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Abstract 

Purpose: To investigate the effect of IV fluid resuscitation on endothelial glycocalyx 
(EG) shedding and activation of the vascular endothelium and inflammation.

Materials and methods: A planned biomarker sub‑study of the REFRESH trial in 
which emergency department (ED) patients) with suspected sepsis and hypotension 
were randomised to a restricted fluid/early vasopressor regimen or IV fluid resuscita‑
tion with later vasopressors if required (usual care). Blood samples were collected at 
randomisation (T0) and at 3 h (T3), 6 h (T6)‑ and 24 h (T24) for measurement of a range 
of biomarkers if EG shedding, endothelial cell activation and inflammation.

Results: Blood samples were obtained in 95 of 99 enrolled patients (46 usual care, 49 
restricted fluid). Differences in the change in biomarker over time between the groups 
were observed for Hyaluronan (2.2‑fold from T3 to T24, p = 0.03), SYN‑4 (1.5‑fold from 
T3 to T24, P = 0.01) and IL‑6 (2.5‑fold from T0 to T3, p = 0.03). No difference over time 
was observed between groups for the other biomarkers.

Conclusions: A consistent signal across a range of biomarkers of EG shedding or of 
endothelial activation or inflammation was not demonstrated. This could be explained 
by pre‑existing EG shedding or overlap between the fluid volumes administered in the 
two groups in this clinical trial.

Trial registration Australia New Zealand Clinical Trials Registry ACTRN126160000006448 
Registered 12 January 2016.

Keywords: Sepsis, Fluid therapy, Endothelium, Endothelial glycocalyx, Inflammation

*Correspondence:   
stephen.macdonald@health.wa.gov.au

1 Centre for Clinical Research 
in Emergency Medicine, Harry 
Perkins Institute of Medical 
Research, Perth, WA, Australia
Full list of author information is 
available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40635-023-00508-4&domain=pdf
http://orcid.org/0000-0001-9921-4620


Page 2 of 13Macdonald et al. Intensive Care Medicine Experimental           (2023) 11:21 

Introduction
Sepsis is defined as life-threatening organ dysfunction due to a dysregulated response 
to infection, with septic shock being a subset of sepsis in which underlying circu-
latory and cellular/metabolic abnormalities are profound enough to substantially 
increase mortality [1]. The Surviving Sepsis Campaign suggest initial resuscitation 
with at least 30  ml/kg of isotonic crystalloid fluid to optimise cardiac output and 
restore perfusion in septic shock, although this is based upon consensus rather than 
high-level evidence [2]. In the past decade evidence has emerged which questions the 
effectiveness and safety of this approach [3–6]. Some have promoted more sparing 
use of fluids and earlier introduction of vasopressor medications to restore perfusion 
[7]. The resulting uncertainty has led to substantial practice variation [8].

In a landmark clinical trial of fluid bolus therapy in children with hypoperfusion 
in resource-poor settings in Africa, the excess mortality in those children treated 
with fluids was found to be due to cardiovascular collapse [9]. This finding is con-
sistent with a preclinical trial in an experimental ovine sepsis model, where initial 
fluid resuscitation resulted in an increased subsequent requirement for vasopres-
sors [10]. One suggested mechanism for harm with IV fluids is an impact on the 
endothelial surface layer due to shedding of the endothelial glycocalyx (EG) and con-
sequently propagation of systemic inflammation [11, 12]. Although studying the EG 
in vivo is challenging, measurement of the soluble components of the EG such as the 
proteoglycan Syndecan molecules and glycosaminoglycans such as Hyaluronan and 
Heparan Sulphate in blood may be used as a surrogate indicator for the extent of 
EG shedding [13]. Clinical studies in sepsis have demonstrated variable associations 
between IV fluid volume and the level of biomarkers of EG shedding [14–17]. Fur-
thermore, studies in healthy subjects and perioperative settings may not be relevant 
to critical illnesses, such as sepsis, where EG shedding is already occurring [18].

The Restricted Fluid Resuscitation in Sepsis-associated Hypotension (REFRESH) 
trial was a multicentre randomised trial designed to determine the feasibility of 
comparing a fluid-restricted/early vasopressor regimen compared to usual care to 
achieve perfusion targets during the early resuscitation of patients with suspected 
septic shock in the emergency department [19]. The aim of this planned sub-study 
was to test the hypothesis that IV fluid is a mediator of EG shedding, endothelial cell 
activation and inflammation during the resuscitation phase of septic shock [20].

Methods
Participants and setting

The methods for the REFRESH trial have previously been described [19, 20]. Briefly, 
patients presenting to the emergency department (ED) of eight Australian hos-
pitals with clinically suspected infection who had a systolic blood pressure (SBP) 
of < 100 mmHg despite a minimum of 1000 ml crystalloid fluids were randomised to 
either (1) the early commencement of a vasopressor infusion with limited IV fluid 
boluses administered for defined indications (restricted fluids) or (2) additional IV 
fluid boluses with later introduction of vasopressors, if required, to achieve the clini-
cally desired blood pressure target (usual care). The haemodynamic resuscitation 
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protocol was followed for the first 6 h and up to 24 h for those admitted to the inten-
sive care unit (ICU). A summary of the trial interventions and procedures is shown 
in Fig. 1.

Research samples

Research blood sampling was performed at randomisation and at 3, 6 and at 24 h later 
(T0, T3, T6 and T24). Following collection, samples were processed within 2  h with 
serum collected by centrifugation at 3000 RPM for 10 min, followed by storage in 0.5 ml 
aliquots at − 80 °C. Samples were subsequently transported for batch analysis at the lab-
oratory of the Centre for Clinical Research in Emergency Medicine in Perth, Australia. 
We selected the following biomarkers based upon prior work by our group and others. 
EG shedding: Syndecan 1 (SYN-1), Syndecan 4 (SYN-4), Hyaluronan, Heparan Sulphate. 
Endothelial Cell activation: Intercellular Adhesion Molecule (ICAM), Vascular Cell 
Adhesion Molecule (VCAM), E-Selectin, Vascular Endothelial Growth Factor Recep-
tor-1 (VEGFR-1). Cardiac stretch: Pro-Atrial Natriuretic Peptide (Pro-ANP); Renal 
Injury: Neutrophil Gelatinase-Associated Lipocalin (NGAL); Systemic inflammation: 
Interleukin (IL)-6, IL-10, Resistin. Plasma biomarker concentrations were determined by 
enzyme-linked immunosorbent assay (ELISA) and Cytometric Bead Array (CBA) tech-
niques. Heparan Sulfate was measured in plasma using a fully validated, commercial kit, 
with a lower limit of detection of 0.19 ng/ml (Elabscience, TX, USA). ICAM, VCAM, 
E-Selectin, IL-10 and IL-6 were measured in a multiplex CBA format using Flex sets (BD 
Biosciences, CA, USA). All remaining biomarkers were measured using DuoSet ELISA 
kits (R&D Systems, MN, USA), and individually optimised prior to use to achieve aver-
age intra-plate coefficients of variation below 10%.

Statistical analyses

Biomarkers were analysed by group allocation according to intention to treat. Normal-
ity of distribution was assessed by inspection of box and whisker plots of values within 
assay limits by group at each timepoint. All variables demonstrated departures from 
normality and were subsequently log-transformed for analysis. An interaction of group 

Fig. 1 Flowchart summarising trial interventions
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and time was used in linear mixed models to assess whether the change over time in 
each marker differed between the groups. For biomarkers, where some values lay out-
side the limit of detection for the assay, random effects Tobit regression was used. These 
analysis techniques retain patients without biomarker data at all timepoints in the analy-
sis by utilising maximum likelihood estimation (MLE). MLE uses all available informa-
tion to calculate the most likely parameter estimates at the sample level as opposed to 
imputing values at the individual level. Results are reported as fold changes after expo-
nentiating coefficients derived on the log scale. A per-protocol analysis was also under-
taken excluding those cases in which there was a deviation from protocol regarding the 
recommended fluid volumes in each arm. As an exploratory study, no adjustment was 
made for multiple testing and interactions with p values < 0.1 were considered to provide 
sufficient evidence to warrant further consideration. In this instance, Bootstrapping was 
employed to investigate sensitivity to sampling variation.

Results
The REFRESH trial enrolled a total of 99 participants randomised to one of the two 
treatment arms [19]. Mortality at 90 days was 4/48 (8%) and 3/47 (6%) in the restricted 
and usual care groups, respectively (two from each group were lost to follow up). Four 
participants had no research blood sampling, three of which were in the usual care 
group and one in the restricted fluids group leaving a total of 95 (46 usual care and 49 
restricted fluid) in this analysis. Of the 95 cases in the sub-study, 68 (72%) had complete 
sampling at all four timepoints, 14 (15%) were sampled at 3 timepoints, 12 (13%) at two 
timepoints and one (1%) at one timepoint. The baseline characteristics of participants 
are shown in Table 1. Table 2 shows the volume of IV fluids and use of vasopressors over 
the first 24 h of care. The haematocrit measured at T24 was 0.34 ± 0.06 in the usual care 
group and 0.34 ± 0.05 in the restricted group, p = 0.7. Table 3 shows the results of the 
biomarker analyses.

Endothelial glycocalyx markers

A significant difference in Hyaluronan levels over time was detected (interaction term 
p = 0.04), driven by opposing slope directions between the two groups for T3 to T24 
and T6 to T24. This resulted in a 2.2-fold change in slope for T3 to T24 (p = 0.03) and a 
2.6-fold change for T6 to T24 (p = 0.01) for the restricted fluid group compared to usual 
care.

There were no differences in absolute values at the T0 and T24 timepoints (Fig. 2a). 
For SYN-4 there was a significant difference over time between the groups (Interaction 
term p value 0.04) driven by a greater negative slope in the restricted fluid group com-
pared to usual care, equating to a 1.6-fold change in slope between T3 and T24, p = 0.007 
(Fig. 2b). For SYN-1 and Heparan Sulphate, no difference over time between the groups 
was found (interaction term p values 0.92 and 0.72, respectively).

Natriuretic peptide

There was no difference between the groups in the change over time for the natriuretic 
peptide Pro-ANP (interaction term p value 0.31).
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Endothelial cell activation markers

No differences between the groups were identified in the pattern over time of any bio-
marker associated with activation of endothelial cells. These were ICAM (p = 0.31), 
VCAM (p = 0.26), E-Selectin (p = 0.73), and VEGFR-1 (0.96).

Inflammatory and other biomarkers

For the cytokine IL-6, the pattern over time differed between the groups (interaction 
term p = 0.07) driven by a greater negative slope in the restricted fluids group (2.5-fold 
change in slope compared to usual care) between T0 and T3 (p = 0.03) (Fig. 2c). There 
were no significant differences between the groups in IL-10 (p = 0.22), Resistin (p = 0.43) 
and the renal injury biomarker NGAL (p = 0.15) over time.

A sensitivity analysis ‘per-protocol’ excluded six cases in the usual care group who did 
not receive the minimum recommended fluid volume of at least 1 L post randomisation 
and one case in the restricted fluid group who received more than the permitted fluid 
volume of 1.25 L in the first 6 h post randomisation. This did not alter the results of the 

Table 1 Baseline characteristics of study participants at randomisation

Data are medians (Q1, Q3) unless stated otherwise. SBP systolic blood pressure, SpO2 peripheral oxygen saturations, 
FiO2 fractional inspired oxygen concentration, GCS Glasgow Coma Scale, APACHE Acute Physiology and Chronic Health 
Evaluation, SOFA Sequential Organ Failure Assessment, Non-CVS SOFA total SOFA score minus cardiovascular domain

Usual care
N = 46

Restricted volume
N = 49

Age (years) 66 (45, 76) 65 (52, 78)

Male sex n (%) 29 (63) 30 (61)

Weight (kg) 72 (64, 92) 80 (66, 88)

Mean temperature (°C) 37.5 ± 1.2 37.3 ± 1.3

Mean heart rate (beats/min) 96 ± 20 96 ± 21

Mean respiratory rate (breaths/min) 23 ± 6 22 ± 5

SpO2 (%) 96 (95, 98) 96 (94, 98)

FiO2 0.21 (0.21, 0.32) 0.21 (0.21, 0.3)

GCS 15 (15,15) 15 (15, 15)

Mean SBP (mmHg) 87 ± 9 86 ± 9

Mean MAP (mmHg) 64 ± 8 65 ± 7

Lactate (mmol/L) 1.95 (1.25, 2.85) 1.7 (1.1, 3.5)

Charlson score 2 (0, 5) 2 (1, 4)

APACHE II score 14 (10, 19) 15 (11, 20)

SOFA score 5 (4, 7) 5 (3, 9)

Non‑CVS SOFA score 3 (2, 5) 3 (1, 6)

Creatinine (μmol/L) 130 (80, 173) 112 (76, 160)

Haematocrit T0 0.38 ± 0.07 0.38 ± 0.06

Infection source N (%)

Respiratory 18 (39) 13 (27)

Urinary 8 (17) 16 (33)

Skin/soft tissue 6 (13) 6 (12)

Bloodstream 7 (15) 3 (6)

Abdominal/pelvis 2 (5) 5 (10)

Other/unidentified 5 (11) 6 (12)

Pre randomisation fluid volume (ml) 1250 (1000, 2000) 1400 (1000, 1500)

Time from ED arrival (minutes) 143 (89, 250) 140 (103, 214)
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primary analysis (data not shown). Bootstrapping of the analyses, where the interaction 
term p value was < 0.1 also did not alter the results. Further details of the results includ-
ing boxplots for each biomarker by group at each timepoint is given in the supplemen-
tary appendix. Similarly, analysis of the EG biomarkers adjusted for pre-randomisaiton 
fluid volume did not yield different results.

Discussion
In this planned sub-study of the REFRESH trial, differences over time in the pattern 
of Hyaluronan, SYN-4 and IL-6 were observed during the first 24  h of care driven by 
greater or contrasting downward patterns in the restricted volume group involving the 
T3 and T6 timepoints. No differences were noted for other biomarkers of EG shed-
ding, SYN1, Heparan Sulphate, nor for Pro-ANP, IL-10 and any biomarkers related to 
endothelial cell activation.

The question of the optimal approach to haemodynamic resuscitation has been iden-
tified as one of the top priorities for research in septic shock [21]. The conventional 
approach, supported by consensus guidelines, involves initial resuscitation with at least 
30 ml/kg of crystalloid fluid, although this is not based upon high level clinical trial evi-
dence [22]. Potential harm associated with IV fluids may be due to tissue oedema in the 
setting of increased capillary leakiness in sepsis [23]. Specifically, there has been a focus 
on how IV fluids may interact with the EG layer in the setting of critical illness [24]. 

Table 2 Fluid and vasopressor use

Data are medians (Q1, Q3) unless stated otherwise. P values calculated using Wilcoxon rank-sum test for continuous 
variables and Fishers exact test for categorical variables. Peak vasopressor dose mcg/kg/min of noradrenaline (or equivalent)

Usual care
N = 46

Restricted volume
N = 49

P value

Fluid volume

T0–T6 (ml) total 1685 (1017, 2500) 1000 (625, 1458)  < 0.001

T0–T6/kg (ml) 23 (15, 33) 12 (7, 20)  < 0.001

Total prerandomisation‑T6 3000 (2550, 3900) 2400 (1860, 2750)  < 0.001

Total to T6/kg (ml) 43 (35, 49) 31 (23, 39)  < 0.001

T6–T24 (ml) 1060 (428, 2166) 1145 (500, 2000) 0.84

Total prerandomisation‑T24 (ml) 4360 (3350, 5252) 3550 (2750, 4410) 0.008

Total to T24/kg (ml) 61 (46, 79) 40 (31, 64) 0.005

Vasopressor use N (%) 26 (53) 39 (78)
Vasopressor in ED N (%) 23 (50) 36 (73) 0.018

Vasopressor at 24 h N 19 (41) 24 (49) 0.45

Time to start vasopressor (mins):

 From ED arrival 250 (168, 483) 223 (127, 316) 0.12

 From randomisation 150 (63, 224) 34 (15, 88) 0.001

Type of vasopressor:

 Noradrenaline N (%) 23 (50) 30 (60) 0.33

 Metaraminol only N (%) 3 (6) 9 (18)

Volume prior to vasopressor (ml) 2000 (2000, 2777) 1400 (1000, 1700)  < 0.001

Duration of vasopressor (h) 33 (15, 50) 21 (9, 42) 0.13

Peak vasopressor dose 0.18 (0.1, 0.43) 0.11 (0.08, 0.22) 0.14

Mean MAP T0–T6 (mmHg) 71 ± 6 73 ± 6 0.21
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Table 3 Biomarker values

Standard Restricted

N Mean (SD) Median (Q1, Q3) N Mean (SD) Median (Q1, Q3)

ProANP (ng/ml)

T0 44 35 (27) 26 (17, 46) 46 41 (29) 33 (20, 58)

T3 44 31 (23) 24 (14, 44) 43 34 (30) 23 (14, 46)

T6 39 25 (19) 32 (18, 55) 42 27 (21) 23 (11, 34)

T24 39 35 (21) 23 (14, 42) 45 32 (18) 30 (16, 47)

Syndecan-1 (ng/ml)

T0 44 19.0 (26.7) 7.0 (5.0, 20.2) 46 19.5 (36.4) 5.5 (3.2, 16.8)

T3 44 19.3 (32.3) 6.9 (3.9, 18.4) 44 20.6 (37.8) 5.9 (2.8, 15.1)

T6 38 17.0 (23.2) 5.9 (3.9, 18) 41 18.7 (41.3) 5.1 (2.8, 10.8)

T24 39 17.9 (28.0) 7.6 (5.1, 12.9) 44 25.0 (46.8) 6.9 (4.7, 15.5)

Syndecan-4 (pg/ml)

T0 44 2853 (5595) 804 (510, 2136) 46 3189 (7021) 868 (483, 2156)

T3 44 3439 (6410) 1195 (502, 2388) 44 3773 (11,950) 826 (449, 1918)

T6 39 2407 (4030) 756 (411, 1628) 42 2494 (5723) 602 (361, 2134)

T24 39 2144 (4462) 542 (283, 1281) 45 3301 (8633) 776 (324, 1714)

Hyaluronan (ng/ml)

T0 44 920 (1688) 216 (73, 1123) 45 1046 (2700) 261 (74, 702)

T3 44 930 (2700) 144 (80, 543) 44 508 (1614) 152 (40, 377)

T6 39 671 (2096) 136 (58, 372) 42 561 (2249) 121 (33, 269)

T24 39 1397 (6422) 124 (36, 230) 45 978 (3217) 172 (43, 515)

Hep Sulphate (ng/ml)

T0 44 2650 (1687) 2264 (1481, 3361) 46 3123 (2265) 2248 (1601, 3853)

T3 44 2737 (1651) 2142 (1368, 4093) 44 2819 (1790) 2141 (1522, 4048)

T6 39 3028 (2711) 2064 (1381, 4048) 42 2995 (2335) 2118 (1138, 4536)

T24 39 2683 (1608) 2244 (1384, 3691) 45 3020 (1891) 2264 (1505, 4183)

ICAM-1 (pg/ml)

T0 44 1070 (953) 681 (456, 1272) 46 1179 (949) 856 (615, 1476)

T3 44 912 (748) 608 (451, 1070) 44 1004 (948) 633 (440, 1063)

T6 39 1332 (1855) 811 (480, 1362) 42 1401 (1381) 1150 (637, 1617)

T24 39 1075 (1088) 598 (361, 1363) 45 1191 (1251) 690 (326, 986)

VCAM-1 (pg/ml)

T0 44 3348 (2509) 3075 (1210, 4844) 46 3751 (2713) 3066 (1858, 4780)

T3 44 2781 (2905) 1745 (923, 3827) 44 2751 (2153) 2007 (1071, 4196)

T6 39 3913 (3936) 2235 (1680, 4765) 42 4581 (3361) 3549 (2345, 5830)

T24 39 2664 (3158) 1354 (920, 3618) 45 2785 (4209) 1176 (570, 2718)

E Selectin (ng/ml)

T0 44 49 (47) 30 (12, 87) 47 62 (71) 32 (13, 104)

T3 43 44 (38) 31 (16, 59) 41 55 (60) 31 (12, 89)

T6 39 47 (40) 34 (12, 74) 42 55 (55) 27 (10, 111)

T24 39 36 (27) 30 (14, 65) 45 45 (48) 23 (11, 66)

Resistin (ng/ml)

T0 44 140 (135) 103 (55, 146) 46 122 (205) 73 (31, 122)

T3 44 197 (327) 118 (60, 164) 44 177 (324) 104 (41, 171)

T6 39 137 (142) 101 (55, 151) 41 154 (253) 107 (38, 188)

T24 39 128 (157) 74 (35, 162) 45 133 (165) 90 (37, 139)

NGAL (pg/ml)

T0 44 501 (630) 286 (137, 517) 46 539 (641) 354 (158, 661)

T3 44 395 (462) 262 (155, 468) 43 397(405) 242 (137, 517)
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Understanding the pathobiological mechanisms underpinning the effect of IV fluids is 
relevant to inform future trials focused on patient centred outcomes.

Previous studies have found evidence supporting an effect of IV fluids on the EG in 
sepsis. Pouska et al. demonstrated a persistent change in the perfusion boundary ratio 
on sublingual intravital microscopy, a surrogate measure of EG thickness, among 16 
patients with sepsis undergoing fluid bolus administration [25]. Smart et  al. found an 
association between fluid volume and hyaluronan during the first 3 h of resuscitation, 
although no relationship was seen for SYN-1 or SYN-4 [16]. Hippensteel et al. reported 
an association between Heparan Sulphate and the volume of IV fluids at 6 h [14]. Finally, 
in a preclinical ovine endotoxic shock model animals randomised to fluid resusci-
tation had a more rapid rate of rise in Hyaluronan compared to animals that did not, 
although the overall peak did not differ. It is noted, however, that Hyaluronan elevation 
in response to fluid resuscitation may be a reflection of return of hyaluronan to the cir-
culation from interstitial fluid rather than shed from the EG [13].

In a multicentre study of 619 patients with sepsis, there was no association between 
fluid volume and SYN-1 on the first day of admission, although SYN-1 was associated 
with illness severity and mortality [26]. In a prospective study, Puskarich et al. found that 
elevated SYN-1 was associated with mortality but there was no relationship with the vol-
ume of fluid administered [27]. However, Saoraya et al. reported that SYN-1 measured at 
the time of admission was associated with subsequent fluid requirements as well as mor-
tality, raising the question of whether the association was due to sicker patients requir-
ing a greater volume of fluid [28]. In a randomised trial of a liberal versus restricted fluid 
resuscitation, the same authors measured SYN-1 levels at 6 h finding a geometric mean 
ratio of 0.82 (95% CI 0.66–1.020, p = 0.07), in favour of the restricted fluid regimen [15]. 
In our study, no relationship between fluid volume and SYN-1 was identified. Our find-
ing of a difference in the pattern of SYN-4 between the groups is of interest, although 
SYN-4 has been relatively less studied as a biomarker of EG shedding [29]. The lack of an 
associated difference in SYN-1 or HS, however, increases the likelihood that this may be 
due to chance.

Table 3 (continued)

Standard Restricted

N Mean (SD) Median (Q1, Q3) N Mean (SD) Median (Q1, Q3)

T6 38 359 (279) 283 (145, 493) 42 615 (816) 341 (148, 594)

T24 38 369 (366) 230 (161, 486) 45 431 (447) 281 (151, 540)

IL-6 (ng/ml)

T0 44 58.7 (164.1) 1.6 (0.3, 21.9) 46 50.1 (146.7) 9.3 (2.9, 13.1)

T3 43 15.8 (38.0) 1.0 (0.3, 8.1) 42 13.6 (45.5) 2.9 (0.1, 18.1)

T6 39 4.9 (10.5) 0.8 (0.1, 4.5) 42 12.2 (41.4) 3.3 (0.1, 16.6)

T24 39 0.7 (1.5) 0.1 (0.05, 4.5) 45 5.5 (11.2) 0.1 (0.02, 0.4)

IL-10 (ng/ml)

T0 42 254 (1386) 3.5 (0.13, 54) 45 265 (796) 0.13 (0.13, 62)

T3 43 159 (591) 11.3 (0.13, 67) 41 131 (492) 0.13 (0.13, 38)

T6 37 42 (64) 15.3 (0.13, 39) 39 97 (232) 7.87 (0.13, 84)

T24 38 2.9 (8.5) 0.13 (0.13, 0.13) 44 128 (495) 0.13 (0.13, 38)
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Overall, we found limited evidence for an effect of fluids on EG shedding. In sup-
port of the hypothesis are temporal changes in some biomarkers coinciding with the 
maximal difference in fluid volume during the first 6  h of treatment. Against is the 
lack of consistency across all EG and inflammatory markers, and the lack of any effect 

Fig. 2 Log (Ln) linear predicted means (with 95% confidence intervals) against time (h) for Hyaluronan, 
Syndecan‑4 and Interleukin‑6 for usual (standard) care and restricted fluid resuscitation. P values for 
interaction term for group*fluid; See Additional files 1 and 2 for details of analysis
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on changes in the endothelial activation biomarkers. Though there was a 20  ml/kg 
separation in fluid volume between the two study arms at 24  h, this difference may 
have been insufficient to yield a consistent effect on EG shedding. This is supported 
by there being no difference in Pro-ANP levels between the groups. In a preclinical 
endotoxic shock model, ANP was significantly higher in the fluid group [10]; how-
ever, Hippensteel et al. did not detect any association between ANP and fluid volume 
among patients with sepsis [14]. This is relevant, because one postulated mechanism 
of EG shedding due to fluid administration is the activation of matrix metalloprotein-
ases (MMPs) by natriuretic peptides [30, 31]. In addition, we observed no difference 
between groups for markers of endothelial cell activation. The endothelium is consid-
ered to be a player in the pathogenesis of sepsis [12]. One suggested cause of harm 
with exogenous fluids in sepsis is oedema from increased vascular permeability due 
to endothelial activation in the setting of EG shedding [23], although recent experi-
mental evidence has challenged this concept [32, 33].

Of some interest is the pattern of IL-6 with a steeper decline in the restricted fluids 
group which coincided with the period of maximal difference in fluid volume. As an 
acute phase pro-inflammatory cytokine IL-6 displayed a typical pattern of decline over 
the first 24 h [34]. The temporal pattern was similar to that of Hyaluronan which is itself 
a pro-inflammatory mediator [35].

Limitations

In critical illness, where EG shedding and inflammation are already established, identify-
ing a consistent response to an intervention is challenged by the confounding effects of 
illness severity, the clinical heterogeneity of sepsis and the timing of presentation to hos-
pital. In this pilot clinical trial set in the ED the overall severity of illness was lower com-
pared to other sepsis studies. As a pragmatic clinical trial there were several protocol 
deviations which potentially impacted on separation; however, a ‘per-protocol’ analysis 
did not yield different results from the intention to treat analysis. Importantly, partici-
pants received at least 1 L of fluid prior to randomisation (Table 1) which means fluid 
mediated EG shedding may have occurred prior to T0 and early signals may have been 
missed, and subsequent sample collection was related to time rather than fluid volume 
administered. We undertook a sensitivity analysis adjusting for baseline fluid volume 
did not alter the results for the EG biomarkers. The limitations of serum biomarkers as 
measures of EG shedding has previously been described [18]. In vitro assessment of EG 
thickness is an alternative approach which should be considered in future studies.

One issue is the question of whether haemodilution may mask as significant differ-
ence in biomarkers measured between groups receiving different volumes of fluid. Some 
authors have adjusted biomarker results for albumin [11] or haemoglobin [36], although 
this is not standard. Uncertainty about the pharmacokinetics of these molecules means 
the validity of such adjustments is uncertain [18]. Of note, while haematocrit reduced 
by a similar amount in the first 24 h in both groups, there was no difference between the 
groups at T24, although this was not measured at the intervening timepoints. Finally, 
since this was an exploratory secondary analysis of a trial which was powered for a clini-
cal feasibility outcome and as such the possibility of Type II error cannot be excluded.
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Conclusions
The question of whether exogenous intravenous fluid has a detrimental effect on EG 
shedding and inflammation in the setting of sepsis remains unclear. This study did 
not demonstrate a consistent signal across a range of biomarkers of EG shedding or of 
endothelial activation or inflammation. Patient heterogeneity, low illness severity and 
insufficient separation between the groups in the overall fluid volume mean that an 
effect cannot be excluded. While the results of clinical trials are awaited, a judicious 
approach to fluid management in sepsis is still recommended [24].
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