REVIEWS

Open Access

Physiological adaptations during weaning from veno-venous extracorporeal membrane oxygenation

Patrick Duncan Collins^{1*}, Lorenzo Giosa^{1,2}, Valentina Camarda¹ and Luigi Camporota^{1,2}

*Correspondence: patrick.collins@gstt.nhs.uk

 ¹ Department of Critical Care Medicine, Guy's and St. Thomas' National Health Service Foundation Trust, London, UK
² Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK

Abstract

Veno-venous extracorporeal membrane oxygenation (V–V ECMO) has an established evidence base in acute respiratory distress syndrome (ARDS) and has seen exponential growth in its use over the past decades. However, there is a paucity of evidence regarding the approach to weaning, with variation of practice and outcomes between centres. Preconditions for weaning, management of patients' sedation and mechanical ventilation during this phase, criteria defining success or failure, and the optimal duration of a trial prior to decannulation are all debated subjects. Moreover, there is no prospective evidence demonstrating the superiority of weaning the sweep gas flow (SGF), the extracorporeal blood flow (ECBF) or the fraction of oxygen of the SGF (FdO2), thereby a broad inter-centre variability exists in this regard. Accordingly, the aim of this review is to discuss the required physiological basis to interpret different weaning approaches: first, we will outline the physiological changes in blood gases which should be expected from manipulations of ECBF, SGF and FdO2. Subsequently, we will describe the resulting adaptation of patients' control of breathing, with special reference to the effects of weaning on respiratory effort. Finally, we will discuss pertinent elements of the monitoring and mechanical ventilation of passive and spontaneously breathing patients during a weaning trial. Indeed, to avoid lung injury, invasive monitoring is often required in patients making spontaneous effort, as pressures measured at the airway may not reflect the degree of lung strain. In the absence of evidence, our approach to weaning is driven largely by an understanding of physiology.

Take home message

Successful weaning from veno-venous ECMO requires understanding and consideration of the complex physiological interactions between the native and the extracorporeal lung. We describe our understanding of the physiological adaptations of the patient as extracorporeal support is weaned and outline the implications for clinical practice.

Keywords: Extracorporeal membrane oxygenation (ECMO), Weaning, Acute respiratory distress syndrome (ARDS), Respiratory drive, Patient self-inflicted lung injury (P-SILI)

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

Introduction

Veno-venous extracorporeal membrane oxygenation (V–V ECMO) is a technique that can support gas exchange and enable a reduction in the mechanical power applied to the injured lung in patients with acute severe and refractory, but potentially reversible, respiratory failure.

The increasing emphasis on reducing ergotrauma, the technological improvements in the extracorporeal devices, and the viral pandemics (i.e. H_1N_1 influenza and SARS-CoV 2) have resulted in an exponential growth in ECMO utilization over the last decade [1]. The possible applications of V–V ECMO are wide, including severe Acute Respiratory Distress Syndrome (ARDS), near fatal asthma, severe air leak syndromes, interstitial lung disease or as a bridge to lung transplantation [2–6].

In contrast to the abundance of data on indications, complications and prognostic factors for ECMO survival [1-3], consensus guidelines on weaning [6] are based on limited direct evidence on the criteria to initiate a weaning trial, how to monitor patients undergoing weaning and how to adjust mechanical ventilation to optimally support patients during this phase.

In Table 1 [3, 6, 8–20], we summarize the different approaches to weaning of V–V ECMO reported in the literature. Most centres wean the sweep gas flow (SGF) to zero but variable practice regarding manipulation of extracorporeal blood flow (ECBF) or the fraction of oxygen of the SGF (FdO2) is apparent between centres. Furthermore, the monitoring criteria and duration of a weaning trial are extremely variable, with few centres reporting objective assessment of respiratory drive and effort.

This variation in practice may contribute to inter-centre heterogeneity in V-V ECMO outcome [1]. Identifying strategies which can accelerate the safe liberation of patients from ECMO are essential to reduce length of stay and risk of complications, as well as ensuring equity of access at times of strain on healthcare resources [7].

A sound understanding of the physiological interactions between the extracorporeal circuit, the patient and the ventilator is required to guide physicians throughout the process of weaning. Accordingly, this review aims to describe a possible physiological approach to weaning from V–V ECMO.

Physiology of weaning from V–V ECMO

The extracorporeal circuit

$V'O_{2ML'}$ $V'CO_{2ML}$ and the effects of weaning

The extracorporeal circuit is depicted in Fig. 1. Table 2 summarizes the effects of weaning different ECMO parameters on $V'O_{2ML}$ and $V'CO_{2ML}$. There are three main settings which can be manipulated during the weaning or trial off V–V ECMO [21]:

Effects of reducing ECBF

The ECBF rate has differing effects on the oxygen delivery $(V'O_{2ML})$ and CO_2 clearance of the membrane lung $(V'CO_{2ML})$. With a well-functioning circuit, nearly all haemoglobin passing through the membrane lung will become 100% saturated even at very low SGF rates. Consequently, if the FdO₂ is unchanged, the ECBF is the main titratable variable which can affect the V'O_{2ML}. However, the nature of the

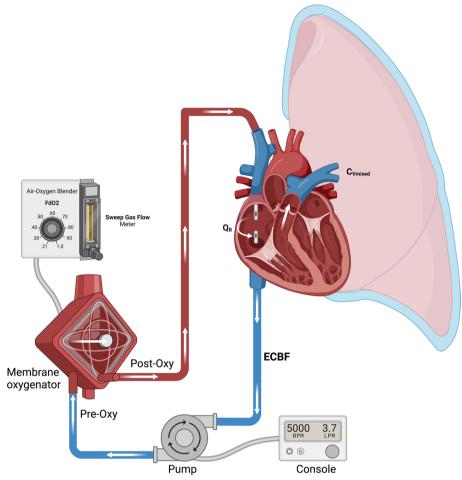

	0							
Source	Preconditions for weaning	Preferred ventilation	Targeted parameters during weaning	meters	during wean	ing	Measured	Monitoring criteria for
			ECBF (L/min) FdO ₂	FdO ₂		SGF (L/min) Duration (h)	effort/ drive	successful trial
Sen et al. 2016 [8]	PEEP 5–10, peak pressure 20–25, TV 6 ml/kg, RR ~ 15, PaO ₂ 50–80, radiological improvement	Controlled or spontaneous	2	0.21	0	Unspecified	1	Clinician Discretion
Reeb et al. 2017 [9]	Sats > 88% (PaO ₂ > 60), FiO ₂ \leq 0.6, Not specified PEEP \leq 15, RR \leq 35	Not specified	Unspecified	1.0	0	4	I	Stable ABG
Combes et al. 2018 [3]	Clinical + radiological improve- ment	Controlled	Unspecified	1.0	0	Л	I	$PaO_2 > 70 \text{ mmHg on FiO}_2 < 0.6$ plateau pressure < 30. No acute cor pulmonale
Broman et al. 2018* [10]	FiO_ 0.35-0.55, minimal V'CO _{2ML} with 5% CO ₂ added to SGF < 2L/ min	Controlled or spontaneous Unspecified	Unspecified	1.0	0	≥2-12	I	Clinician discretion
Broman et al. 2018 † [10]	FiO $_2$ < 0.45, PEEP < 10, peak pressure < 27	Not specified	1.5	1.0	0	0.5-1	I	Stable ABG and absence of dyspnoea
Broman et al. 2018 $^{\pm}$ [10]	Clinical + radiological improve- ment	Spontaneous	2.5–3	1.0	0	Unspecified	I	Absence of dyspnoea
Grant et al. 2018 [11]	Sats > 90%, FiO ₂ \leq 0.5, PEEP \leq 10, plateau pressure \leq 25, TV \leq 6-8ml/kg	Controlled	3-4	0.21	, I∖	Unspecified	I	Stable ABG, maintain precondi- tions
Seiler et al. 2018 [12]	Clinician discretion	Controlled	2	1.0	0	, -	I	Stable ABG
Chaves et al. 2019 [13]	FiO ₂ ≤ 0.6, PEEP ≤ 15, peak pressure ≤ 30, TV ≤ 6ml/kg, RR ≤ 35 and radiological improvement	Spontaneous	Unspecified	1.0	0	Q	I	Clinical stability, normal pH and PaO ₂
Vasques et al. 2019 [14]	Sats>88% on FiO ₂ 0.6, PaO ₂ > 225 on Cilley test, V'CO _{2NL} > 50% of total, TV ≤ 6–8 m/Kg,	Spontaneous	Unspecified	0.21	0	Unspecified	Yes	P 0.1 > -10 , RR ≤ 35 , ratio of V°CO ₂ NL to minute ventila- tion > 80% of baseline, absence of distress
Li et al. 2020 [15]	Clinical + radiological improve- ment	Controlled	2.5	1.0	0	2448	I	RR ≤ 20, P:F ratio> 150, Murray Index 2–3, PaCO ₂ ≤ 50, tempera- ture < 38c

Table 1 Varied approaches to weaning in the literature

Source	Preconditions for weaning	Preferred ventilation	Targeted parameters during weaning	leters	during wean	ing	Measured	Monitoring criteria for
			ECBF (L/min) FdO2 SGF (L/min) Duration (h)	dO2	SGF (L/min)	Duration (h)	ettort/ drive	successful trial
Gannon et al. 2021 [16]	SGF \leq 3, Sats \geq 88% (PaO ₂ \geq 60) with FiO ₂ \leq 0.6, PEEP \leq 15. RR \leq 35, HR < 120, systolic BP \geq 180 or < 90, pH \geq 7.35	Controlled or spontaneous <3		0.5	0	0.5	1	Maintain non-ECMO precondi- tions, ≤20% change in HR
Tonna et al. (ELSO guideline), 202 [6]	PaO ₂ ≥ 70 FiO ₂ ≤ 0.6, PEEP ≤ 10, Controlled or spontaneous 1–1.5** plateau ≤ 28, TV ≤ 6mJ/kg, RR ≤ 28, improved CXR	Controlled or spontaneous		0.21	0	2-3	I	Normocapnia, PaO ₂ > 70, no respiratory distress
Teijeiro et al. 2021 [17]	No air leak, No NMB> 24 h, FIO ₂ \leq 0.6 Sats> 88% PaO ₂ > 60 peak pressure \leq 20, TV \leq 9ml/ kg, haemodynamically stable, SGF < 5, ECBF < 5,	Spontaneous	< 5	1.0	0	2-24	I	Respiratory distress, TV > 9m/kg, Sats < 88% (or requiring FiO ₂ > 0.6, PEEP <u>></u> 20) pH < 7.25, haemo- dynamic instability, agitation or drowsiness
Belliato et al. 2021 [18]	Clinical and radiological improvement, PEEP ≤ 10–15, haemodynamic stability	Controlled or spontaneous Unspecified		1.0	0	6-12	I	Clinician discretion
Al-Fares et al. 2021 [19]	Clinician discretion	Controlled or spontaneous > 3		0.1	0	Unspecified	Yes	Clinician discretion
Lazarri et al. 2022 [20]	∆Pes ≤ 15, RR ≤ 30, pH > 7.25, PaCO ₂ ≤ 60, PaO ₂ > 70 with FiO ₂ ≤ 0.6	Controlled or spontaneous Unspecified	Unspecified 1	0.	0	Unspecified	Yes	Maintain preconditions
ECBF: extracorporeal blood flow, EdO ₂ : fraction of oxygen of the Sweep Gas Flow (SGF), PEEP: positive end expiratory pressure, TV: tidal volume (per kilogram of predicted body weight), RR: respiratory rate, ABG: ar	ECBF extracorporeal blood flow, EdO ₂ fraction of oxygen of the Sweep Gas Flow (SGF), PEEP: positive end expiratory pressure, TV: tidal volume (per kilogram of predicted body weight), RR: respiratory rate, ABG: arterial	s Flow (SGF), PEEP: positive end e	xpiratory pressure,	TV: tida	l volume (per k	cilogram of predic	tted body weig	ht), RR: respiratory rate, ABG: arterial

blood gas, Pao₂: partial pressure of arterial oxygen, PaCO₂: the partial pressure of arterial carbon dioxide (VCO_{2M}: carbon dioxide cleared by the membrane lung, VCO_{2M}: carbon dioxide cleared by the mature lung, VCO_{2M}: carbon dioxide cleared by the mature lung, Apes: the change in oesophageal pressure, P.F ratio: ratio of PaO₂ to FIO₂. All airway pressures measured in centimetres of water. All non-airway pressures (including partial pressures) measured in millimetres of mercury. Broman et al. reported an approach from the Karolinska institute*, Regensburg Hospital[†] and San Raffaele Hospital[†] are Areduction in ECBF is considered optional within the guidelines

Table 1 (continued)

Fig. 1 The anatomy and physiology of the extracorporeal circuit, depicted in a femoral–jugular configuration. Blood is drained from the central venous system (C_v) via a cannula and centrifugal pump which generates extracorporeal blood flow (ECBF). Pre-oxygenator blood is a mixture of central venous (C_v) and recirculating (Q_p) blood. It is pumped across hollow fibres within the membrane oxygenator across which there is sweep gas flow (SGF). Post-oxygenator blood passes through the return lumen where it becomes mixed with the C_v blood in the right ventricle and pulmonary arteries to form the mixed venous blood (C_{vmixed}) before being distributed through the native pulmonary circulation. Mixed central venous bloods oxygen content ($C_{vmixed}O_2$) will be determined by: the central venous oxygen content (C_{vo2}), the post-oxygenator blood flow (ECBF), recirculation flow (Q_p) and overall cardiac output (Qt) according to the formula: $C_{vmixed}O_2 \cdot Qt = [C_vO_2 \cdot (Qt = ECBF + Qr)] + [C_{post-oxy}O_2 \cdot (ECBF - QR)]$. Although the ECBF contributes to the calculation of the overall C_2 clearance of the membrane lung [$V'CO_{2ML} = (C_{post-oxy}CO_2 - C_{post-oxy}CO_2) \cdot ECBF \cdot 25$], during the usual V–V ECMO ECBF levels (> 2.5 L) the primary determinant of $V'CO_2ML$ is the SGF rate which generates the gradient for CO_2 diffusion and resulting difference in pre- and post-oxygenator CO_2 content

relationship between ECBF and the V'O $_{2ML}$ is affected by the amount of recirculated blood flow (Q_R):

1. Recirculation occurs when arterialized blood returned to the venous system after passing through the membrane lung is aspirated straight back into the circuit (see Fig. 1), lowering the gradient between the pre- and post-membrane blood oxygen content and therefore the V'O_{2ML}. *Effective* ECBF, equal to total ECBF minus Q_R, is linearly related to V'O_{2ML} [21] but Q_R cannot be easily quantified at the bedside.

Parameter which can be weaned	Relationship with V'O _{2ML}	Relationship with V′CO _{2ML}	Downsides of weaning in isolation
ECBF	Linear relationship if Q _R is minimal	Linear relationship between 0 and 0.5 L/min Logarithmic relationship between 0.5 and 1 L/min Minimal change > 1 L/min Influenced by membrane lung surface and SGF	Low ECBF flows may increase circuit thrombosis Changes in ECBF will also affect Q _R
SGF	Minimal change until almost zero	Decrease V'CO _{2ML}	When SGF is turned to zero V'O _{2ML} ceases suddenly but hypoxic pulmonary vasocon- striction takes minutes to react
FdO ₂	Decrease V'O _{2ML}	No effect	Weaning may alter the res- piratory quotient and reduce alveolar oxygen

Table 2 Titratable ECMO	parameters during	weaning an	d their effects

ECBF: extracorporeal blood flow

SGF: sweep gas flow

FdO₂: fraction of oxygen of the SGF

Q_R: blood flow directly back into the ECMO circuit which has already passed through the membrane lung

2. The proportion of Q_R may be higher at higher ECBF. If a given decrease in ECBF during weaning disproportionately reduces Q_R then the change in V'O_{2ML} may not be as anticipated. For example, if the Q_R reduces from 1 L to 250 mL when the ECBF is weaned by 25% from 4 to 3 L/min, then the effective ECBF has only changed from 3 L to 2.75 L. Conversely, when Q_R is minimal decreasing the total ECBF will decrease the V'O_{2ML} linearly [21].

The effect of weaning the ECBF upon the systemic oxygenation will depend on the cardiac output and venous admixture: as the proportion of the total cardiac output captured into the ECBF falls, the mixed venous oxygen content will decrease, and the final effect upon systemic oxygenation will be determined by native lung function.

In contrast to V'O_{2ML}, the relationship between ECBF and V'CO_{2ML} is not linear, but follows a natural logarithmic curve with ECBF>0.5 mL/min, which plateaus at>1.0 L/min [22, 23]. The impact of the ECBF on V'CO_{2ML} is also affected by the ratio of SGF:ECBF and the surface area of the membrane lung [22]. Accordingly, step-wise decreases in ECBF have minimal independent effect on the V'CO_{2ML} until reaching very low levels- which are generally avoided to prevent circuit thrombosis.

Effects of reducing SGF rate without altering the FdO₂

Nearly complete saturation of haemoglobin can be achieved even with very low SGF rates (<0.5 L/min) particularly when FdO_2 is maintained at 1.0 [21]. For this reason, step decreases in SGF do not affect V'O_{2ML} until SGF is almost off. Moreover, even the small amount of SGF can affect ECMO dependency for another reason: V–V ECMO causes a mixed venous 'hyperoxia', blunting or abolishing the physiological hypoxic pulmonary vasoconstriction [24]. This results in an increased native lung venous admixture, with lower than expected ventilation to perfusion (Va/Q) ratio [24–26]. Accordingly, when

Parameter	Formula	Downsides/specifics
Ventilatory ratio [28]	(VE·PaCO ₂)/(PBW·100·37.5)	Assumes constant V'CO _{2NL}
Enghoff index	(PaCO ₂ -PECO ₂)/PaCO ₂	Evaluates both shunt and dead space
Ratio of end tidal to partial pressure of carbon dioxide	EtCO ₂ /PaCO ₂	Evaluates both shunt and dead space [20]
Bohr alveolar dead space	(PACO ₂ -PECO ₂)/PACO ₂	Evaluates pure alveolar dead space but requires analysis of volumetric capnography curve [24]
Ventilatory efficiency	VE/ V'CO _{2NL}	No available data during ECMO
Ventilatory efficiency	$\Delta P_{eso}/V'CO_{2NL}$	Influenced by lung elastance

Table 3 Evaluation of CO₂ clearance of native lung during weaning from V–V ECMO

PBW: predicted body weight

VE: minute ventilation

PECO₂: mean expired CO₂ partial pressure

PACO₂: alveolar CO₂ partial pressure

the SGF is turned to zero at the last step of a weaning trial, patients are abruptly totally dependent on the native lungs capacity to transfer oxygen (V'O_{2NL}), but the biphasic response of the pulmonary vasculature to hypoxia requires minutes to hours to occur [27]. Delayed hypoxic vasoconstriction increases the effective venous admixture, wors-ening V/Q matching and potentially leading to hypoxaemia which might be avoided with a slower transition.

In contrast to oxygenation, step-wise decreases in SGF are associated with a progressive reduction in V²CO_{2ML} [22]. SGF drives bulk transfer of CO₂ out of the artificial membrane and increases the gradient for CO₂ in the venous blood to diffuse across the membrane. Accordingly, step decreases in SGF, result in a higher CO₂ in the pulmonary vasculature and greater load to the native lung (V²CO_{2NL}), whose exchange capacity will affect PaCO₂. Several indices have been proposed for a bedside evaluation of the CO₂ clearance capacity of the natural lung, as summarized in Table 3 [19, 20, 28, 29]. Interestingly, the partial pressure of end tidal to arterial PCO₂ ratio (P_{ET}:PaCO₂), an index of global gas-exchange efficiency [30], was the best predictor of weaning outcome in a recent study [together with a measure of ventilatory efficiency (ratio of respiratory effort to V²CO_{2NL})] [20].

When SGF is set to zero, V–V ECMO makes no contribution to gas exchange and, after the restoration of hypoxic pulmonary vasoconstriction, a true assessment of native lung function can occur. A special case in which a sudden reduction in arterial oxygenation is unrelated to a lung function and severe hypoxaemia occurs when there is an intracardiac shunt: in this case, the flow from the return cannula can force blood through the shunt, bypassing the native lung and potentially leading to profound desaturation when SGF falls to zero. This will become evident if ECBF is not concomitantly reduced to <1 L/min when no compensatory oxygen is added from the extracorporeal circuit [31].

Effects of reducing the FdO₂ prior to reducing the SGF

Gradually reducing the FdO2 leads to a sequential decrease in VO_{2ML} , while VCO_{2ML} remains unaltered. The progressive decrease in FdO₂ has the advantage of allowing time to restore hypoxic pulmonary vasoconstriction [21]. This will prevent rapid desaturations and provides a more accurate assessment of the oxygen exchange capacity of the

native lung. The effect on systemic oxygenation of a reduction in V'O_{2ML} through step decreases in FdO₂ will largely depend on the ratio of ECBF to cardiac output and on the venous admixture of the native lung.

However, reductions in FdO₂ may have counter-intuitive effects on the alveolar oxygen partial pressure. If FdO₂ is weaned in isolation (i.e. SGF is maintained constant), the contribution of V'O2_{ML} to total V'O2 falls, whilst the proportion of the total metabolically produced CO₂ cleared by the natural lung remains largely unchanged, or even decreased if metabolic CO₂ production increases with the hypoxic drive, and the native lung is unable to increase CO₂. In this case, the CO₂ removed extracorporeally proportionally increases. This means that the respiratory quotient of the natural lung (RQ_{NL} = V'CO_{2NL}: V'O_{2NL}) will be reduced [32]. The implications of this can be seen from the alveolar gas equation:

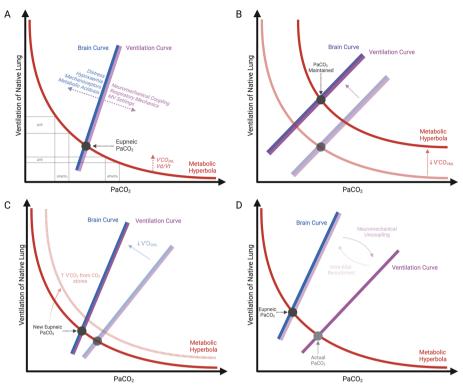
$$PAO_2 = PiO_2 - \frac{PACO_2}{RQ_{NL}},$$

where PAO_2 and $PACO_2$ are the alveolar partial pressures of oxygen and carbon dioxide, respectively, and PiO_2 is the pressure of inspired oxygen.

The greater the reduction in RQ_{NL} from the V'CO_{2ML}, the lower the PAO₂. In other words, if PaCO₂ is static, the V'CO_{2ML} entails a relative alveolar hypoventilation. This leads to uptake of O₂ by the lungs which is not compensated for by bulk gas transfer, resulting in a lower PAO₂. However, the clinical significance of this effect during weaning from V–V ECMO should be put into context:

1. The extended alveolar equation has a supplementary term (in bold here below) which, accounting for changes in alveolar gas volume during breathing, blunts the deleterious effect of low RQ on PAO₂, especially if the FiO₂ from the native lung is high [33, 34]:

$$PAO_2 = PiO_2 - \frac{PACO_2}{RQ_{NL}} + FiO_2 \bullet PACO_2 \bullet \frac{1 - RQ_{NL}}{RQ_{NL}}.$$


 The reduction in PAO₂ at low RQ_{NL} is most clinically relevant during extracorporeal CO₂ removal (ECCO₂R) [32], where ECBF is < 1 L/min. However, this will be less evident during weaning of V–V ECMO where the ECBF is much higher: indeed, even at FdO₂ 0.21, there may still be a substantial V'O_{2ML} [21].

The patient

The patient's response to a weaning trial is dictated by the physiology of breathing control and, particularly, by the effects of variations in gas-exchange on the output of the respiratory centres.

Physiology of breathing control

A simple, yet effective model describing the control of breathing has been proposed by Georgopoulos et al. [35] and subsequently adopted by others [36]. As depicted in Fig. 2 [35–38], this model describes the interdependence between the arterial partial pressure

Fig. 2 Georgopolous model of breathing control during weaning. **A** Reflects health, were the brain and ventilation curve are synonymous, thereby eupneic and actual PaCO₂ coincide. Possible contributors to the position of the brain curve, ventilation curve and metabolic hyperbola, and the varying slope of the latter (larger Δ VE required to achieve a given Δ PaCO₂ when ventilation is higher) are also shown. **B** Represents a possible SGF weaning trial off: as the CO₂ cleared by the membrane lung (V'CO_{2ML}) is reduced the metabolic hyperbola shifts upwards and to the right, while the brain and ventilation curve shift in parallel to the left to maintain the eupneic PaCO₂. **C** Represents a possible FdO₂ or ECBF weaning trial off: as the oxygen provided by the membrane lung (V'O_{2ML}) is reduced during weaning any hypoxaemia would shifts the position and slope of the brain curve a new eupneic PaCO₂. This new equilibration point will drive non-metabolic CO₂ from body stores into the bloodstream possibly shifting the metabolic hyperbola upward and to the right. **D** Depicts possible weaning-induced changes in the relative position of the brain and ventilation curves (maintained synonymous for simplicity in all other Panels): note that any deviation between the two curves induces a difference between the actual and eupneic CO₂. MV: mechanical ventilation, PaCO₂: the partial pressure of arterial carbon dioxide, V'CO_{2NL}: the total CO₂ to be cleared by the natural lung, Vd/Vt the dead space fraction of the tidal volume, V'CO_{2NL}: the CO₂ cleared by the membrane lung

of CO_2 (Pa CO_2) and the minute ventilation (VE) by plotting them in the same graph according to three different curves: (1) the *metabolic hyperbola*, describing the relationship between Pa CO_2 and VE at a given V' CO_{2NL} and dead space (Vd/Vt); (2) the CO_2 sensitivity curve (also called the *brain curve*), describing the change in VE that the respiratory centres desire when Pa CO_2 deviates from its set-point; (3) the *ventilation curve*, depicting the corresponding change in VE that the respiratory system can actually achieve for a given Pa CO_2 . In health, the brain and ventilation curves are synonymous.

The intersection between the brain curve and the metabolic hyperbola gives the 'eupneic' $PaCO_2$, i.e. the $PaCO_2$ set-point of the respiratory centres. Conversely, the intersection between the ventilation curve and the metabolic hyperbola gives the actual $PaCO_2$ of the patient. Panel A in Fig. 2 describes physiological and pathological determinants of the slopes and positions of these three curves [35, 36].

Effects of weaning on respiratory centres output

According to the Georgopoulos model, weaning may affect the respiratory centres' output through the following mechanisms.

Step decreases in SGF may change the position of the metabolic hyperbola

Normally, around 6–7 L/min of VE is sufficient to maintain a $PaCO_2$ at 40 mmHg at physiologic VCO_{2NL} . During V–V ECMO, VCO_{2NL} decreases and the metabolic hyperbola shifts downward and to the left (i.e. lower VE is required to maintain the same $PaCO_2$). Conversely, during weaning, step decreases in SGF rate reduce $V'CO_{2ML}$ and the total metabolic $V'CO_2$ increases at higher work of breathing. For both reasons, $V'CO_{2NL}$ is expected to increase, shifting the metabolic hyperbola upward and to the right (see Panel B in Fig. 2).

Step decreases in FdO₂ or ECBF may change the set-point of the brain curve

Normally, the brain is set to maintain a $PaCO_2$ around 40 mmHg. However, chemical (PaO_2 and pH), reflex (lung and chest wall receptors) and cortical (wakefulness, sedation, agitation) inputs can change the set-point to lower or higher values. In ARDS, stimulation of lung mechanoceptors and inflammation contribute to a low $PaCO_2$ setpoint even in normoxia. For this reason, even with maximal V' CO_{2ML} it is uncommon to induce apnoea during V–V ECMO for ARDS [39]. During weaning, step decreases in V' O_{2ML} , may induce hypoxemia, thereby lowering the $PaCO_2$ set-point. This will result in the brain curve shifting to the left and increasing its slope (see Panel C in Fig. 2).

Changes in breathing pattern may affect the ventilation curve

In health, ventilation satisfies the activity of the respiratory centres, thereby the ventilation and brain curve overlap and the actual PaCO₂ matches the eupnoeic PaCO₂. In ARDS, the descending pathway from the brain to the lung is altered. Dissociation between the two curves results in dyspnoea and further increasing the already high respiratory centres output. During weaning, elicited natural lung ventilation might decrease lung elastance (intra-tidal recruitment) [40] or resistances (inversely correlated with tidal volume [41]), thereby partially re-establishing the matching between the brain and the ventilation curve. On the other hand, neuromechanical uncoupling may worsen if PEEP is increased without corresponding recruitment [42] or if muscular fatigue is associated with inadequate support. Accordingly, the dissociation between the brain and the ventilation curve may increase (see Panel D in Fig. 2).

There are other important interactions which are particularly relevant in the spontaneously breathing patient:

 With increasing VCO_{2NL}, shifting the metabolic hyperbola upward and to the right would result in increased PaCO₂ if the brain curve did not concomitantly change position (see Fig. 2 Panel B). However, it has been experimentally shown that PaCO₂ remains constant at decreasing SGF, unless extreme effort is reached [20]. A similar behaviour of the respiratory centres occurs in exercise, where increasing VCO_{2NL} is associated with a parallel leftward shift of the brain curve (at constant slope) to maintain constant $PaCO_2$ (isocapnic hyperpnea) [37]. The underlying mechanism explaining this phenomenon remains debated [43].

- 2. When the brain curve shifts to lower $PaCO_2$ set points, the entire pool of CO_2 body stores must equilibrate with the new $PaCO_2$ (see Fig. 2 panel C). This requires displacement of a vast amount of non-metabolic CO_2 from peripheral tissues into the bloodstream increasing V' CO_{2NL} [44] and further shifting the metabolic hyperbola upward and to the right. The higher the pool of total body CO_2 stores (for example due to prior permissive hypercapnia), the greater the amount of CO_2 displaced to reach equilibrium and therefore the greater V' CO_{2NL} which may be required to maintain the new set-point.
- 3. The slope of the metabolic hyperbola, describing how much VE must change to obtain a given change in $PaCO_2$ (the so-called "plant gain") has two characteristics which are relevant to weaning. First, it is lower at higher VE [38] (see Fig. 2 panel A). Therefore, during weaning, higher changes in VE are required to achieve a new $PaCO_2$ set-point if the patient is already hyperventilating prior to the trial. This might be one reason why high breathing effort before or during a weaning trial has been associated with weaning failure [19, 20]. Second the slope decreases when the V'CO_{2ML} is decreased [37]. Accordingly reaching a new $PaCO_2$ set-point (e.g. because of hypoxaemia) requires much more effort during the later stages of a weaning trial. For both reasons, avoiding hypoxaemia, distress or any other cause for a shift in the eupneic threshold is important during a weaning trial.

Monitoring respiratory centres output

Respiratory centres can express their output in terms of timing or intensity: the timing is reflected by respiratory rate, while the intensity of output is referred to as respiratory drive. Respiratory rate significantly increases only when respiratory drive is 3–4 times elevated [35, 36]. Similarly, clinical signs of high effort occur when drive is already excessive. For this reason, invasive assessment of drive is necessary to predict the success or failure of weaning prior to the development of overt distress. Directly measuring the rate of change of the electrical activity of the brain centres is not feasible in routine practice, thereby surrogates need to be employed. These surrogates relate more or less directly to respiratory drive (the electrical activity of the diaphragm, EAdi [45]), others with respiratory effort (P0.1 [46], the swing in oesophageal, ΔP_{eso} , and transdiaphragmatic pressure, ΔP_{di} [47], or the muscle pressure, P_{musc} , and the occlusion pressure, P_{occ} [48]), others with lung stress (dynamic transpulmonary pressure, ΔPL [47, 48]). If the descending pathway is altered (neuromuscular impairment, increased respiratory system elastance), as typically seen in patient undergoing V–V ECMO, a dissociation between these indices might occur, thereby complicating the assessment of the respiratory centres output.

The ventilator

We have discussed the effects of weaning extracorporeal parameters on $V'O_{2ML}$ and $V'CO_{2ML}$ together with the resulting interactions with the patient's respiratory centres.

In the following section, we will discuss the approach to mechanical ventilation during a weaning trial.

Passive controlled patients

In fully sedated patients in controlled modes, changes in extracorporeal gas exchange may be directly reflected in the systemic arterial blood gases if concomitant changes in mechanical ventilation are not made. For safe decannulation from V–V ECMO, maintenance of gas exchange must not be at the cost of excessive risk of ventilator induced lung injury (VILI). Overall, protective ventilation during V–V ECMO is debated [49]. The holistic concept of mechanical power [50] particularly highlights the harms of respiratory rate as well as driving pressure [51], though safety thresholds are unclear [52, 53]. Associations between mortality and the use of higher driving pressure [54], and mechanical power [55] during V–V ECMO have been made from cohort studies and a period of total lung rest with zero driving pressure was correlated with lower plasma biomarkers of lung injury in a recent small randomized trial [56]. However, ultra-protective ventilation may be unnecessarily cautious when patients have improved to the point of a weaning trial off. Finally, increased sedation or even neuromuscular blockade may be required to maintain synchrony if ventilation is not adequately adjusted to match the demands of the brain curve.

Spontaneously breathing patients

The spontaneously breathing patient's respiratory centre's output will dynamically increment to maintain gas exchange as extracorporeal support is weaned. Changes in respiratory centres output during weaning translate into breathing effort and lung stress which is the main contributor to patient self-induced lung injury (P-SILI) [57]. The role of the ventilator in reducing breathing effort and stress is crucial and can be divided into two components:

Manoeuvres reducing effort and stress

Any manoeuvre shifting the CO_2 sensitivity curve to higher $PaCO_2$ or improving the matching between the ventilation and the brain curve may reduce breathing effort and lung stress [35, 36]. The use of sedation, shifting the CO_2 sensitivity curve to the right, is a typical 'non-ventilatory' strategy in this regard. Increasing FiO_2 and PEEP (if associated with recruitment) may have beneficial effects. However, increasing PEEP may worsen neuromechanical uncoupling [42] and it can increase the *static* stress to the lung contributing to the total mechanical power of ventilation [50, 58]. Manoeuvres improving patient–ventilator synchrony also have the potential to reduce effort and regional stress [57].

Manoeuvres reducing effort but not stress

Any manoeuvre unloading the respiratory muscles (e.g. increasing pressure support) has the potential to reduce breathing effort, but not lung stress. Indeed, when the respiratory centres are set to maintain a certain $PaCO_2$, pressure support leads to a decreased workload to the respiratory muscles, but the total ventilation required to maintain $PaCO_2$ does not change (i.e. stress will not decrease) [59].

Parameter	Values of concern	Downsides
Oxygen saturation	<88%	Late sign of distress
Heart rate	>110	Multifactorial causes
PaCO ₂	New respiratory acidosis	Late sign of distress
Respiratory rate	> 35	Late sign of distress
Tidal volume	>8 ml/kg IBW	Depends on respiratory system elastance
Driving pressure	$> 15 \text{ cm H}_2\text{O}$	Evaluates both lung and chest wall
P 0.1	>10 cmH ₂ O	May be falsely low in patients with respiratory muscle weakness
ΔP_{eso}	< – 15 cmH ₂ O	Requires an oesophageal catheter
Pocc	< – 20 cmH ₂ O	Requires multiple manual manoeuvres
P _{musc} *	>10 cmH ₂ O	Requires measurement (or estimation) of chest wall elastance
ΔP_L	$> 20 \text{ cmH}_2\text{O}$	Requires oesophageal catheter
Total lung stress (PEEP _L + ΔP_L)	Unknown	Difficult assessment of $PEEP_L$ in patients with abdominal contraction

Table 4	Stopping	criteria	during	weaning	from \	V–V	ecmo
---------	----------	----------	--------	---------	--------	-----	------

PEEP_L: static stress associated with PEEP

*P_{musc} can be derived from the oesophageal pressure swing and the estimated chest wall elastance. Alternatively, it can be estimated from $-0.75 \times P_{occ}$

Irrespective of the manoeuvre performed, general principles of lung protection during a weaning trial in spontaneously breathing patients are similar to those in fully sedated patients under controlled ventilation (Table 4 [14, 19, 20, 57] summarizes possible stopping criteria of a weaning trial from V–V ECMO). However, some important specifics must be highlighted:

- 1. The presence of active muscular contraction, variable between inspiration and expiration, confounds the estimation of chest wall compliance. One implication is that whole respiratory system indices like driving pressure might less reliably reflect lung stress than during passive ventilation. Additionally, abdominal muscle contraction may both reduce the static stress associated with PEEP [60, 61] and alter the estimation of effort with oesophageal pressure if gastric pressure is not concomitantly measured [47].
- 2. Indices of effort represent an "average" measurement of the stress applied to the lung. Indeed, in spontaneous breathing, significant regional changes in oesophageal and transpulmonary pressure can occur [62]. This may elicit pendelluft and negative pressure alveolar oedema, worsening P-SILI [57]. Although PEEP can increase lung homogeneity counteracting these effects [63, 64], its downsides must be kept in mind.

Importantly, if the patient is spontaneously breathing, the development of hypercapnia or respiratory distress are late signs (panel B Fig. 3). Accordingly, measurement of drive and effort is essential to optimize mechanical ventilation and avoid exposing the patient to P-SILI and premature decannulation. Even with 'protective' parameters measured from the airway, the spontaneous effort to maintain normocapnia can generate enormous transpulmonary pressures [65]. Increased tidal volumes (driven by increased dead

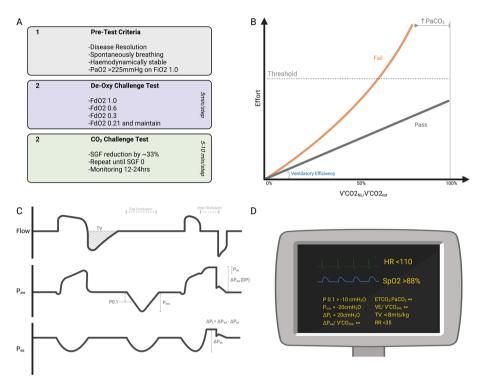


Fig. 3 Our process of weaning V–V ECMO. A Sequence for V–V ECMO weaning. Throughout, monitor for stopping criteria. **B** As SGF is weaned, the proportion of metabolically produced CO_2 cleared by the natural lung (V'CO₂NL/V'CO₂tot) increases. In patients who are not yet suitable for decannulation, this load can only be managed with excessive effort (see next panels). Ventilatory efficiency can be expressed as the ratio of the effort (or minute ventilation) to the V'CO_{2NL}. In patients who fail a weaning trial ventilatory efficiency is usually worse, and may deteriorate as the demands on the respiratory system rise. If they are not able to clear all of the metabolically produced CO₂ then hypercapnia ensues. C Monitoring drive and effort during a weaning trial. Waveforms during a pressure supported breath, an expiratory occlusion throughout an inspiratory cycle and an end inspiratory occlusion. **D** Targets to maintain during a trial off V–V ECMO including measures of drive (P0.1), effort (Pocc or ΔP_{es} if available), stress (ΔP_L or DP if not available) and native lung ventilator efficiency (APec/V'CO_{2NI}, end tidal CO₂ to arterial CO₂ ratio (ETCO₂:PaCO₂) or the ratio of minute ventilation to clearance (VE/ V'CO_{2NL}). At our centre, volumetric capnography from the ventilator and pre- and post- oxygenator blood gases are used to calculate the V'CO_{2NL} and V'CO_{2ML}, respectively. Unfortunately, during weaning the V'O_{2NL} is not routinely measured. However, this is done in individual patients who have a pulmonary artery catheter for measurement of $C_{Vmixed}O_2$ or a receive calorimetric measurements. FdO₂: the fraction of oxygen of the sweep gas flow (SGF), TV: tidal volume, P0.1: pressure deflection during 100 ms of occlusion, Pocc: maximal pressure deflection during occlusion, ΔP_{es} oesophageal pressure swing, ΔP_{aw} . plateau after inspiratory inclusion, including the PMI: rebound pressure from relaxing inspiratory muscles, ΔP_1 : transpulmonary pressure

space) and new tachy cardia predicted unsafe decannulation in a recent case series, but $\Delta P_{\rm es}$ of > 16 cmH₂O had the greatest accuracy [20].

A proposed approach to weaning

Our approach to weaning is represented in Fig. 3 [14]. Prior to commencing weaning comprehensive assessment of respiratory drive, effort, mechanical ventilation and the CO_2 clearance capacity of the lung should take place, both to optimize mechanical assistance and as a baseline measure. The V' CO_{2NL} should be at least 50% of the total metabolically produced carbon dioxide. Our preference is for patients to be on a spontaneous or assisted mode of ventilation. First the FiO₂ is set to 0.6 in anticipation of reducing V' O_{2ML} and to avoid alveolar hypoxia as the respiratory quotient is changed during

weaning. The ECBF is held static unless there is suspicion of an intracardiac shunt. Next, the FdO₂ is sequentially weaned in 5-min intervals, allowing for re-establishment of hypoxic pulmonary vasoconstriction and potentially increasing native ventilatory efficiency with improved V/Q matching. If an FdO₂ of 0.21 is tolerated, next the SGF is sequentially decreased to zero in 5-10 min intervals. As the V'CO_{2ML} falls, monitoring continues to ensure increasing V'CO_{2NL} is not at the cost of injurious effort or stress. In all patients, the total $V'CO_2$ will rise due to the increasing work of breathing to manage the load from the $V'CO_{2MI}$. Depending on the pulmonary mechanics and ventilatory efficiency, in some patients the native lungs will not be capable of managing this load and they will demonstrate increasing respiratory drive, effort, minute ventilation, sympathetic activation and ultimately hypercapnia. Time to equilibrate at each step is essential in order to fully assess response and prevent P-SILI. Throughout, multimodal monitoring is continued, and the weaning test is ceased if there are indices of concern (see Table 3 and Fig. 3). As decannulation itself often produces a systemic inflammatory response in the following days, our preference is for a conservative approach to decannulation and a trial off SGF of 24 h.

Conclusions

The rationale for the use of V–V ECMO in ARDS and other forms of severe respiratory failure is becoming clearer. However, variation in mortality between centres [8] and a lack of prospective randomized evidence regarding the management of patients on V–V ECMO means there is a strong scientific rationale for further study. Early, safe liberation from V–V ECMO has the potential to hasten patient's recovery and maintain equity of access to other patients who may benefit from this effective, but resource-intensive treatment. Although there is not yet high-grade evidence to guide clinicians, we have outlined an approach to weaning underpinned by physiology. The feasibility of weaning from V–V ECMO should be considered daily. We advocate separating the ability of the natural lung to provide O_2 and remove CO_2 by weaning the FdO₂ prior to the SGF. The complex interactions between the determinants of respiratory drive, the patient's effort and ventilatory assistance, their lung mechanics and efficiency of V'CO_{2NL} will determine the outcome of a weaning trial. Care must be taken to avoid occult P-SILI in patients making spontaneous effort and we advocate multimodal assessment of drive, effort and stress throughout the weaning process.

Acknowledgements

All figures created using Biorender. Figure 1 adapted from a template created by Dr. Yevgeniy Brailovsky from Sidney Kimmel School of Medicine.

Author contributions

All authors contributed to the text. PC formulated the figures with input from co-authors. All authors read and approved the final manuscript.

Funding None.

Availability of data and materials

Not applicable to this narrative review.

Declarations

Ethics approval and consent to participate

This narrative review did not require ethical approval.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competinginterests.

Received: 21 October 2022 Accepted: 18 January 2023 Published online: 10 February 2023

References

- Barbaro RP, Odetola FO, Kidwell KM, Paden ML, Bartlett RH et al (2015) Association of hospital-level volume of extracorporeal membrane oxygenation cases and mortality. Analysis of the extracorporeal life support organization registry. Am J Respir Crit Care Med 191:894–901. https://doi.org/10.1164/rccm.201409-1634OC
- Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363. https://doi.org/10. 1016/S0140-6736(09)61069-2
- Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Guervilly C et al (2018) Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med 378:1965–1975. https://doi.org/10.1056/ NEJMoa1800385
- Combes A, Peek GJ, Hajage D, Hardy P, Abrams P, Schmidt M et al (2020) ECMO for severe ARDS: systematic review and individual patient data meta-analysis. Intensive Care Med 46:2048–2057. https://doi.org/10.1007/ s00134-020-06248-3
- Warren A, Chiu YD, Villar SS, Fowles JA, Symes N, Barker J et al (2020) Outcomes of the NHS England National Extracorporeal Membrane Oxygenation Service for adults with respiratory failure: a multicentre observational cohort study. Br J Anaesth 125:259–266
- Tonna JE, Abrams D, Brodie D, Greenwood JC, Mateo-Sidron JAR, Usman A et al (2021) Management of adult patients supported with venovenous extracorporeal membrane oxygenation (VV ECMO): guideline from the extracorporeal life support organization (ELSO). ASAIO J 67:601–610. https://doi.org/10.1097/MAT.000000000 001432
- Gannon WD, Stokes JW, Francois SA, Patel YJ, Pugh ME, Benson C et al (2022) Association between availability of extracorporeal membrane oxygenation and mortality in patients with COVID-19 eligible for extracorporeal membrane oxygenation: a natural experiment. Am J Respir Crit Care Med 205:1354–1357. https://doi.org/10.1164/rccm. 202110-2399LE
- Sen A, Callisen HE, Alwardt CM et al (2016) Adult venovenous extracorporeal membrane oxygenation for severe respiratory failure: current status and future perspectives. Ann Card Anaesth 19:97–111. https://doi.org/10.4103/ 0971-9784.173027
- Reeb J, Olland A, Pottecher J et al (2017) Extracorporeal membrane oxygenation for acute respiratory distress syndrome after pneumonectomy. Ann Thorac Surg 103:881–889. https://doi.org/10.1016/j.athoracsur.2016.11.038
- Broman LM, Walfertheiner MV, Montisci A, Pappalardo F (2018) Weaning from veno-venous extracorporeal membrane oxygenation: how I do it. J Thorac Dis 10:S692–S697. https://doi.org/10.21037/jtd.2017.09.95
- Grant AA, Hart VJ, Lineen EB, Badiye A, Byers PM, Patel A et al (2018) A weaning protocol for venovenous extracorporeal membrane oxygenation with a review of the literature. Artif Organs 42:605–610. https://doi.org/10.1111/aor. 13087
- Seiler F, Trudzinski FC, Horsch SI et al (2018) Weaning from prolonged veno-venous extracorporeal membrane oxygenation (ECMO) after transfer to a specialized center: a retrospective study. J Artif Organs 21:300–307. https:// doi.org/10.1007/s10047-018-1046-1
- Chaves RCF, Rabello Filho R, Timenetsky KT et al (2019) Extracorporeal membrane oxygenation: a literature review. Rev Bras Ter Intensiva 31:410–424. https://doi.org/10.5935/0103-507X.20190063
- Vasques F, Romitti F, Gattinoni L, Camporata L (2019) How I wean patients from veno-venous extra-corporeal membrane oxygenation. Crit Care 23:316. https://doi.org/10.1186/s13054-019-2592-5
- Li X, Guo Z, Li B et al (2020) Extracorporeal membrane oxygenation for coronavirus disease 2019 in Shanghai, China. ASAIO J 66:475–481. https://doi.org/10.1097/MAT.000000000001172
- Gannon WD, Stokes JW, Bloom S, Sherrill W, Bacchetta M, Rice TW et al (2021) Safety and feasibility of a protocolized daily assessment of readiness for liberation from venovenous extracorporeal membrane oxygenation. Chest 160:1693–1703. https://doi.org/10.1016/j.chest.2021.05.066
- 17. Teijeiro-Paradis R, Tiwari P, Spriel A, Del Sorbo L, Fan E (2021) Standardized liberation trials in patients with COVID-19 ARDS treated with venovenous extracorporeal membrane oxygenation: when ready, let them breathe! Intensive Care Med 47:1494–1496. https://doi.org/10.1007/s00134-021-06523-x
- Belliato M, Cremascoli L, Epis F et al (2021) Carbon dioxide elimination during veno-venous extracorporeal membrane oxygenation weaning: a pilot study. ASAIO J 67:700–708. https://doi.org/10.1097/MAT.00000000001282
- Al-Fares AA, Ferguson ND, Ma J, Cypel M, Keshavjee S, Fan E et al (2021) Achieving safe liberation during weaning from V–V ECMO in patients with severe ARDS: the role of tidal volume and inspiratory effort. Chest 160:1704–1713. https://doi.org/10.1016/j.chest.2021.05.068
- Lazzari S, Romitti F, Busana M, Vassalli F, Bonifazi M, Macrí MM et al (2022) End-tidal to arterial PACO2 ratio as guide to weaning from veno-venous extra-corporeal membrane oxygenation. Am J Respir Crit Care Med. https://doi.org/10. 1164/rccm.202201-0135OC

- 21. Ficial B, Vasques F, Zhang J, Whebell S, Slattery M, Lamas T et al (2021) Physiological basis of extracorporeal membrane oxygenation and extracorporeal carbon dioxide removal in respiratory failure. Membranes (Basel) 11:225. https://doi.org/10.3390/membranes11030225
- Karagiannidis C, Strassmann S, Brodie D, Ritter P, Larsson A, Borchardt R, Windisch W (2017) Impact of membrane lung surface area and blood flow on extracorporeal CO2 removal during severe respiratory acidosis. Intensive Care Med Exp 5:34. https://doi.org/10.1186/s40635-017-0147-0
- Duscio E, Cipulli F, Vasques F, Collino F, Rapetti F, Romitti F, Behnemann T, Niewenhuys J, Tonetti T, Pasticci I, Vassalli F, Reupke V, Moerer O, Quintel M, Gattinoni L (2019) Extracorporeal CO2 removal: the minimally invasive approach, theory, and practice. Crit Care Med 47:33–40. https://doi.org/10.1097/CCM.00000000003430
- Marshall BE, Marshall C (1985) A model for hypoxic constriction of the pulmonary circulation. J Appl Physiol 1988(64):68–77. https://doi.org/10.1152/jappl.1988.64.1.68
- Bishop MJ, Cheney FW (1983) Effects of pulmonary blood flow and mixed venous O2 tension on gas exchange in dogs. Anesthesiology 58:130–135. https://doi.org/10.1097/00000542-198302000-00005
- Domino KB, Wetstein L, Glasser SA, Lindgren L, Marshall C, Harken A, Marshall BE (1983) Influence of mixed venous oxygen tension (PVO2) on blood flow to atelectatic lung. Anesthesiology 59:428–434. https://doi.org/10.1097/ 00000542-198311000-00012
- Tarry D, Powell M (2017) Hypoxic pulmonary vasoconstriction. BJA Educ 17:208–213. https://doi.org/10.1093/bjaed/ mkw076
- Sinha P, Calfee CS, Beitler JR, Soni N, Ho K, Matthay MA et al (2019) Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med 199:333–341. https://doi.org/ 10.1164/rccm.201804-0692OC
- Suarez-Sipmann F, Villar J, Fernando C, Sanchez-Giralt JA, Tusman G (2021) Monitoring expired CO2 kinetics to individualize lung-protective ventilation in patients with the acute respiratory distress syndrome. Front Physiol 12:785014. https://doi.org/10.3389/fphys.2021.785014
- Bonifazi M, Romitti F, Busana M, Palumbo MM, Steinberg I, Gattarello S et al (2021) End-tidal to arterial PCO2 ratio: a bedside meter of the overall gas exchanger performance. Intensive Care Med Exp 9:21. https://doi.org/10.1186/ s40635-021-00377-9
- Gillon SA, Barrett NA, Ioannou N, Camporota L, Victor K, Gowland A et al (2016) Intracardiac right-to-left shunt impeding liberation from veno-venous extracorporeal membrane oxygenation: two case studies. Crit Care Med 44:e583–e586. https://doi.org/10.1097/CCM.000000000001619
- Gattinoni L, Coppola S, Camporota L (2022) Physiology of extracorporeal CO2 removal. Intensive Care Med 48:1322–1325. https://doi.org/10.1007/s00134-022-06827-6
- 33. Cipriani E, Langer T, Bottino N, Brusatori S, Carlesso E, Colombo SM et al (2020) Key role of respiratory quotient to reduce the occurrence of hypoxemia during extracorporeal gas exchange: a theoretical analysis. Crit Care Med 12:e1327–e1331. https://doi.org/10.1097/CCM.00000000004619
- 34. Dickstein ML (2020) Extracorporeal CO2 removal and the alveolar gas equation. Am J Respir Crit Care Med 1(202):1057–1058. https://doi.org/10.1164/rccm.202005-1609LE
- 35. Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D (2020) Respiratory drive in critically ill patients. Pathophysiology and clinical implications. Am J Respir Crit Care Med 201:20–32. https://doi.org/10.1164/rccm.201903-0596SO
- 36. Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D (2020) Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 46:606–618. https://doi.org/10. 1007/s00134-020-05942-6
- 37. Asmussen E, Nielsen M (1957) Ventilatory response to CO2 during work at normal and at low oxygen tensions. Acta Physiol Scand 39:27–35. https://doi.org/10.1111/j.1748-1716.1957.tb01406.x
- Haouzi P (2022) Revisiting the effects of the reciprocal function between alveolar ventilation and CO2 partial pressure (PACO2) on PACO2 homeostasis at rest and in exercise. J Appl Physiol (1985). https://doi.org/10.1152/japplphysi ol.00058.2022
- Spinelli E, Mauri T, Lissoni A, Crotti S, Langer T, Albanese N et al (2020) Spontaneous breathing patterns during maximum extracorporeal CO2 removal in subjects with early severe ARDS. Respir Care 65:911–919. https://doi.org/ 10.4187/respcare.07391
- Yoshida T, Fujino Y, Amato MBP, Kavanagh BP (2017) Fifty Years of Research in ARDS. Spontaneous breathing during mechanical ventilation. Risks, mechanisms, and management. Am J Respir Crit Care Med 195:985–992. https://doi. org/10.1164/rccm.201604-0748CP
- 41. Briscoe WA, Dubois AB (1958) The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size. J Clin Invest 37:1279–1285. https://doi.org/10.1172/JCl103715
- Jansen D, Jonkman AH, de Vries HJ, Wennen M, Elshof J, Hoofs MA et al (2021) Positive end-expiratory pressure affects geometry and function of the human diaphragm. J Appl Physiol (1985) 131(4):1328–1339. https://doi.org/10. 1152/japplphysiol.00184.2021
- Forster HV, Haouzi P, Dempsey JA (2012) Control of breathing during exercise. Compr Physiol 2:743–777. https://doi. org/10.1002/cphy.c100045
- 44. Giosa L, Busana M, Bonifazi M, Romitti F, Vassalli F, Pasticci I et al (2021) Mobilizing carbon dioxide stores. An experimental study. Am J Respir Crit Care Med 203:318–327. https://doi.org/10.1164/rccm.202005-1687OC
- Dres M, Demoule A (2020) Monitoring diaphragm function in the ICU. Curr Opin Crit Care 26(1):18–25. https://doi. org/10.1097/MCC.00000000000682
- 46. Sato R, Hasegawa D, Hamahata NT, Narala S, Nishida K et al (2021) The predictive value of airway occlusion pressure at 100 msec (P0.1) on successful weaning from mechanical ventilation: a systematic review and meta-analysis. J Crit Care 63:124–132. https://doi.org/10.1016/j.jcrc.2020.09.030
- Kassis EB, Talmor D (2021) Clinical application of esophageal manometry: how I do it. Crit Care 25:6. https://doi.org/ 10.1186/s13054-020-03453-w

- Bertoni M, Telias I, Urner M, Long M, Del Sorbo L, Fan E et al (2019) A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care 23:346. https://doi.org/10.1186/s13054-019-2617-0
- 49. Abrams D, Schmidt M, Pham T, Beitler JR, Fan E, Goligher EC et al (2020) Mechanical ventilation for acute respiratory distress syndrome during extracorporeal life support: research and practice. Am J Respir Crit Care Med 201:514–525
- Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O et al (2016) Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 42:1567–1575. https://doi.org/10.1007/s00134-016-4505-2
- Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372:747–755. https://doi.org/10.1056/NEJMsa1410639
- Serpa Neto A, Deliberato RO, Johnson AEW, Bos LD, Amorim P, Pereira SM et al (2018) Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med 44:1914–1922
- Romitti F, Busana M, Palumbo MM, Bonifazi M, Giosa L, Vassalli F et al (2022) Mechanical power thresholds during mechanical ventilation: an experimental study. Physiol Rep 10:e15225. https://doi.org/10.14814/phy2.15225
- 54. Neto AS, Schmidt M, Azevedo LCP, Bein T, Brochard L, Beutel G et al (2016) Associations between ventilator settings during extracorporeal membrane oxygenation for refractory hypoxemia and outcome in patients with acute respiratory distress syndrome: a pooled individual patient data analysis: mechanical ventilation during ECMO. Intensive Care Med 42:1672–1684. https://doi.org/10.1007/s00134-016-4507-0
- 55. Chiu LC, Lin SW, Chuang LP, Li HH, Liu PH, Tsai FC et al (2021) Mechanical power during extracorporeal membrane oxygenation and hospital mortality in patients with acute respiratory distress syndrome. Crit Care 25:13. https://doi. org/10.1186/s13054-020-03428-x
- Del Sorbo L, Goffi A, Tomlinson G, Pettenuzzo T, Facchin F, Vendramin A et al (2020) Effect of driving pressure change during extracorporeal membrane oxygenation in adults with acute respiratory distress syndrome: a randomized crossover physiologic study. Crit Care Med 48:1771–1778. https://doi.org/10.1097/CCM.00000000004637
- 57. Goligher EC, Jonkman AH, Dianti J, Vaporidi K, Beitler JR, Bhakti K et al (2020) Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med 46:2314–2326. https://doi.org/10.1007/s00134-020-06288-9
- Vassalli F, Pasticci I, Romitti F, Duscio E, Aßmann J, Grünhagen H et al (2020) Does iso-mechanical power lead to isolung damage? An experimental study in a porcine model. Anesthesiology 132:1126–1137. https://doi.org/10.1097/ ALN.00000000003189
- Bellani G, Grasselli G, Teggia-Droghi M, Mauri T, Coppadoro A, Brochard L et al (2016) Do spontaneous and mechanical breathing have similar effects on average transpulmonary and alveolar pressure? A clinical crossover study. Crit Care 20:142. https://doi.org/10.1186/s13054-016-1290-9
- Shi ZH, Jonkman A, de Vries H, Jansen D, Ottenheijm C, Girbes A et al (2019) Expiratory muscle dysfunction in critically ill patients: towards improved understanding. Intensive Care Med 45:1061–1071. https://doi.org/10.1007/ s00134-019-05664-4
- 61. Chandra A, Coggeshall JW, Ravenscraft SA, Marini JJ (1994) Hyperpnea limits the volume recruited by positive endexpiratory pressure. Am J Respir Crit Care Med 150:911–917. https://doi.org/10.1164/ajrccm.150.4.7921462
- Yoshida T, Amato MBP, Grieco DL, Chen L, Lima CAS, Roldan R et al (2018) Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med 197:1018–1026. https://doi.org/10.1164/rccm. 201709-1806OC
- 63. Sang L, Zhao Z, Yun PJ, Frerichs I, Möller K, Fu F et al (2020) Qualitative and quantitative assessment of pendelluft: a simple method based on electrical impedance tomography. Ann Transl Med. 8:1216. https://doi.org/10.21037/ atm-20-4182
- Morais CCA, Koyama Y, Yoshida T, Plens GM, Gomes S, Lima et al (2018) High positive end-expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med 197:1285–1296. https://doi.org/10.1164/rccm. 201706-1244OC
- 65. Mauri T, Langer T, Zanella A, Grasselli G, Pesenti A (2016) Extremely high transpulmonary pressure in a spontaneously breathing patient with early severe ARDS on ECMO. Intensive Care Med 42:2101–2103. https://doi.org/10. 1007/s00134-016-4470-9

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.