP) were determined through the PAC software, that applies the equa-
tions described in [28–30]. Additional parameters required to calculate these vari-
ables were obtained from blood gas readings.

Gastric impedance spectroscopy and gastric reactance (XL)

XL is a marker derived from the electrical impedance of the gastric wall, a feature that 
provides a distinctive fingerprint of tissue structure; pathologies such as ischemia, 
infarct, or necrosis cause cellular alterations that are reflected by changes in electri-
cal impedance. The biological and mathematical basis for the calculation of XL has 
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been published in peer-reviewed scientific literature by independent research groups 
[5, 6, 8, 31]. The GIS device (Additional file 2: Fig. S2) determines the magnitude of 
XL through proprietary algorithms applied to impedance readings which are acquired 
through a feeding tube fitted with an impedance sensor.

During the experiment, correct positioning of the feeding tube and the impedance 
sensor was confirmed endoscopically (Fujinon 200). After this, the tube was con-
nected to the bedside monitor and XL measurements were taken every minute.

Endoscopy and histology

For the CG, a set of biopsies from the body, the fundus, and the antrum of the stomach 
were taken, one set after tracheostomy and one set at the end of the procedure. For the 
SG, the same sets were taken, in this case, one after tracheostomy, two during hemor-
rhage, and one at the end of the procedure. Endoscopic assessments of the gastric wall 
were performed during every biopsy in both groups. All biopsies were stored in a 3.7 M 
phosphate buffer (formol), pH 7.2 solution, and then embedded in paraffin to be cut 
with a microtome to a thickness of 4 microns and then stained with hematoxylin–eosin. 
A microscopic description and a photomicrography were documented for each cut. A 
qualitative assessment was made for each biopsy identifying superficial inflammation, 
edema, and superficial detachment by a pathologist following the empirical scale: 0%, 
12.5%, 25%, 50%, 75%, and 100%. On the other hand, the macroscopic appearance of 
the gastric mucosa was classified by a gastroenterologist into five levels: normal mucosa 
(level 0), stippling or epithelial hemorrhage (level 1), pale mucosa (level 2), violet mucosa 
(level 3), and marmoreal mucosa (level 4).

Laboratory tests

Venous and arterial blood gases were measured in both groups every 30 min (ABL 835 
Radiometer Blood gas analyzer). Blood gas samples include: pH, partial pressure of car-
bon dioxide in arterial blood  (PaCO2), partial pressure of oxygen in arterial blood  (PaO2), 
hemoglobin (Hb), sodium  (Na+), potassium  (K+), chloride  (Cl−), ionized calcium  (Ca2+), 
glucose, base excess (ECF), partial pressure of carbon dioxide in venous blood  (PvCO2), 
partial pressure of oxygen in mixed venous blood  (PvO2), carbon dioxide  (CO2), arterial 
oxygen saturation  (SaO2), and lactate.

On the other hand, the following laboratory tests were performed at baseline condi-
tions and at the end of the experiment in both groups: blood creatinine, urea, alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin, lactate 
dehydrogenase (LDH), alkaline phosphatase (ALP), fibrinogen (Daytona RX, Randox), 
prothrombin time (PT), activated partial thromboplastin time (PTT) (Thrombotimer, 
Behnk Elektronic), complete blood count (CBC) with cell differentials, white blood cell 
count (WBC), platelet count (BC-2800Vet, Mindray), and complete blood chemistry.

All laboratory tests were carried out at the Clinical Pathology Department of the Fac-
ulty of Veterinary Medicine at the National Autonomous University of Mexico.
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Necropsy

Necropsies were performed on 21 subjects through a thoracoabdominal incision, and 
all organs in the thoracic and abdominal cavities were collected. Macroscopic pho-
tographs of the outer and mucosal surfaces of the stomach were taken. All organs 
were fixed for 48 h in 10% buffered formalin. Samples from different organs were pre-
served: fundus, body, and antrum of the stomach, duodenum, ileum, large intestine, 
lungs, liver, spleen, and kidneys. Tissue samples were embedded in paraffin, cut with 
a microtome to a thickness of 4 microns, and then stained with hematoxylin–eosin.

Statistical analysis

Continuous variables were tested for normality using the Shapiro–Wilk test using the 
residuals method. A non‐parametric one-way ANOVA (Kruskal‐Wallis test) was per-
formed to detect significant differences between the CG and the SG at the relevant 
time points defined by the shock criterion (all subjects were considered); the main 
effects were evaluated through post hoc Dunn’s multiple‐comparison test to control 
type I error. One-way repeated measures ANOVA by ranks (Friedman test) were 
made to detect significant differences between each relevant time point using paired 
data from the SG (same subjects per time point group); the main effects were evalu-
ated with post hoc Durbin’s multiple‐comparison test to control type I error. Holm 
adjustment method for p values for multiple comparisons was used [32]. In all cases, 
differences were considered significant at a two-tailed p value < 0.05.

Receiver operating characteristic (ROC) curves  were calculated to compare the 
ability of lactate and XL to predict hypovolemic shock at each time point, consider-
ing the predefined shock criterion (MAP ≤ 48  mmHg) as the binary target variable. 
As various measurements of lactate and XL were captured on each time window, 
ROC curves were built considering only the extreme values of these markers at each 
window. Maximum lactate measurements (Lac_Max) were chosen, as it is generally 
accepted that soaring lactatemia is a marker of shock. Similarly, soaring XL measure-
ments have been documented to indicate hypoxia and metabolic stress [5–12]; how-
ever, minimum values (XL_Min) were chosen for building the curves to consider the 
worst-case scenario for the XL marker. In other words values were chosen to favor 
the predictive performance of lactate while undermining the performance of XL. All 
curves were computed with a 95% confidence interval (CI) applying stratified boot-
strapping (2000 replicates) according to the methods described in [33].

Confounders were considered in the design of statistical analysis. All analyses 
were conducted using the R Statistical language (version 4.0.5) and RStudio (version 
1.4.1106) on Windows 10 using the packages pROC (version1.17.0.1) [33], gtsummary 
(version 1.4.1) [34] and ggstatsplot (version 0.8.0) [35].

Results
Animal characteristics and blood loss

Mean weight of the 21 subjects was 29.6 ± 2.5 (mean ± SD) kg, fasting time was 
17.6 ± 1.0 (mean ± SD) h, temperature at transportation was 19.40 ± 2.00 (mean ± SD) 
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°C, and mean acclimatization period was 7.0 ± 3.3 (mean ± SD) days. No significant 
differences were found between groups. The mean total hydric balance was signifi-
cantly different between groups (p < 0.001), for the CG the balance was 1769.6 ± 578.1 
(mean ± SD) mL, while the balance for the SG was − 676.1 ± 762.9 (mean ± SD) mL. 
The mean total amount of blood loss was 916.8 ± 230.2 (mean ± SD) mL for the SG.

Gastric reactance and physiological variables

Data are presented by groups (T-2, T-1, T0, T1, T2), as subjects reached the shock cri-
terion at different points in time, making timewise comparisons impractical. Instead, 
the analysis is tied to the physiological status of subjects defined by the shock cri-
terion, which in itself is defined as a significant deviation from baseline conditions 
(MAP ≤ 48 mmHg, which is two standard deviations below the mean of the CG).

Table 1 Gastric reactance, blood gases, vital signs, and hemodynamic comparisons for the CG and 
the SG time points

Data presented as Median [IQR]; p for Kruskal–Wallis rank‑sum test. *for statistically significant results (p < 0.05)

bpm beat per minute, CG control group, CO cardiac output, CVP central venous pressure, HR heart rate, MAP mean arterial 
pressure, PaCO2 partial pressure of carbon dioxide in arterial blood, PaO2 partial pressure of oxygen in arterial blood, PAWP 
pulmonary artery wedge pressure, SG shock group; SVO2 mixed venous saturation, XL gastric reactance

CG SG

Variable N = 62 T-2
N = 31

T-1
N = 39

T0
N = 37

T1
N = 36

T2
N = 21

p

Gastric 
reactance

 XL (− jΩ) 8.9 [7.1, 11.5] 10.8 [8.2, 14.7] 14.9 [11.5, 
20.2]

15.6 [8.2, 21.2] 19.8 [15.4, 
33.8]

25.7 [19.7, 
38.3]

 < 0.001*

Blood gases

 Lactate 
(mmol/L)

2.1 [1.8, 3.4] 2.0 [1.8, 2.8] 2.3 [1.9, 3.0] 2.9 [2.3, 4.0] 5.8 [3.4, 8.2] 8.9 [5.9, 10.1]  < 0.001*

 pH 7.4 [7.4, 7.5] 7.5 [7.4, 7.5] 7.5 [7.4, 7.5] 7.4 [7.4, 7.5] 7.4 [7.4, 7.5] 7.4 [7.3, 7.4]  < 0.001*

  PaCO2 
(mmHg)

38.4 [34.5, 
40.9]

36.8 [33.4, 
39.5]

35.2 [33.8, 
38.5]

36.1 [31.3, 
40.6]

32.0 [28.5, 
36.1]

32.9 [26.9, 
35.1]

 < 0.001*

  PaO2 
(mmHg)

179.0 [150.2, 
197.8]

166.0 [149.2, 
199.0]

180.0 [139.0, 
202.0]

193.0 [152.0, 
231.0]

210.0 [140.0, 
229.5]

220.5 [160.2, 
242.8]

0.170

Vital signs

 HR (bpm) 100.0 [92.0, 
107.0]

118.0 [101.5, 
131.5]

117.0 [95.5, 
157.0]

136.0 [101.0, 
165.0]

138.0 [100.0, 
162.5]

135.0 [120.0, 
151.5]

 < 0.001*

 MAP 
(mmHg)

69.0 [60.5, 
72.0]

59.0 [53.0, 
61.5]

51.0 [50.0, 
55.0]

39.0 [36.0, 
44.0]

32.0 [29.0, 
36.5]

33.0 [27.5, 
37.5]

 < 0.001*

 Tempera‑
ture (°C)

38.0 [37.7, 
38.2]

38.1 [37.0, 
39.0]

38.7 [37.8, 
39.4]

39.0 [38.0, 
39.5]

39.1 [38.2, 
39.9]

39.4 [39.0, 
39.8]

 < 0.001*

 CVP 
(mmHg)

10.0 [9.0, 
11.0]

8.0 [7.0, 9.0] 8.0 [6.0, 12.0] 7.5 [4.0, 9.2] 6.0 [3.0, 9.0] 7.0 [3.0, 8.2]  < 0.001*

Hemody‑
namic

 PAWP 
(mmHg)

– 10.0 [8.0, 15.8] 7.0 [5.0, 14.2] 7.0 [5.0, 12.5] 8.0 [6.0, 11.0] 6.0 [4.0, 8.0] 0.015*

 CO (L/
min)

– 3.5 [3.3, 4.8] 3.2 [2.6, 3.9] 2.9 [2.3, 3.4] 2.6 [2.2, 2.9] 2.9 [2.2, 3.1]  < 0.001*

  SvO2 (%) – 66.0 [48.2, 
76.0]

62.0 [49.0, 
72.8]

55.0 [49.0, 
61.5]

47.0 [33.2, 
60.0]

53.0 [47.0, 
57.0]

 < 0.001*
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Table 1 and Additional file 3: Table S2, Figs. S3–S24 report XL, blood gases, vital signs, 
and hemodynamic measurements for the CG and the SG at relevant time points. XL, 
lactate, HR,  PaO2, and temperature show an upward trend in the SG, while  PaCO2, MAP, 
CVP, PAWP, CO, and  SvO2 show a downward trend in the same group. Significant sta-
tistical differences are observed between the CG and the SG. As expected, temperature 
raised above 38° C, hyperthermia was probably secondary to the metabolic response to 
trauma in T0 (shock state). Heart rate increased significantly in T0, T1, and T2.

Table 2 shows the renal and electrolyte measurements for the CG and the SG. Sig-
nificant differences are observed in urea, creatinine,  K+,  Na+, and  Cl−. All laboratory 
parameters are reported in Additional file 4: Table S3.

On the other hand, Fig. 2A, B and Additional file 5: Tables S4–S5 illustrate the dis-
tribution and multiple comparisons of lactate and XL between the CG and the SG 
at the relevant time points. Both trends behave similarly as they increase as hypov-
olemic shock progresses.

Nine significant differences in lactate and eight significant differences in XL meas-
urements are observed among the CG and the comparison time points (T-2 to T2) 
in the SG defined around the shock criterion at T0 (MAP ≤ 48 mmHg); such differ-
ences are marked as horizontal bars accompanied with their corresponding p value in 
Fig. 2A, B (bars are only shown for paired data sets presenting significant differences). 
In the case of lactate, significant differences from the CG measurements are found 
1 and 2 h after shock, while in the case of XL, significant differences from the CG 
measurements are found as early as 1 h before shock and onwards. Other inter-group 
differences are observed; however, the findings that could be more relevant from the 
clinical perspective are those related to the earliest identification of hypovolemic 
shock.

Similarly, Fig. 2C, D and Additional file 5: Tables S6–S7 illustrate the multiple com-
parisons for paired data (n = 11). In this case, shock events were considered for XL 
minimum values (XL_Min) and the maximum lactate values (Lac_Max) per subject 
per event; such differences are marked again as horizontal bars accompanied with 
their corresponding p value. In this case, both XL_Min and Lac_Max show the earli-
est significant difference between T-2 and T1, and onwards.

When comparing the performance of XL_Min and Lac_Max through ROC curves 
at the relevant time points (T-2, T-1, T0, T1, T2), the area under the curve (AUC), 
positive predictive value (PPV), and negative predictive value (NPV) is higher for 

Table 2 Renal and electrolytes panel

Data presented as Median [IQR]. p for Kruskal–Wallis rank‑sum test. *for statistically significant results (p < 0.05)

Cl− chlorine, K+ potassium, Na+ sodium

Variable Control group
N = 5

Pre-shock
N = 16

Post-shock
N = 16

p

Urea (mmol/L) 2.50 [2.4, 3.65] 2.28 [1.8, 3.09] 4.80 [4.2, 6.50]  < 0.001*

Creatinine (µmol/L) 83.96 [73.2, 92.25] 87.50 [74.8, 95.25] 151.00 [132.0, 181.00]  < 0.001*

K+ (mmol/L) 3.81 [3.7, 3.92] 3.40 [3.3, 4.15] 7.50 [6.6, 8.13]  < 0.001*

Na+ (mmol/L) 138.00 [138.0, 138.00] 137.00 [135.8, 137.25] 132.00 [131.0, 133.50]  < 0.001*

Cl− (mmol/L) 102.60 [102.0, 106.00] 99.00 [97.0, 100.00] 98.00 [96.5, 99.00] 0.005*
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XL_Min (0.81 ≤ AUC ≤ 0.96, 0.93 ≤ PPV ≤ 1.00, 0.45 ≤ NPV ≤ 0.83) than in for Lac_Max 
(0.29 ≤ AUC ≤ 0.82, 0.82 ≤ PPV ≤ 0.91, 0.24 ≤ NPV ≤ 0.82) at each event (Fig. 3; Table 3).

The optimal cutoff values determined by the ROC curves (Table 3) for XL_Min are 
between 7.79 and 12.41 −  jΩ, and for Lac_Max are between 2.55 and 5.60 mmol/L. 
It is observed that XL_Min increases at each time point, while lactate values of 2.55 

Fig. 2 Comparison of Lactate (A) and XL (B) between the control group (CG) and the shock group (SG). 
Comparison of the SG for paired data for maximum lactate values per subject per event (Lac_Max) (C), and 
minimum XL values per subject per event (XL_Min) (D). Events by shock criterion (MAP ≤ 48 mmHg) T‑2: 2 
h before shock; T‑1: 1 h before shock; T0: shock; T1: 1 h after shock; T2: 2 h after shock. Significant differences 
between groups are marked as bars with their corresponding p values. Post hoc Dunn’s all‑pairs test for 
Kruskal–Wallis rank‑sum test and post hoc Durbin’s all‑pairs test for Friedman rank‑sum test. Significant p 
values < 0.05. Full Post hoc analysis per variable and time point is available in Additional file 5: Tables S4–S7
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to 2.65 mmol/L in T-1, T0, and T1 are still within the interquartile range of the CG 
(Table 1); however, an increase of 3 mmol/L is observed at T2.

Endoscopy and histology

Endoscopic and histological examinations of the fundus, the body, and the antrum of 
the stomach were carried out for the CG and the SG. Significant differences in macro-
scopic mucosa classifications were observed in all three regions (p < 0.001). Similarly, 
significant differences were found in inflammation-edema scores in histologic images 
from the body and the fundus of the stomach (p = 0.021 and p = 0.043, respectively). 
Detailed information in Additional file 6: Tables S8–S14.

Discussion
In this study, we documented that XL anticipates changes in commonly used perfusion 
markers. Hemodynamic and metabolic variables confirm that hypovolemic shock was 
achieved in the intervention group (Tables  1, 2; Additional file  3: Table  S2, Figs.  S3–
S24, Additional file  4: Table  S3). Histopathological results show that the gastric tissue 

Fig. 3 ROC curves for maximum lactate values per subject per event (Lac_Max) and minimum XL values 
per subject per event (XL_Min) between the control group (CG) and the shock group (SG). All subjects were 
considered in the relevant time points by the shock criterion (MAP ≤ 48 mmHg). T‑2: 2 h before shock; T‑1: 1 h 
before shock; T0: shock; T1: 1 h after shock; T2: 2 h after shock

Table 3 Performance for Lac_Max and XL_Min

Performance for maximum lactate values per subject per event (Lac_Max) and minimum XL values per subject per event 
(XL_Min) between the control group (CG) and the shock group (SG). All subjects were considered in the relevant time points 
by the shock criterion (MAP ≤ 48 mmHg) T‑2: 2 h before shock; T‑1: 1 h before shock; T0: shock; T1: 1 h after shock; T2: 2 h 
after shock

AUC  area under the curve, CI confidence interval, NPV negative predictive value, PPV positive predictive value

Time points N Variable Optimal 
cutoff 
values

Sensitivity Specificity AUC 95% CI PPV NPV

T‑2 16 Lac_Max (mmol/L) – 0.00 1.0 0.29 0.01–0.58 – 0.24

T‑1 16 2.55 0.56 0.6 0.39 0.05–0.74 0.82 0.30

T0 16 2.60 0.69 0.6 0.52 0.17–0.87 0.85 0.38

T1 16 2.65 0.94 0.6 0.76 0.47–1.00 0.88 0.75

T2 11 5.60 0.91 0.8 0.82 0.50–1.00 0.91 0.80

T‑2 16 XL_Min (− jΩ) 7.79 0.88 0.8 0.88 0.67–1.00 0.93 0.67

T‑1 16 9.82 0.75 1.0 0.86 0.70–1.00 1.00 0.56

T0 16 10.18 0.62 1.0 0.81 0.62–1.00 1.00 0.45

T1 16 11.79 0.81 1.0 0.90 0.77–1.00 1.00 0.62

T2 11 12.41 0.91 1.0 0.96 0.88–1.00 1.00 0.83
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remained unaffected in the CG, while gastric tissue in the SG shows signs of inflamma-
tion-edema at the body and antrum, and macroscopic assessment of the fundus and the 
body finds a marble or violaceous appearance, all of which is an indicator of hypoxia at 
T1 and T2 (Additional file 6: Tables S8–S14).

As expected, the statistical analysis shows that the magnitude of all variables is 
affected by the reduction of circulating blood volume. In particular, the analysis reveals 
that significant differences occur earlier in XL than in lactate measurements. Moreo-
ver, the analysis reveals that under the conditions in which the experiment was con-
ducted, XL measurements have superior performance for detecting hypovolemic 
shock: XL_Min (0.81 ≤ AUC ≤ 0.96, 0.93 ≤ PPV ≤ 1.00, 0.45 ≤ NPV ≤ 0.83) vs Lac_Max 
(0.29 ≤ AUC ≤ 0.82, 0.82 ≤ PPV ≤ 0.91, 0.24 ≤ NPV ≤ 0.82).

These results point in the direction that XL could be a valuable indicator of alterations 
in systemic perfusion before hypovolemic shock is made evident by other markers. Such 
timely detection of reduced tissue perfusion would be clinically relevant, as alterations 
in XL could trigger timely interventions to reduce postoperative complications, avoid 
multi-organ dysfunction, and improve survival rate in intensive care patients. It should 
be noted that similar ambitions have been pursued in the past for other markers of gas-
tric perfusion, such as intramucosal pH [36, 37].

Hypotension and hypovolemia during the experiment were persistent enough to trig-
ger major alterations in hemodynamic and metabolic variables, shedding light on the 
dependency between gastric reactance, perfusion, and metabolic stress. While gastric 
perfusion was not measured directly, and no conclusions can be drawn about the rate 
of change of XL in relation to changes in blood flow towards the stomach, results indi-
cate that under these experimental conditions, XL measurements anticipate changes in 
serum lactate (Fig. 3; Table 3), at the time it shows sensitivity and specificity levels for 
detecting hypovolemic shock above of those from lactate alone.

On the other hand, it has been reported that XL does not respond to changes in per-
fusion, even after blood flow towards the superior mesenteric artery is compromised 
by 25% during hemorrhage and reperfusion maneuvers which were not severe enough 
to drive relevant changes in tissue lactate [38]. Such observations point in the direction 
that instead of being sensitive to changes in blood flow, passive electrical properties of 
tissue are sensitive to structural alterations caused by persistent hypoxia, such as inflam-
mation and edema [39–45].

Our results can only be interpreted in the context of a pilot study intended to inquire 
about the relationship between XL and commonly used perfusion markers during hypo-
volemic shock under laboratory conditions. No clear conclusions on the relationship 
between XL’s rate of change and the duration and severity of hypoperfusion to the stom-
ach can be derived from the experiment. Moreover, the experiment does not address 
the larger clinical question of whether alterations to mesenteric perfusion announce 
impending damage to distal organ beds.

In other words, the right cutoffs and operative definitions can make the difference 
between missing or achieving early and accurate identification of hypovolemic shock. 
In this work, clear (and potentially useful) differences between XL values were observed 
before other markers of shock presented significant changes from their baseline (such as 
lactate and blood pressure).



Page 13 of 16Godinez‑Garcia et al. Intensive Care Medicine Experimental           (2022) 10:49  

Limitations
First, this study was conducted under controlled conditions, which are vastly differ-
ent from real clinical settings, where the performance of XL could depend on other 
parameters, such as the patient’s medical history, clinical diagnosis, environment, and 
conditions of hypovolemic shock, among others. Second, the thresholds found for XL 
and other variables are only applicable for this breed of swine, and normal values may 
vary for humans. Third, XL measurements can be distorted by motion artifacts, gastric 
contents, or incorrect positioning of the impedance sensor at the gastric wall. While 
defective measurements are easily identifiable through visual inspection of impedance 
spectra, and signal quality can be retrieved by either draining fluids or moving the cath-
eter, such nuisances could limit the usage of GIS in a real clinical setting.

Conclusions
XL proved to be an indirect and consistent marker of inadequate gastric mucosal perfu-
sion, which shows significant and detectable changes before commonly used markers of 
global perfusion under the hypovolemic shock conditions outlined in this work. These 
results encourage further research into the performance of the XL marker under differ-
ent shock etiologies.
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