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Abstract 

Background  Cerebrovascular reactivity has been identified as a key contributor to secondary injury following trau-
matic brain injury (TBI). Prevalent intracranial pressure (ICP) based indices of cerebrovascular reactivity are limited 
by their invasive nature and poor spatial resolution. Fortunately, interest has been building around near infrared spec-
troscopy (NIRS) based measures of cerebrovascular reactivity that utilize regional cerebral oxygen saturation (rSO2) 
as a surrogate for pulsatile cerebral blood volume (CBV). In this study, the relationship between ICP- and rSO2-based 
indices of cerebrovascular reactivity, in a cohort of critically ill TBI patients, is explored using classical machine learning 
clustering techniques and multivariate time-series analysis.

Methods  High-resolution physiologic data were collected in a cohort of adult moderate to severe TBI patients 
at a single quaternary care site. From this data both ICP- and rSO2-based indices of cerebrovascular reactivity 
were derived. Utilizing agglomerative hierarchical clustering and principal component analysis, the relationship 
between these indices in higher dimensional physiologic space was examined. Additionally, using vector autoregres-
sive modeling, the response of change in ICP and rSO2 (ΔICP and ΔrSO2, respectively) to an impulse in change in arte-
rial blood pressure (ΔABP) was also examined for similarities.

Results  A total of 83 patients with 428,775 min of unique and complete physiologic data were obtained. Through 
agglomerative hierarchical clustering and principal component analysis, there was higher order clustering 
between rSO2- and ICP-based indices, separate from other physiologic parameters. Additionally, modeled responses 
of ΔICP and ΔrSO2 to impulses in ΔABP were similar, indicating that ΔrSO2 may be a valid surrogate for pulsatile CBV.

Conclusions  rSO2- and ICP-based indices of cerebrovascular reactivity relate to one another in higher dimensional 
physiologic space. ΔICP and ΔrSO2 behave similar in modeled responses to impulses in ΔABP. This work strength-
ens the body of evidence supporting the similarities between ICP-based and rSO2-based indices of cerebrovascular 
reactivity and opens the door to cerebrovascular reactivity monitoring in settings where invasive ICP monitoring 
is not feasible.
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Background
Dysfunctional cerebrovascular reactivity has been iden-
tified as a significant contributor to secondary injury 
following traumatic brain injury (TBI), with current 
guideline-based management paradigms doing little to 
mitigate this [1–4]. To date, the most prevalent means 
of continuously monitoring cerebrovascular reactivity at 
the bedside of critically ill TBI patients is the Pressure 
Reactivity Index (PRx), which is a continuously updat-
ing Pearson correlation coefficient between arterial blood 
pressure (ABP) and intracranial pressure (ICP) [5, 6].

In PRx, ABP acts as a surrogate for driving pressure 
while ICP is a surrogate for pulsatile cerebral blood vol-
ume (CBV). This reliance on invasively derived ICP 
measurements has limited the application of PRx to the 
acute phase of injury, where ICP monitoring is otherwise 
already indicated. The invasive nature of ICP monitor-
ing further limits the spatial resolution of PRx to a global 
measure of cerebrovascular reactivity. This is also true 
of other ICP-based indices of cerebrovascular reactiv-
ity, such as the Pulse Amplitude Index (PAx; the Pear-
son correlation between pulse amplitude of ICP (AMP) 
and ABP) and RAC (the Pearson correlation coefficient 
between AMP and cerebral perfusion pressure (CPP), 
which is the difference between ABP and ICP) [6, 7]. 
Beyond this, if the subject is not on the steep portion of 
the pressure/volume curve, it is unclear how ICP may 
relate to CBV. For this reason, it should also be noted that 
there is no clear consensus on which metric of cerebro-
vascular reactivity is optimal; however, ICP-based indices 
remain the most prevalent in the literature [8].

Fortunately, interest has been building around near 
infrared spectroscopy (NIRS)-based measures of cerebro-
vascular reactivity that utilize regional cerebral oxygen sat-
uration (rSO2) as a surrogate for pulsatile CBV [9–11]. The 
NIRS-based parameter rSO2 is measured continuously 
and non-invasively and has the potential for significantly 
improved spatial resolution [12]. These indices come in 
two flavors: Cerebral Oxygenation Index (COx) and ABP-
based Cerebral Oxygenation Index (COx_a), with CPP 
and ABP used as surrogates for driving pressure, respec-
tively. Obviously, COx, by its nature, also depends on inva-
sive ICP monitoring; however, COx_a has the potential 
of being an entirely non-invasive means of continuously 
measuring cerebrovascular reactivity [13, 14].

Previous work has examined the co-variance relation-
ship between alternative NIRS-based and ICP-based 
indices of cerebrovascular reactivity [15], and both NIRS-
based and ICP-based indices have been found to detect 

the lower limit of autoregulation in pre-clinical settings 
[16–18]. However, to date, there has only been one study 
evaluating the multivariate co-variance pattern between 
NIRS and ICP-based indices, with limited examination 
of COx and COx_a specifically. As such, before confi-
dence in the use of COx/COx_a as surrogates for more 
invasive measures can develop, more details surrounding 
the statistical properties of rSO2, ICP, COx/COx_a and 
ICP-derived cerebrovascular indices (PRx, PAx, RAC) 
need to be obtained. In this study, classical machine 
learning methodologies along with multivariate time-
series modeling are utilized to explore and better define 
the relationship between ICP-based (PRx, PAx, and 
RAC) and NIRS-based rSO2 (COx and COx_a) indices 
of cerebrovascular reactivity along with their respective 
measures of pulsatile CBV, ICP and rSO2. Additionally, 
the relationship of indices that utilize ABP versus those 
that utilize CPP as a surrogate for driving pressure is also 
examined as a possible avenue to reduce the invasiveness 
of monitoring cerebrovascular reactivity.

Methods
Study design
A retrospective single-center cohort study utilizing pro-
spectively collected high-resolution physiologic data 
from critically ill TBI patients was performed, with data 
originally collected between April of 2019 and December 
of 2022. The data originated from the Winnipeg Acute 
TBI database which included adult TBI patients admit-
ted to Winnipeg Health Sciences Centre Intensive Care 
Units (ICU) with invasive ICP and ABP monitoring, as 
has been reported in recent studies [19–22]. All patients 
were cared for in line with contemporary ICP- and CPP-
based Brain Trauma Foundation guidelines [23, 24]. For 
this study, only patients with concurrent NIRS-based 
rSO2 were included. Notably, in this cohort, while rSO2 
was monitored, it was not actively utilized in the manage-
ment of patients. Additionally, metrics of cerebrovascular 
reactivity (whether rSO2- or ICP-base) were derived fol-
lowing data collection and were not incorporated into 
patient care.

Ethical consideration
Data were collected following full approval by the Uni-
versity of Manitoba Biomedical Research Ethics Board 
(H2017:181, H2017:188, B2018:103, H2020:118) and the 
Health Sciences Centre Research Impact Committee.
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Data collection
In total, four high-resolution physiologic data streams 
were utilized; ABP, ICP, as well as left and right rSO2. 
ABP was measured utilizing radial arterial lines while 
ICP was monitored using intra-parenchymal strain gauge 
probes (Codman ICP MicroSensor; Codman & Shurtlef 
Inc., Raynham, MA, USA) placed in the frontal lobe or 
using external ventricular drains (Medtronic, Minneapo-
lis, MN, USA). rSO2 was measured using NIRS monitor-
ing pads placed on the left and right forehead (Covidien 
INVOS 5100C), when possible, to interrogate the left and 
right frontal lobes.

ABP and ICP were recorded using analogue-to-digital 
signal converters (Data Translations, DT9804 or DT9826) 
while rSO2 was recorded from direct digital output from 
the monitoring device. Data were recorded at a sampling 
frequency of 100 Hz for ABP and ICP, to capture full 
waveform signals, and 1 Hz for rSO2, due to limitations 
in the export frequency. This digitized data were linked 
and stored in time-series using Intensive Care Monitor-
ing (ICM+) software (Cambridge Enterprise Ltd, Cam-
bridge, UK).

Additionally, demographic data, such as age, biologic 
sex, Marshal computed tomography (CT) score, admis-
sion Glasgow Coma Scale (GCS), admission pupil exam, 
and metabolic parameters; were collected for all patients. 
This was utilized to better characterize the cohort. 
Finally, for the purposes of selecting appropriate rSO2 
signals, radiographic evidence of extravascular blood that 
might interfere with NIRS signals was noted for the fron-
tal region of each subject. This included the presence of 
significant acute subdural hematomas, epidural hemato-
mas, cerebral contusions, and scalp hematomas.

Physiologic data cleaning and processing
Data cleaning and processing was performed using 
ICM + software. All high-resolution data streams were 
manually artifact cleared by qualified personnel. Subse-
quently, for each subject, the AMP, a continuous physio-
logic parameter, was derived using Fourier analysis of the 
ICP pulse waveform. ICP, ABP, AMP, and rSO2 were then 
decimated using a 10-s, non-overlapping, moving average 
filter in a standard practice to eliminate high-frequency 
signals unrelated to cerebrovascular reactivity [25–28]. 
CPP was then derived from the difference of the deci-
mated ABP and ICP signals.

The various continuous indices of cerebrovascular 
reactivity were then derived using 10-s mean values. 
PRx was derived as a minute-by-minute updating Pear-
son correlation between ICP and ABP over a 300 s win-
dow of paired 10-s mean values. Similarly, PAx and RAC 
were derived using the correlation between AMP with 

ABP and CPP, respectively. Finally, COx and COx_a were 
derived by calculating the correlation between rSO2 with 
CPP and ABP, respectively. This was performed for each 
side. As all indices were based on Pearson correlations, 
they ranged from − 1 to 1, with higher values indicating 
greater disruption in cerebrovascular reactivity. All data 
streams were exported as both minute-by-minute and 
10-s-by-10-s comma separated values (.csv) files.

Physiological data analysis and statistical methods
Overview
The data analysis was performed using R statistical soft-
ware (Version 4.2.2, R Foundation for Statistical Com-
puting, Vienna, Austria) with the following packages: 
forecast, ggplot2, lmtest, MTS, tidyverse, tseries, vars, zoo. 
OpenBLAS (Institute of Software, Chinese Academy of 
Sciences, Beijing, China) was utilized for the Basic Lin-
ear Algebra Subprograms (BLAS) and the Linear Algebra 
Package (LAPACK) to improve multithreaded computa-
tional performance. Data streams were further filtered by 
removing values likely to be artifactual. ABP values less 
than 0 mmHg and greater than 200  mmHg, ICP values 
greater than 100 mmHg, and rSO2 values less than 25% 
were all removed. Additionally, for each subject, the 
right-sided channel of rSO2 used was selected unless a 
scalp hematoma or frontal contusion was present based 
on radiographic data, in which case the left side was used. 
While arguments might be made as to why it may be ben-
eficial to select one side over another, ultimately, in the 
setting of an exploratory analysis, it was felt that a sys-
tematic and consistent approach minimized the possibil-
ity of bias. The right side was selected as it is typically the 
side of ICP monitor placement. Further to this, an explo-
ration of hemispheric difference was felt to be beyond the 
scope of this study. Finally, for statistical tests alpha was 
set to 0.05 without correction for multiple comparisons 
due to the exploratory nature of this study.

Given the nature of this data, the priors of linearity are 
not upheld as datapoints are not truly independent of 
one another. As a result, correlation analysis of the data 
streams was not felt to be appropriate as interpretation 
of this would be questionable. Following analysis previ-
ously reported in the multimodal monitoring literature 
[15, 29–32], three approaches were taken to characterize 
the relationship between rSO2- and ICP-based indices. 
First classical unsupervised machine learning methods, 
agglomerative hierarchical clustering and principal 
component analysis, were utilized to better understand 
the relationship between various indices in a multidi-
mensional physiological space. Secondly, multivariate 
time-series modeling, in the form of vector autoregres-
sive modeling and impulse response functions, was used 
to model the nature of the changes in ICP (ΔICP) and 
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rSO2 (ΔrSO2) in response to an impulse of change in 
ABP (ΔABP). This was done to evaluate if ΔrSO2 would 
respond similarly to ΔICP, as would be expected if rSO2 
was an appropriate surrogate of pulsatile CBV. The 
details of these analyses are presented in the following 
sections. Finally, Granger causality testing was performed 
to examine the temporal causal relationship between 
ABP, ICP and rSO2. This was done to further evaluate if 
ABP had a strong temporal causal relationship with both 
ICP and rSO2.

The detailed statistical background of these methodol-
ogies is beyond the scope of this paper and the interested 
reader is directed to recent reviews and textbooks on 
these topics [32–37]. In brief, agglomerative hierarchical 
clustering is a means of clustering data points in a mul-
tidimensional space based on Euclidian distance. Den-
drograms are produced for this analysis that display the 
relative proximity of data points with those connected at 
lower levels being more similar than those connected at 
higher levels. Principal component analysis is a means of 
dimensionality reduction that identifies vectors (typically 
2) in multidimensional space that explain the greatest 
degree of variance in the data. A biplot can then be made 
to examine how various parameters project onto this new 
two-dimensional space. When parameters project closely, 
they can be thought to have a greater relationship to one 
another in multidimensional space. Vector autoregressive 
modeling is a means of modeling a multivariate time-
series. That is to say, the relationship between time-series 
within a collection of time-series. Impulse response func-
tion plots can be made from these vector autoregres-
sive models to demonstrate how one time-series may 
react to an impulse in another. If two series have similar 
responses to an impulse in a third series, then those two 
series may be thought to share similar properties. Finally, 
Granger causality testing is a means of testing the tem-
poral causal relationship of time-series A on time-series 
B. Fundamentally, the test works by comparing predic-
tions of time-series B based on past values of time-series 
B with predictions of time-series B based on past values 
of time-series B and time-series A. If the latter is sig-
nificantly better statistically then time-series A is said to 
have a Granger causal relationship with time-series B. It 
should be noted that this is not necessarily equivalent to 
true causality.

Agglomerative hierarchical clustering and principal 
component analysis
The high-frequency minute-by-minute data streams 
of interest (ABP, ICP, CPP, rSO2, PRx, PAx, RAC, AMP, 
COx, and COx_a) were aggregated over all patients in the 
cohort. Next, due to the nature of agglomerative hierar-
chical clustering and principal component analysis, any 

measurements with missing parameters were removed 
to create a fully populated matrix without missing values. 
Next, to negate differences in the magnitude of the vari-
ous physiologic parameters, each parameter was scaled 
over the entire cohort to have a mean of zero and a stand-
ard deviation of one.

To perform agglomerative hierarchical clustering, a 
Euclidian distance matrix was produced for the scaled 
parameter matrix indicating the Euclidian distance 
between each measurement in multidimensional physi-
ologic space. Agglomerative hierarchical clustering was 
then performed utilizing a complete-linkage clustering 
methodology. To summarize the results of the agglom-
erative hierarchical clustering, a dendrogram was plot-
ted indicating the hierarchical relationships between 
the various physiologic parameters, including ICP- and 
rSO2-based measures of cerebrovascular reactivity. 
Finally, in order to test the goodness of fit of the cluster-
ing, the cophenetic correlation coefficient was calculated.

Principal component analysis was performed on the 
scaled parameter matrix as an alternative means of eval-
uating the relationships between various physiologic 
parameters. A cumulative Scree plot was made to exam-
ine the variance in the data explained by each principal 
component. Finally, a biplot was made using the first and 
second principal components, PC1 and PC2, as a quali-
tative means of examining the relationships between 
the various physiologic parameters, including ICP- and 
rSO2-based measures of cerebrovascular reactivity.

Vector autoregressive modeling and impulse response 
function
The high-frequency 10-s-by-10-s data streams of inter-
est (ABP, ICP, and rSO2) were utilized as the cerebral 
vasoactive response was being examined in this analysis 
and acts on a frequency scale of approximately 0.1  Hz 
[27, 28]. Prior to creating a tri-variate (ABP, ICP, and 
rSO2) vector autoregressive model for the cohort, it was 
imperative that the stationarity of the time-series be 
determined. First, gaps in the data streams were filled 
using linear interpolation using the na.approx() function 
in R. Stationarity was examined through the augmented 
Dickie Fuller and Kwiatkowski–Phillips–Schmidt–Shin 
tests for stationarity, which generally found ABP, ICP, and 
rSO2 to be non-stationary in most subjects. As such, the 
first differences of the time-series were taken for each 
subject. This resulted in the parameters ΔABP, ΔICP, and 
ΔrSO2 which were found to be stationary in almost all 
subjects augmented Dickie Fuller and Kwiatkowski–Phil-
lips–Schmidt–Shin testing. As such, these parameters 
were used going forward for vector autoregressive mod-
eling and generation of the impulse response functions.



Page 5 of 13Gomez et al. Intensive Care Medicine Experimental           (2023) 11:57 	

To determine the appropriate autoregressive order of 
the vector autoregressive model, the Akaike informa-
tion criterion  was determined for vector autoregressive 
models of order 1–15. By plotting these values, it was 
clear that there were diminishing improvements in model 
quality beyond lag 5 and so to follow the principle of par-
simony, a tri-variate vector autoregressive model with 
autoregressive order of 5 was created using the VAR() 
function in R. Finally, using the irf() function in R, this 
tri-variate vector autoregressive model was utilized to 
model and plot the response in ΔICP as well as ΔrSO2 of 
an orthogonal impulse in ΔABP over the subsequent 10 
lags. Vector autoregressive models and impulse response 
functions plots were also constructed for individual sub-
jects to examine this relationship on an individual subject 
basis.

Granger causality testing
The 10-s-by-10-s data streams of ΔABP, ΔICP and 
ΔrSO2 were utilized for Granger causality testing. For 
each subject, the Granger causality of ΔABP → ΔrSO2, 
ΔABP → ΔICP, ΔrSO2 → ΔABP, and ΔICP → ΔABP. A 
time lag of 1 was utilized for all testing. F-statistics and 
p-values were tabulated for comparison to determine the 
causal direction.

Results
Cohort demographics
In total, 83 patients were included in this study, with 
428,775 min of unique physiologic data. The demo-
graphic data of this cohort can be seen summarized in 
Table 1. Of note, in 16 subjects the right-sided rSO2 sig-
nal was not used due to either the presence of a frontal 
scalp hematoma or a frontal contusion. In these subjects, 
the left-sided rSO2 signal was used.

Table 1  Cohort demographics

CT computed tomography, GCS Glasgow Coma Scale, HgB hemoglobin, ICP intracranial pressure, IQR interquartile range, N number of subjects, PaCO2 partial pressure 
of carbon dioxide in arterial blood, PaO2 partial pressure of oxygen in arterial blood, rSO2 regional cerebral oxygen saturation

Demographic parameter Median (IQR) or N (%)

Age 42 (28.5–60.5)

Male patients 66 (79.5)

Admission GCS Total 6 (4–8)

Eye 1 (1–2)

Verbal 1 (1–2)

Motor 4 (2–5) 

Admission pupil exam Bilaterally unreactive 13 (15.7)

Unilaterally Unreactive 16 (19.3)

Bilaterally reactive 54 (65.1)

Admission Marshall CT score I 0 (0.0)

II 3 (3.6)

III 23 (27.7)

IV 16 (19.3)

V 41 (49.3)

VI 0 (0.0)

ICP monitoring method Intraparenchymal probe 78 (94.0)

Extraventricular drain 5 (6.0)

Admission HgB (g/L) 135 (113–147)

Admission serum glucose (mmol/L) 8.05 (7–10.95)

Average PaO2 (mmHg) over course of recording 109 (87–138)

Average PaCO2 (mmHg) over course of recording 37 (34–40)

Average blood gas pH over course of recording 7.43 (7.39–7.47)

Side of rSO2 used Right 67 (80.7)

Left 16 (19.3)

Frontal contusion present Right 9 (10.8)

Left 7 (8.4)

Frontal scalp hematoma present Right 7 (8.4)

Left 6 (7.2)
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Agglomerative hierarchical clustering
The dendrogram from the agglomerative hierarchical 
clustering can be seen in Fig. 1. The cophenetic correla-
tion was excellent, with a value of 0.94, indicating a good 
fit of the agglomerative hierarchical clustering. There are 
several notable features. Firstly, as expected, the vari-
ous indices of cerebrovascular reactivity (PRx, PAx, and 
RAC) are closely related based on the early connection 
of these parameters at lower levels. Perhaps more inter-
estingly, the two rSO2-based indices, COx and COx_a, 
are also closely related with a connection at lower levels. 
Additionally, ICP-based and rSO2-based measures of cer-
ebrovascular reactivity were more closely related to one 
another than to other physiological parameters, such 
as ICP, ABP, CPP and rSO2 which were only connected 
to measures of cerebrovascular reactivity late at higher 
levels.

Principal component analysis
The cumulative Scree plot, and associated data, of the 
principal component analysis can be found in Addi-
tional file 1 with almost 44% of the variance in the data 
accounted for by the first two principal components. The 
biplot of the principal component analysis using PC1 
and PC2 can be seen in Fig.  2. Similar relationships as 
in the agglomerative hierarchical clustering dendrogram 
are seen, with ICP-based indices projected close to one 
another, indicating a close relationship in multidimen-
sional space. In a similar fashion, COx and COx_a are 

also projected close to one another. PRx, PAx, and RAC 
are almost orthogonal to the more traditional physiologi-
cal parameters of ABP, ICP, and CPP. Furthermore, PRx, 
PAx, and RAC are more closely located to COx/COx_a in 
terms of co-variance patterns, indicating that these ICP-
based and rSO2-based indices are associated in multidi-
mensional physiologic space.

Vector autoregressive modeling and impulse response 
function
Initial testing for stationarity of 10-s-by-10-s data 
streams of ABP, ICP, and rSO2, for each subject using the 
Kwiatkowski–Phillips–Schmidt–Shin, indicated non-sta-
tionarity in almost all data streams and all subjects. Aug-
mented Dickie Fuller testing generally failed to find a unit 
root in most subjects. Given this result, the first differ-
ence was taken for each dataset to give ΔABP, ΔICP, and 
ΔrSO2. Augmented Dickie Fuller and Kwiatkowski–Phil-
lips–Schmidt–Shin testing now indicated stationarity in 
virtually all data streams in all subjects and no unit roots. 
The results of the Augmented Dickie Fuller and Kwiat-
kowski–Phillips–Schmidt–Shin testing, both pre- and 
post-differencing, can be found in Additional file 2.

The plot of Akaike Information Criterion values versus 
vector autoregressive model order can be seen in Fig. 3. 
As can be seen in this plot, the marginal improvements 
in Akaike Information Criterion with increasing order 
greatly declined after order of 5. This indicated that 
models of order above 5 provided little improvement in 

Fig. 1  Cluster dendrogram of the minute-by-minute cohort high-resolution physiologic data. ABP arterial blood pressure, AMP pulse amplitude 
of ICP, Cox rSO2 and CPP-based cerebrovascular reactivity index, COx_a rSO2 and ABP-based cerebrovascular reactivity index, CPP cerebral perfusion 
pressure, ICP intracranial pressure, Pax AMP and ABP-based cerebrovascular reactivity index, PRx ICP and ABP-based cerebrovascular reactivity index, 
RAC​ AMP and CPP-based cerebrovascular reactivity index, RSO2 regional cerebral oxygen saturation
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accuracy but significantly increased computational com-
plexity. As such, a tri-variate (ΔABP, ΔICP, and ΔrSO2) 
Vector Autoregressive model of order of 5 was con-
structed and used to generate the impulse response func-
tion plots.

Figure 4a shows the impulse response function plot of 
the response in ΔICP to an orthogonal impulse in ΔABP. 
It can be seen that the impulse in ΔABP causes an ini-
tial sharp increase in ΔICP followed by a large negative 
overcorrection in ΔICP by lag 2. The ΔICP then, again, 
positively overcorrects around a lag of 3 and 4. ΔICP then 
oscillates around 0 and, by a lag of 6, is back at steady 
state. Figure  4b shows the impulse response function 
plot of the response of ΔrSO2 to an impulse in ΔABP. As 

with ΔICP, an impulse in ΔABP causes an initial sharp 
increase in ΔrSO2 followed by a large negative over-
correction in ΔrSO2, this time by lag 3. There is again a 
positive overcorrection at lag 4 with ΔrSO2 values subse-
quently oscillating around 0 until a return to steady state 
at around a lag of 8.

The impulse response function plots for individual sub-
jects can be seen in Additional file 3. Of the 83 subjects, 
the generated response of ΔICP and ΔrSO2 to an impulse 
of ΔABP was of similar form to one another in 63 of the 
subjects. This indicated that, even on the individual sub-
ject level, ΔrSO2 and ΔICP responded similarly to an 
impulse in ΔABP. Of note, the variability between sub-
jects in responses to an impulse of ΔABP was greater for 

Fig. 2  A biplot of the of the minute-by-minute cohort high-resolution physiologic data including principal component 1 (PC1) and principal 
component 2 (PC2). ABP arterial blood pressure, AMP pulse amplitude of ICP, Cox rSO2 and CPP-based cerebrovascular reactivity index, COx_a rSO2 
and ABP-based cerebrovascular reactivity index, CPP cerebral perfusion pressure, ICP intracranial pressure, Pax AMP and ABP-based cerebrovascular 
reactivity index, PRx ICP and ABP-based cerebrovascular reactivity index, RAC​ AMP and CPP-based cerebrovascular reactivity index, rSO2 regional 
cerebral oxygen saturation
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ΔrSO2 than for ΔICP. Additionally, for each subject, the 
response of ΔICP to an impulse in ΔABP was similar to 
the impulse response function plot for the overall cohort.

Granger causality testing
The results of the Granger causality testing for each sub-
ject can be seen in Additional file  4. In 67 subjects, by 
comparing the magnitude of the F-statistic, the Granger 
causal relationship of ΔABP → ΔrSO2 was greater 
than ΔrSO2 → ΔABP. Similarly, in 76 subjects, by com-
paring the magnitude of the F-statistic, the Granger 
causal relationship of ΔABP → ΔICP was greater than 
ΔICP → ΔABP. This indicates that the directionality of 
temporal causation is more in favor of ΔABP → ΔrSO2 
or ΔICP. Finally, for most patients, the F-statistics for 
ΔABP → ΔICP were generally greater than the F-sta-
tistic for ΔABP → ΔrSO2 which may indicate a stronger 
relationship between ΔABP and ΔICP than ΔABP and 
ΔrSO2.

Discussion
In this relatively large retrospective cohort study of 
extremely unique prospectively collected high-resolution 
physiologic data in critically ill TBI patients, the relation-
ship between ICP- and rSO2-based indices of cerebro-
vascular reactivity was explored using classical machine 
learning and multivariate time-series analysis. Several 
interesting insights can be drawn from the analysis of this 
exceedingly rare dataset. Through agglomerative hierar-
chical clustering and principal component analysis, it is 

clear that ICP-based parameters are closely associated 
with one another. Interestingly, through the agglom-
erative hierarchical clustering, we can see that the ICP-
based indices are also more closely related to rSO2-based 
indices of cerebrovascular reactivity than other physi-
ological parameters.

A significant finding of this study was that COx and 
COx_a are closely associated with one another in both 
principal component analysis and agglomerative hierar-
chical clustering. Using ABP instead of CPP as the surro-
gate for driving pressure may be an adequate substitution 
to reduce the invasiveness of cerebrovascular reactivity 
monitoring as non-invasive continuous ABP monitoring 
is already possible. This opens the door to entirely non-
invasive cerebrovascular reactivity monitoring [13, 14]. 
This is also supported by the close association between 
PAx and RAC, where ABP and CPP are used as the sur-
rogate for driving pressure, respectively, in both the 
agglomerative hierarchical clustering dendrogram and 
principal component analysis biplot. Additionally, we see 
that CPP is much more closely related to ABP than ICP 
in both analyses. For the purposes of monitoring cerebro-
vascular reactivity ABP and CPP may then have similar 
value as surrogates for driving pressure, with ABP being 
the clearly less invasive option.

ICP- and rSO2-based indices of cerebrovascular 
reactivity are closely associated, as identified through 
agglomerative hierarchical clustering and principal com-
ponent analysis analysis, with co-clustering on agglom-
erative hierarchical clustering and close proximity noted 

Fig. 3  A plot of Akaike Information Criterion versus autoregressive order of the tri-variate vector autoregressive (VAR) model. There is limited 
improvement in Akaike Information Criterion beyond an order of 5
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on the principal component analysis biplot. Of note, on 
the principal component analysis biplot, while ICP-based 
indices are nearly coaxial with PC2, rSO2-based indices 
are nearly equally composed of PC1 and PC2 and seem to 
have a stronger relationship with ABP and CPP than ICP-
based indices do.

When examining the other physiologic param-
eters, some interesting conclusions can be made. As 

previously mentioned, CPP is much more closely asso-
ciated with ABP than with ICP, which may indicate that 
in the setting of critically ill TBI patients managed in 
the ICU, minute-to-minute CPP is much more strongly 
tied to ABP than to ICP. This is not entirely surprising 
as ICP is a very tightly controlled parameter, especially 
in the stable, but critically ill, TBI patient. Also of inter-
est, through agglomerative hierarchical clustering and 

Fig. 4  A Shows the modeled resulting response in change in intracranial pressure (ΔICP) to an orthogonal impulse in change in arterial blood 
pressure (ΔABP). B Shows the modeled resulting response in change in regional cerebral oxygen saturation (ΔrSO2) to an orthogonal impulse 
in change in arterial blood pressure (ΔABP). The 95% confidence intervals are indicated by the red dashed line. Note that in both plots there 
is an initial rise followed by subsequent negative and positive overcorrections and then a return to steady state between Lag 6 and 8
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principal component analysis we see that absolute ICP 
and rSO2 are not well associated even though their 
respective indices of cerebrovascular reactivity are.

Through vector autoregressive modeling and impulse 
response function plots, over the cohort and in indi-
vidual subjects, ΔICP and ΔrSO2 do typically share 
a similar response to a sudden change in ΔABP. Their 
similarity in response is found over the temporal reso-
lution used in the calculation of their respective indi-
ces of cerebrovascular reactivity, PRx and COx_a, as 
these indices initially decimate these physiologic sig-
nals using a 10-s moving average filter [5]. Additionally, 
since Pearson correlation coefficients are used in the 
derivation of both ICP- and rSO2-based indices, it is 
the change in these parameters in response to change in 
ABP that is of primary interest; which is what has been 
examined in the vector autoregressive impulse response 
function analysis. The similarity in impulse response 
function plots indicate that both ICP and rSO2 may be 
adequate surrogates for pulsatile CBV in the calculation 
of cerebrovascular indices despite sharing little in com-
mon as standalone parameters. This analysis helps rec-
oncile the findings of previous studies that failed to find 
value in NIRS-based parameters in the monitoring of 
critically ill TBI patients [38–42] with studies that have 
found NIRS-based indices of cerebrovascular reactivity 
to be similar to ICP-based indices [15–17]. If change in 
ICP and change in rSO2 are related but not their abso-
lute values, it can be understood why ICP-based and 
rSO2-based indices of cerebrovascular reactivity associ-
ate with one another even when ICP and rSO2 are not 
in agglomerative hierarchical clustering and principal 
component analysis.

Further examination of the cohort impulse response 
function plots also gives insight into the basic temporal 
mechanisms of cerebrovascular reactivity. We see that 
an initial impulse in ΔABP is initially met with a positive 
ΔICP and ΔrSO2 which would be consistent with an ini-
tial passive arteriolar dilation. This is similar to what has 
been observed in transcranial Doppler-based transient 
hyperemic response testing of dynamic cerebral autoreg-
ulation [43, 44]. This is then followed by a negative phase 
in both ΔICP and ΔrSO2 which could represent a period 
of active vasoconstriction. The third positive phase in 
ΔICP and ΔrSO2 may indicate that generally there is a 
slight overcorrection in second phase vasoconstriction 
that requires an additional vasodilatory phase to reach a 
subsequent steady state. This is an interesting finding that 
will guide future exploration into the fundamental basis 
of cerebrovascular reactivity.

Finally, through the Granger causality testing in indi-
vidual subjects, generally changes in ABP temporally pre-
cede and are associated with changes in both rSO2 and 

ICP. This supports the use of ABP as a surrogate for driv-
ing pressure and both ICP or rSO2 as a surrogate for pul-
satile CBV in indices of cerebrovascular reactivity.

Limitations
While this study leverages a unique dataset and 
advanced data science techniques, there are nota-
ble limitations to this study. First, the cohort is from a 
single institution, and as a result, several regional fac-
tors, such as local management norms, may limit the 
generalizability of these findings at institutions where 
patient populations and management differ. Addition-
ally, the decision was made to aggregate for the agglom-
erative hierarchical clustering and principal component 
analysis. This approach leads to the loss of information 
as individual patient factors are not examined and the 
hierarchical nature of the dataset is ignored. Due to the 
novel nature of this cohort and the exploratory nature 
of this study, it was felt that this was appropriate. How-
ever, individual subject data were examined through the 
vector autoregressive modeling and impulse response 
plots as well as with the Granger causality testing. Sec-
ondly, the retrospective nature of this study means that 
independent variables, such as ABP, were not intention-
ally manipulated to evaluate changes in dependent vari-
ables, such as ICP and rSO2. While impulse response 
function plots help model the response of one param-
eter to another, they are not a substitution to interven-
tional studies where the response of ICP and rSO2 to 
changes in ABP can be induced and observed prospec-
tively. Finally, as rSO2 is influenced by blood oxygen 
content, the lack of high temporal resolution oxygena-
tion parameters, such as oxygen saturation (SpO2) and 
partial pressure of oxygen in arterial blood (PaO2), 
means that their influence is not directly accounted for 
in this analysis.

Future work
This study lays the groundwork for future examination 
of the viability of rSO2-based indices of cerebrovas-
cular reactivity. Prior to their wider adoption as both 
a research and clinical tool in the setting of TBI, fur-
ther work is needed. Prospective interventional stud-
ies in large animal models with concurrent ICP and 
rSO2 monitoring may help further validate rSO2 as 
an adequate measure of pulsatile CBV. Additionally, 
studies aimed at modeling ICP-based indices of cer-
ebrovascular reactivity from rSO2-based indices may 
further strengthen confidence in its use as a less inva-
sive alternative. Similar work has been conducted using 
non-invasive transcranial Doppler cerebrovascular 
reactivity indices [45, 46]. Beyond this, studies examin-
ing the prognostic utility of rSO2 and its derived indices 
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in a large multi-institutional cohort of critically ill TBI 
patients are also vital. Finally, leveraging the non-inva-
sive nature of NIRS, studies examining the trajectory of 
cerebrovascular reactivity through the chronic phase of 
injury will help better understand the wider picture of 
dysfunctional cerebrovascular reactivity following TBI, 
and lead to improved prognostication as well as thera-
peutic targets.

This study also presented some insights into the basic 
temporal mechanisms of cerebrovascular reactivity. 
If rSO2-based indices of cerebrovascular reactivity are 
found to be similar to ICP-based indices, studies in a 
healthy control population may help identify what vas-
cular reactivity patterns are attributable to either the 
functional or dysfunctional state.

Conclusion
In this retrospective cohort study of unique prospec-
tively collected high-resolution physiologic data in criti-
cally ill TBI patients, ICP- and rSO2-based indices were 
found to be distinct but related metrics. Within these 
indices, both ABP and CPP were found to have similar 
utility as surrogates for driving pressure. Further, ΔrSO2 
and ΔICP were found to respond similarly to modeled 
impulses in ΔABP, indicating that rSO2 might also be an 
adequate measure of pulsatile CBV in the determination 
of continuous cerebrovascular reactivity indices. This 
opens the door to further research that can validate the 
prognostic utility of rSO2-based indices in TBI and lev-
erage its non-invasive nature to further the understand-
ing of dysfunctional cerebrovascular reactivity following 
TBI.
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