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Abstract 

Background Within-breath oscillations in arterial oxygen tension  (PaO2) can be detected using fast responding 
intra-arterial oxygen sensors in animal models. These  PaO2 signals, which rise in inspiration and fall in expiration, may 
represent cyclical recruitment/derecruitment and, therefore, a potential clinical monitor to allow titration of ventilator 
settings in lung injury. However, in hypovolaemia models, these oscillations have the potential to become inverted, 
such that they decline, rather than rise, in inspiration. This inversion suggests multiple aetiologies may underlie these 
oscillations. A correct interpretation of the various  PaO2 oscillation morphologies is essential to translate this signal 
into a monitoring tool for clinical practice. We present a pilot study to demonstrate the feasibility of a new analysis 
method to identify these morphologies.

Methods Seven domestic pigs (average weight 31.1 kg) were studied under general anaesthesia with muscle 
relaxation and mechanical ventilation. Three underwent saline-lavage lung injury and four were uninjured. Varia-
tions in PEEP, tidal volume and presence/absence of lung injury were used to induce different morphologies of  PaO2 
oscillation. Functional principal component analysis and k-means clustering were employed to separate  PaO2 oscil-
lations into distinct morphologies, and the cardiorespiratory physiology associated with these  PaO2 morphologies 
was compared.

Results PaO2 oscillations from 73 ventilatory conditions were included. Five functional principal components 
were sufficient to explain ≥ 95% of the variance of the recorded  PaO2 signals. From these, five unique morpholo-
gies of  PaO2 oscillation were identified, ranging from those which increased in inspiration and decreased in expira-
tion, through to those which decreased in inspiration and increased in expiration. This progression was associated 
with the estimates of the first functional principal component (P < 0.001, R2 = 0.88). Intermediate morphologies dem-
onstrated waveforms with two peaks and troughs per breath. The progression towards inverted oscillations was asso-
ciated with increased pulse pressure variation (P = 0.03).

Conclusions Functional principal component analysis and k-means clustering are appropriate to identify unique 
morphologies of  PaO2 waveform associated with distinct cardiorespiratory physiology. We demonstrated novel 
intermediate morphologies of  PaO2 waveform, which may represent a development of zone 2 physiologies 
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Background
The acute respiratory distress syndrome (ARDS) is a con-
dition with significant morbidity and mortality. Although 
mechanical ventilation is often necessary in patients 
with ARDS, it can be associated with progression of 
lung injury via multiple mechanisms, including cyclical 
recruitment/derecruitment (R/D) of diseased and unsta-
ble alveolar units [1].

One promising avenue of research to minimise cycli-
cal R/D is via analysis of intra-tidal variation in arterial 
oxygen tension  (PaO2) utilising fast responding intra-
arterial fibre optic sensors. In rabbit and porcine models 
of ARDS, mechanical ventilation settings that predispose 
to cyclical R/D (for example, large tidal volumes and low 
respiratory rates) were associated with large increases 
followed by large decreases (oscillations) in  PaO2 within 
the time period of a single tidal breath [2–7]. It was, 
therefore, hypothesised that cyclical R/D caused intra-
tidal  PaO2 oscillations via varying shunt fraction through 
the time course of a single mechanical ventilatory breath. 
However, this hypothesis is not yet conclusively sup-
ported by experimental evidence. For example, cyclical 
R/D, as quantified by dynamic computed tomography 
(CT), was not associated with the amplitudes of  PaO2 
oscillations in pigs either with [8] or without experimen-
tal lung injury [9].

The cyclical R/D hypothesis implies that, within a single 
breath, the ratio between the amount of time the  PaO2 is 
above its mean value to that where it is below the mean 
value is related to the inspiratory:expiratory (I:E) ratio. 
In other words, if the I:E ratio is 1:2, the  PaO2 would be 
expected to be “high” for one-third of the breath and 
“low” for two-thirds, equivalent to the amount of time 
the shunt fraction was low and high. In the presence 
of hypovolaemia, however, this ratio was inverted i. e. 
 PaO2 was above the mean value for more than half of the 
breath despite I:E being fixed at 1:2. Such inverted oscil-
lations were termed “perfusion-dependent” as opposed 
to the “ventilation-dependent” oscillations suggested by 
the cyclical R/D hypothesis [10].

Such findings are problematic for the proposed clinical 
use of fast responding  PaO2 to titrate mechanical ven-
tilation settings against cyclical R/D in lung injury. It is 
apparent that in the case of perfusion-dependent oscil-
lations, the amplitude of the oscillation will not neces-
sarily be solely related to cyclical R/D but other factors, 

including intra-tidal variation in regional ventilation, 
regional and global lung perfusion, and oxygen utilisation 
by the animal within the time course of a single breath.

Clinical application of these fast-responding  PaO2 sen-
sors is, therefore, dependent upon further understanding 
of the morphology and aetiologies of these  PaO2 oscilla-
tions and their dependence on heart–lung interactions 
during positive pressure mechanical ventilation. To fur-
ther identify these  PaO2 morphologies, we undertook a 
pilot study to assess the feasibility of a novel  PaO2 signal 
analysis approach in a porcine model. We used functional 
principal component analysis and k-means clustering to 
identify unique morphologies and attempted to correlate 
them with cardiopulmonary variables, with the aim to 
provide a theoretical foundation for future clinical stud-
ies on  PaO2 oscillations.

Methods
Seven domestic pigs (weight 31.1 SD 1.6 kg, 6 male, 1 
female) were studied under general anaesthesia and mus-
cle relaxation at the Hedenstierna Laboratory, University 
of Uppsala, Sweden. Ethical approval was granted by the 
Uppsala Regional Animal Research Ethics Committee 
(ref. C98/16). The relevant sections of the ARRIVE guide-
lines [11] were adhered to.

Experimental protocol
Following premedication with intramuscular xylazine 
2  mg/kg, ketamine 20  mg/kg and midazolam 0.5  mg/
kg, an ear vein was cannulated, and general anaesthesia 
commenced and maintained with an infusion of keta-
mine 32  mg/kg/h, fentanyl 4 mcg/kg/h and midazolam 
0.16  mg/kg/h. Muscle relaxation was maintained with 
an intravenous infusion of rocuronium 30–100  mg/h 
titrated against spontaneous respiratory effort. Ade-
quacy of anaesthesia was confirmed by absence of reac-
tion to painful stimulation between the front hooves, 
and absence of any signs of sympathetic stimulation after 
administration of rocuronium. Aliquots of fentanyl 100–
300 mcg were administered as required.

Following induction of general anaesthesia, an 
endotracheal tube was placed via tracheostomy and 
mechanical ventilation commenced using a Servo-I 
ventilator (Maquet, Rastatt, Germany). Immediately 
following tracheostomy, to maintain normoxia and nor-
mocapnia, the ventilation settings were fixed to volume 

within the lung. Future studies of  PaO2 oscillations and modelling should aim to understand the aetiologies of these 
morphologies.
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control mode, tidal volume 8  mL/kg, respiratory rate 
25/min, PEEP 5  cmH2O and  FiO2 sufficient to maintain 
peripheral oxygen saturations above 92%. Settings were 
subsequently adjusted for the recording of  PaO2 oscilla-
tions (see below). Ringer’s lactate solution was infused 
at 20 mL/kg/h for the first hour then reduced to 10 mL/
kg/h for the remainder of the experiment.

These experiments were performed on a subset of 
animals included in a previously reported study [12] 
in which the indwelling fast responding  PaO2 sensor 
was available. In this previous study, animals were ran-
domised to either the lung-injury or uninjured group 
using simple randomisation. In the lung-injury group, 
the saline-lavage surfactant depletion technique of 
Lachmann [13] was used aiming for a  PaO2/FiO2 ratio 
of 20–26.7 kPa (150–200 mmHg). 30 mL/kg of warmed 
saline was administered intratracheally until the  PaO2 
fell to less than 6.6 kPa (50  mmHg) or mean pulmo-
nary artery pressure rose above 40  mmHg, at which 
point the lavage fluid was drained from the animal’s 
lungs and mechanical ventilation was restarted. The 
lavage process was repeated if  PaO2 subsequently rose 
above 26.7 kPa (200 mmHg).  PaO2 was recorded prior 
to each lavage, immediately after restarting ventilation 
and subsequently at 30 s intervals.  FiO2 was fixed at 1.0 
for the entire lavage procedure. The currently reported 
experiments were performed after induction of lung 
injury (if applicable), but prior to transfer to the CT 
scanner, where the previously reported study [12] was 
performed. Aside from presence/absence of experi-
mental lung injury, there was no section of the protocol 
for either set of experiments that would adversely affect 
the results of the other study.

Each animal was ventilated at 12 different ventilatory 
conditions, representing all combinations of PEEP 5, 8, 
10 and 12  cmH2O and tidal volume 7, 10 and 15 mL/kg. 
For each animal the order of ventilatory conditions was 
randomised using simple randomisation on pre-printed 
case record forms. Given the exploratory nature of this 
study the researchers were not blinded to group (lung-
injury vs uninjured) allocation or the order of ventilatory 
conditions. Each animal was ventilated at each condition 
with respiratory rate 10/min, inspiratory:expiratory ratio 
1:2 in pressure control mode with  FiO2 sufficient to main-
tain  PaO2 between 13.3 and 66.5 kPa (100 to 500 mmHg). 
This lower limit was chosen to ensure haemoglobin was 
fully saturated for the duration of the experiments so 
any intra-tidal variation in arterial blood oxygen con-
tent was directly proportional to  PaO2. If this constraint 
is not observed, then the  PaO2 waveform is non-linearly 
damped, because any intra-tidal variation in arterial 
oxygen content would to some extent be buffered by  O2 
release/absorption by haemoglobin [14]. The upper  PaO2 

limit of 66.5 kPa (500 mmHg) represented the upper limit 
of the  PaO2 sensor used.

This was a pilot study to investigate the technique 
used to identify different  PaO2 oscillation morpholo-
gies. Therefore, sample size was chosen to be sufficient 
to generate multiple morphologies of  PaO2 oscillation 
rather than to demonstrate statistically significant differ-
ences between any identified  PaO2 morphology. Based 
upon the results of previous experiments [8, 9] using fast-
acting intra-arterial sensors to detect  PaO2 oscillations, 
between 5 and 8 pigs would be sufficient to demonstrate 
a wide variety of  PaO2 oscillation morphologies.

Measurements
The left common carotid artery was cannulated using 
a standard 20G 80 mm arterial cannula (LeaderCath, 
Vygon, Ecouen, France). Through this cannula, a fibre-
optic  PaO2 sensor with a response time of < 100 ms was 
introduced and interfaced to an OxyLite Pro (Oxford 
Optronix, Oxford, UK). These sensors have been 
described previously [15, 16]. The analogue output from 
these sensors was continuously recorded (PowerLab and 
LabChart, ADInstruments, Dunedin, New Zealand) at a 
sampling frequency of 10 Hz.

Systemic arterial blood pressure was measured using a 
catheter placed in a branch of the right external carotid 
artery. A central venous catheter was sited via the right 
internal jugular vein to measure central venous pressure. 
A pulmonary artery catheter (Criticath SP5107U, Merit 
Medical, South Jordan, UT, USA) was placed via the right 
internal jugular vein using standard flotation methods. 
All blood pressure waveforms, as well as ECG and tail 
pulse oximetry, were continuously recorded (IntelliVue 
M8004A, Philips Healthcare, Best, Netherlands). Cardiac 
output was measured using a standard thermodilution 
bolus technique.

Respiratory waveforms including pressure and flow 
(with tidal volume calculated from the latter) were 
recorded using a Capnomac Ultima (Datex-Ohmeda, 
Madison, WI). Mechanical power was calculated using 
the simplified method for pressure control ventilation 
[17].

Alignment of  PaO2 oscillations with the phases 
of ventilation
For each ventilatory condition, the oscillations were 
aligned with the phases of ventilation (inspiration and 
expiration) by studying the  PaO2 increase following 
the resumption of ventilation after a 20 s breath hold at 
end-expiration. The period between the start of inspira-
tion (as measured by the airway pressure trace) and the 
first increase in  PaO2, after the steady decline during the 
breath hold, was measured (Additional file  1: Fig. S1). 
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This period (offset) was then retrospectively applied to 
the time axis of the  PaO2 signal during mechanical venti-
lation immediately before the breath hold.

Criteria for including  PaO2 oscillations in analysis
PaO2 signals from certain ventilatory conditions were 
excluded from further analyses based upon pre-defined 
criteria. Signals with trough values less than 13.3  kPa 
(100  mmHg) were excluded to avoid non-linear damp-
ening of the signal by  O2 buffering by haemoglobin as 
described above. Others were excluded due to the signal-
to-noise ratio of the  PaO2 oscillations being less than 
20  dB (empirically chosen based on preliminary results 
as being the minimum required to adequately detect the 
respiratory rate from the signal in 90% of cases). Finally, 
those oscillations where it was impossible to align the 
 PaO2 signal with the phases of ventilation were excluded.

PaO2 oscillation analysis
The  PaO2 oscillations recorded for each ventilatory con-
dition were assigned into one of several arbitrary clusters 
based upon the morphology of an aggregate single tidal 
breath.  PaO2 oscillations from ten complete breaths were 
extracted for each ventilatory condition. Any linear trend 
in the ten-breath signal was removed. The ten breaths 
were combined into a single breath using a median of the 
 PaO2 of each individual timepoint within the breaths to 
remove changes in  PaO2 occurring at other frequencies, 
for example, the heart rate. This single breath was then 
normalized by converting the raw amplitude values (in 
mmHg) into multiples of the standard deviation of that 
breath. This conversion allowed comparison of the shape 
of the oscillations between different ventilatory condi-
tions, without these being impacted by the amplitude of 
the oscillation or absolute  PaO2 value.

Functional principal component analysis
Functional principal component analysis (FPCA) [18] 
was then used to identify common signals in these nor-
malised breaths. FPCA is a method of dimensionality 
reduction for complex time-series data, where the mean 
input  PaO2 waveform is calculated and subtracted from 
each input waveform. A series of eigenfunctions is then 
created, such that all input waveforms can be reliably 
described by a weighted sum of these eigenfunctions. The 
mean waveform and eigenfunctions are constant between 
all input  PaO2 waveforms, but the weights, termed prin-
cipal component estimates, vary. Thus, a complex input 
waveform with 600 data points can be described by only 
a handful of principal components. The FPCA algorithm 
attempts to choose the optimum eigenfunctions, such 
that the maximum variance in the input waveforms can 
be explained with the fewest principal components. The 

fdapace [19] package in the R statistical software version 
4.1.2 (R Foundation for Statistical Computing, Vienna, 
Austria) was used to calculate functional principal 
components.

k‑means clustering
The principal component estimates for each ventilatory 
condition were used to assign each ventilatory condition 
to a cluster using k-means clustering [20]. This attempts 
to partition each set of inputs (here the principal com-
ponents) into unique clusters, thus each  PaO2 input 
waveform is assigned to a single cluster. In our data, each 
point is multi-dimensional comprising a certain num-
ber of principal components. k-means clustering gener-
ates a certain number of centre points, such that, for each 
cluster, the sum of the squared distances between each 
set of input principal component estimates and its clus-
ter centre is minimized. We used the iterative k-means 
clustering algorithm of Hartigan and Wong [21] to assign 
individual  PaO2 waveforms to clusters.

Choice of both the number of input dimensions (num-
ber of principal components) as well as the number of 
clusters is problematic in k-means clustering as both 
can significantly affect the quality of the output. We ini-
tially set both the number of principal components and 
number of clusters as the number of principal compo-
nents required to explain ≥ 95% of the variance in the 
input waveforms (semantically equivalent to a R2 value 
of ≥ 0.95 in other statistical models) and then optimised 
these based upon the Akaike Information Criterion (AIC) 
[22]. AIC was calculated based upon k-means clustering 
outputs [23]. Given that k-means clustering is stochastic, 
Monte Carlo simulation was performed over 10,000 iter-
ations to generate AIC estimates for all potential cluster 
numbers ranging from zero to the maximum number of 
principal components identified.

Statistical analyses
Differences in mean  PaO2,  PaO2 oscillation peak-to-
trough height, presence of lung injury and cardiores-
piratory variables between the identified  PaO2 clusters 
were analysed using one-way analysis of variance or 
chi-squared testing as appropriate. Post-hoc testing was 
not performed between the individual clusters as this 
was a pilot study and inadequately powered to iden-
tify any such differences. Following visual allocation of 
cluster morphologies into a potential progression, we 
undertook linear regression analysis of the effects of 
this potential progression upon principal component 
estimates. In addition, an exploratory analysis of the 
effect of any unmeasured intra-animal effect upon clus-
ter membership was performed. A mixed-effects linear 
model was developed with potential cluster progression 
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as a continuous dependent variable, animal as a random-
effects independent variable and other measured baseline 
cardiorespiratory parameters as fixed-effects depend-
ent variables. The selection of fixed-effects variables was 
chosen, such that AIC was optimised. For these data, AIC 
was optimised when  PaO2/FiO2 ratio and pulse pres-
sure variation were included as fixed effects variables. 
Analyses were performed using the R statistical software 
version 4.1.2 (R Foundation for Statistical Computing, 
Vienna, Austria).

Results
All seven animals completed the experiment, four of 
which were in the uninjured group and three in the lung-
injury group. The number of lung lavages required to 
induce significant injury varied between the three lung-
injured animals (1, 5 and 11 lavages) and the  PaO2 tra-
jectories for each lavage are provided in Additional file 2: 
Fig. S2.

Out of a total of 84 possible ventilatory conditions, 3 
were excluded due to the trough of the  PaO2 oscillation 
being below 13.3 kPa (100 mmHg), 3 were excluded due 
to the signal-to-noise ratio of the  PaO2 oscillations being 
less than 20 dB, and 5 were excluded due to alignment of 
the  PaO2 signal with the phases of ventilation not being 
possible (the  PaO2 signal did not recover rapidly enough 
after the reinstitution of ventilation to allow a distinct 
change-point to be identified). Following exclusions, 73 
ventilatory conditions (87% of total) were available for 
analysis.

The expiratory breath holds lasted 19.2 s (SD 1.6). Time 
delay between the restart of ventilation (as measured 
from the airway pressure trace) and the resultant change 
in the  PaO2 signal was 1.23 s (0.23).

Discernible  PaO2 oscillations were present in all venti-
latory conditions studied, with some ventilatory condi-
tions demonstrating  PaO2 oscillations with two peaks and 
two troughs per breath (Fig. 1). Five functional principal 
components were required to explain 95% of the variance 
in the results (Additional file 3: Fig. S3). AIC was mini-
mised with between 3, 4 and 5 clusters (Additional file 4: 
Fig. S4), and therefore, five clusters of  PaO2 oscillations 
were identified based upon five principal components. 
Individual functional principal component waveforms 
are provided in Fig. 2 with the first three principal com-
ponent estimates for each ventilatory condition provided 
in Fig. 3 and Additional file 5: Fig. S5. The allocation of 
 PaO2 oscillations from each individual ventilatory condi-
tion to their relevant clusters is provided in Fig. 4.

A progression in  PaO2 oscillation morphology was 
observed between the clusters ranging from cluster 5 
which demonstrated non-inverted oscillations with the 

upslope during inspiration and the downslope during 
expiration through to cluster 4 where the downslope 
was during inspiration and the upslope during expi-
ration. Intermediate clusters (3, 2 and 1 in order) 
demonstrated an upslope in early inspiration with a 
progressively large downslope in late inspiration fol-
lowed by a second peak in expiration. This progression 
was also seen in the first principal component, which 
explained 56.9% of the total variance in the  PaO2 wave-
forms (Additional file 6: Fig. S6, P < 0.001, R2 = 0.88).

Fig. 1 Example  PaO2 waveforms aligned with the phases 
of ventilation. Waveforms taken from animals ventilated 
with either low PEEP (5  cmH2O) and high tidal volume (15 mL/kg) 
(black lines) or those ventilated with high PEEP (12  cmH2O) and low 
tidal volume (7 mL/kg) (grey lines). Solid lines denote animals 
without experimental lung injury and dashed lines those with. Light 
grey background denotes inspiration

Fig. 2 Mean value of all normalized  PaO2 waveforms along with the 
first five eigenfunctions from functional principal component analysis 
(PC1 to PC5). Each individual normalized  PaO2 waveform can be 
estimated as a sum of the mean waveform with varying multiples 
(principal component estimates) of each eigenfunction. Light grey 
background denotes inspiration
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Each individual cluster contained ventilatory condi-
tions from at least three different animals, and all clus-
ters contained ventilatory conditions from both injured 
and uninjured animals. Cluster 4 was predominantly 
composed of ventilatory conditions from a single ani-
mal (Additional file 7: Table S1).

Table 1 presents the haemodynamic parameters asso-
ciated with each cluster. Given that cluster 4 was pre-
dominantly composed of data from a single injured 
animal, we also undertook a sensitivity analysis of the 
haemodynamic parameters with the exclusion of clus-
ter 4 (Additional file  8: Table  S2). In this sensitivity 
analysis, the variation in lung-injury indices and mean 
arterial pressure was no longer statistically significant 
amongst the clusters, however, but the variations in 

spirometry, cardiac output and pulse pressure variation 
persisted.

There was no association between either  PaO2 oscilla-
tion height (P = 0.07) or mean  PaO2 (P = 0.12) and cluster 
membership.

In an exploratory analysis assessing the effect of intra-
animal variability upon cluster membership, SD of the ran-
dom effects (animal) term was 0.74 clusters. Gradients for 
fixed effects terms were − 0.06 clusters/kPa (− 0.0077 clus-
ters/mmHg; P = 0.03) for  PaO2/FiO2 ratio and 0.065 clus-
ters/% (P = 0.002) for pulse pressure variation.

Fig. 3 Estimates of the first three principal components (PC1 to PC3) for each individual ventilatory condition. A multi-dimensional k-means 
clustering algorithm was applied to these estimates to identify the  PaO2 waveform cluster. The resulting clusters are denoted by colours 
and individual animals identified with shapes. An interactive 3D version of this figure is provided in Additional file 5: Fig. S5
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Discussion
In this pilot study in lung-injured and uninjured pigs 
undergoing mechanical ventilation, FPCA and k-means 
clustering identified distinct intra-tidal  PaO2 oscilla-
tion morphologies. A progression in the shape of the 

oscillations was noted, ranging from classically described 
ventilatory-dependent oscillations [2, 5], which rise in 
inspiration and decline in expiration (cluster 5), through 
development of a decline in early expiration (clusters 3, 
2 and 1) to fully inverted perfusion-dependent oscilla-
tions (cluster 4) [10]. This visual identification of a pro-
gression was supported by our analysis of the change in 
coefficients of the first principal component along the 
proposed cluster progression (Additional file 6: Fig. S6).

To the best of our knowledge, these  PaO2 oscillations 
with two peaks and troughs per breath (clusters 2 and 1) 
have not been previously described. Therefore, although 
this was primarily a pilot study to assess the feasibility of 
the analysis technique, we feel it is justified to hypothe-
sise the aetiology of these oscillations.

The progression of  PaO2 oscillation morphology was 
associated with increasing plateau pressure and driv-
ing pressure from cluster 5 through 3, 2 and 1 (Table 1). 
Assuming cluster 4 represents the most extreme mani-
festation of the development of a reduction in  PaO2 in 
early expiration, it could be expected that this trend 
would continue, but this was not the case. Alternatively, 
in this cluster the cardiac output was lower than imme-
diately preceding clusters. It may be hypothesised, there-
fore, that the development of inverted  PaO2 oscillations 

Fig. 4 Allocation of  PaO2 oscillations to each of the five identified 
clusters. Thin lines show all individual waveforms colour-coded 
by  PaO2 oscillation cluster membership. Thick lines denote per-cluster 
mean, and light grey background inspiration

Table 1 Association between cluster membership and cardiorespiratory parameters

Values represent mean (SD) unless otherwise stated. P values are result of one-way analysis of variance or χ2 test as appropriate comparing the individual clusters. 
Clusters arranged in progression from non-inverted (cluster 5) to inverted (cluster 4) morphology

Cluster 5 Cluster 3 Cluster 2 Cluster 1 Cluster 4 P
Non‑inverted 
ventilation‑
dependent

Intermediate Inverted 
perfusion‑
dependent

Lung injury

 Lung injured/uninjured ratio (% injured) 8/17 (32%) 5/13 (28%) 5/4 (56%) 3/3 (50%) 12/3 (80%) 0.02

  PaO2/FiO2 ratio (kPa) 44 (11) 43 (10) 39 (9) 39 (9) 25 (11) < 0.001

  PaO2/FiO2 ratio (mmHg) 332 (84) 323 (74) 291 (66) 294 (70) 188 (83) < 0.001

Lung mechanics

 Tidal volume (mL) 270 (114) 333 (88) 396 (117) 397 (134) 323 (107) 0.02

 PEEP  (cmH2O) 9 (3) 8 (2) 9 (3) 11 (1) 9 (3) 0.08

 Plateau pressure  (cmH2O) 19 (5) 20 (5) 26 (6) 30 (3) 22 (5) < 0.001

 Driving pressure  (cmH2O) 10 (4) 12 (5) 17 (6) 18 (3) 12 (4) < 0.001

 Dynamic compliance (mL/cmH2O) 28 (8) 28 (8) 24 (9) 22 (8) 26 (5) 0.55

 Mechanical power (J/min) 5.3 (3.8) 6.5 (2.6) 9.5 (3.3) 12.4 (3.1) 7.2 (3.9) < 0.001

Haemodynamic variables

 Cardiac output (L/min) 4.74 (1.13) 4.20 (1.21) 5.36 (0.93) 5.39 (0.95) 4.88 (0.88) 0.05

 Heart rate (/min) 125 (27) 110 (17) 146 (26) 125 (7) 132 (27) 0.01

 Mean arterial pressure (mmHg) 102 (19) 98 (18) 100 (12) 92 (25) 80 (10) 0.004

 Pulse pressure variation (%) 12.3 (5.7) 12.6 (5.3) 12.7 (4.0) 20.8 (4.2) 20.0 (8.3) < 0.001

 Central venous pressure (mmHg) 15 (2) 14 (2) 14 (1) 13 (2) 12 (2) 0.002

 Pulmonary artery pressure (mmHg) 27 (5) 26 (5) 25 (4) 24 (5) 29 (5) 0.24

 Systemic vascular resistance (dynes.s/cm5) 1546 (399) 1724 (430) 1348 (356) 1246 (556) 1161(329) 0.002
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is related to relative pulmonary hypoperfusion caused 
by the interaction of both increased airway pressures 
and reduced cardiac output. This result is supported by 
the finding that pulse pressure variation was increased 
in clusters 1 and 4 (Table 1) as well as a significant asso-
ciation between increasing pulse pressure variation and 
progression in cluster membership from non-inverted to 
inverted oscillations in our linear model.

During a sustained rise in intrathoracic pressure, 
such as is seen with a recruitment manoeuvre, there is a 
redistribution of pulmonary blood volume from well- to 
poorly aerated lung regions [24]. Such a redistribution 
has also been demonstrated during tidal ventilation in pig 
lung injury models [25]. It is, therefore, possible that the 
development of inverted oscillations is also related not 
solely to absolute variation in pulmonary perfusion, but 
the complex interplay between regional pulmonary aera-
tion and blood flow mediated by variations in mechanical 
ventilation and cardiac output.

In the intermediate clusters, we demonstrated a rise 
in  PaO2 at the start of inspiration, a dip towards the end 
of inspiration, a further increase in early expiration fol-
lowed then by a decline towards the end-expiratory 
value. In some clusters (3 and 2), the expiratory increase 
was greater than the peak inspiratory  PaO2 value. At 
a speculative level, it is possible that a progressively 
larger proportion of the lung exhibiting zone 2 physiol-
ogy determined these changes, where positive intratho-
racic pressure acts as a Starling resistor on post-capillary 
venules. Thus, even in the setting of perfect V̇/Q̇ match-
ing, where the pulmonary blood is well-oxygenated dur-
ing inspiration, only a small amount exits the lung and is 
seen by the  PaO2 sensor during inspiration. Upon release 
of the inspiratory pressure, a large volume of well-oxy-
genated blood leaves the lung and is seen by the  PaO2 
sensor. With progressive lung injury, however, the effects 
of intra-tidal variation in V̇/Q̇ matching, as described 
above, predominate. These hypotheses require confir-
mation with experiments that directly measure both 
regional V̇/Q̇ matching and cardiac output throughout 
the course of a single breath.

The effects of lung injury, as measured by  PaO2/
FiO2 ratio upon  PaO2 oscillation morphology are dif-
ficult to ascertain from our data. We did demonstrate 
a significant association between decreasing  PaO2/
FiO2 ratio and a progression in cluster membership 
from non-inverted to inverted oscillations in our linear 
model. In addition, there was a statistically significant 
variation in  PaO2/FiO2 ratio amongst the clusters; how-
ever, this variation disappeared in a sensitivity analysis 
that excluded cluster 4 (inverted oscillations) due it 
mainly comprising ventilatory conditions from a sin-
gle animal. In this case the results of such analyses are 

limited by the small sample size, which was rather cho-
sen to demonstrate the feasibility of the signal analysis 
methodology and demonstrate novel  PaO2 oscillation 
morphologies, rather than understand all potential 
aetiologies of these morphologies.

A significant strength of the methodology demon-
strated here for identification of unique morphologies 
of  PaO2 oscillation is that it is not based on any a priori 
assumptions about the shape of the waveform. FPCA 
simply generates a series of component functions which, 
in various combinations, are able to describe the origi-
nal waveforms [18]. For example, there is no input to 
the FPCA algorithm to bias it towards generating output 
waveforms that have peaks and troughs aligned with the 
switch from the inspiratory to the expiratory phase of 
mechanical ventilation. The fact that such a switch was 
associated with a brief dip in the  PaO2 waveform in clus-
ters 2 and 1 is reassuring in that the algorithm produces 
results that are physiologically plausible. We chose FPCA 
over other forms of complex signal analysis, for example, 
Fourier analysis, because it identifies multiple compo-
nents of the signal at the same frequency that comprise 
the  PaO2 signal. This approach is important, because we 
hypothesised that the primary input frequency to gen-
erate the  PaO2 oscillations is the respiratory frequency; 
therefore, the components of multiple harmonics of this 
frequency (as would be obtained by Fourier analysis) are 
arguably less relevant than the effect of multiple different 
signals at the same frequency (e. g. a cyclical R/D signal 
as distinct from perfusion variation signal). This benefit 
of FPCA has previously been exploited in analysing elec-
troencephalogram signals to identify multiple compo-
nents within similar frequency bands [26].

It is possible to simply use the coefficients of the FPCA 
component signals as clusters. For example, an individual 
waveform could be composed of 95% of the first principal 
component and 5% of the second. Therefore, this hypo-
thetical waveform could simply be classified as represent-
ing the first principal component. Unfortunately, this is 
problematic, because the principal component functions 
are ranked, i. e. the first explains more of the variance in 
all the signal than the second, which likewise explains 
more that the third, etc. However, by feeding the coef-
ficients of the principal component functions as inputs 
to a clustering algorithm [20] it is possible to determine 
clusters that do not necessarily align with the compo-
nent functions. For example, it may be possible to iden-
tify one cluster which has a 95%/5% split between the 
first two principal components and a second cluster with 
a 55%/45% split—both of these are predominantly com-
prised of the first principal component, but the cluster-
ing algorithm is able to differentiate them in a non-biased 
manner.
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Of note, even though we identified 5 unique morpholo-
gies of  PaO2 oscillation in this study, they appear to rep-
resent a progression of physiology rather than distinct 
phenotypes. This is a limitation of the clustering tech-
nique, which identifies distinct groups, rather than con-
tinuous progressions. The morphologies demonstrated, 
however, including non-inverted, biphasic, and inverted 
oscillations should form the basis of further studies aim-
ing to understand the aetiology of each component.

The major limitation with our study is the method used 
to align the  PaO2 waveforms with the phases of venti-
lation. This was based on the assumption that the time 
delay between a change in ventilation and a change in 
the  PaO2 waveform is constant between tidal ventilation 
and during a prolonged end-expiratory breath hold. Such 
an assumption may not hold if cardiac output is signifi-
cantly different between tidal ventilation and during the 
end-expiratory breath hold. It is plausible that cluster 5 
(where  PaO2 rises in inspiration and declines in expira-
tion) is actually similar to cluster 4 (which declines in 
inspiration and rises in expiration) shifted along the 
time axis, and this shift may have been artefactual due 
to errors in determining the time delay between the air-
way pressure and  PaO2 signals. This is less likely to be the 
case, however, due to the significant differences in physi-
ology seen between the various clusters. If the differ-
ence between cluster 5 and cluster 4 is purely related to 
measuring error, then the physiological variables would 
be expected to be randomly distributed between the two 
clusters, rather than distinct as seen in this study.

To reduce the number of animals required for this 
study, the experiments were performed on animals also 
involved in a separate study [12], and the choice of lung-
injury or not was dependent upon the requirements of 
this other study. It is unlikely that any significant bias 
was introduced by this approach, given that the primary 
grouping variable used in the analyses was  PaO2 oscilla-
tion cluster membership, rather than lung-injury or not. 
The previous experiment also dictated the maximum 
sample size available for the current experiments. Over-
all, we were able to include 73 individual ventilatory con-
ditions in our results, a number which either exceeds or 
is similar to the that used in previous work on  PaO2 oscil-
lations, which demonstrated significant inter-group dif-
ferences [8–10]. Therefore, we think that the number of 
animals and ventilatory conditions studied was appropri-
ate to separate the effects of common underlying physi-
ologies from any individual animal effect.

A final limitation of this study is that we required  PaO2 
to be greater than 100 mmHg throughout. In ARDS, an 
average  PaO2 greater than 105 mmHg is associated with 
adverse outcomes [27], and therefore, this requirement 
makes translation of continuous  PaO2 sensing technology 

to the bedside less appealing. It should be noted, however, 
that this requirement was merely to improve the discrim-
inative accuracy of the FPCA and clustering algorithms 
to detect unique  PaO2 oscillation morphologies. Once 
a larger database of potential  PaO2 morphologies (and 
their underlying physiologies) is collated, it should be 
eminently possible to clinically utilise the sensor at lower 
 PaO2 values and then compare the collected oscillations 
(with associated dampening due to haemoglobin desatu-
ration) against the archetypal oscillations presented here 
when such dampening is absent.

Conclusions
In this pilot study, we demonstrated the feasibility of 
FPCA in identifying unique morphologies of  PaO2 oscil-
lations during mechanical ventilation in a porcine model 
with different cardiorespiratory physiology. This study 
was not powered to demonstrate an inter-cluster dif-
ference in these physiologies, but aimed to validate the 
technique and identify  PaO2 morphologies that warrant 
further investigation with dynamic measures of lung 
perfusion (for example, dynamic dual-energy CT [25]). 
Such investigations would potentially allow separating 
any cyclical R/D signal in the signal from other signals, 
including oxygen utilisation during the breath [14] and 
pulmonary perfusion variations. Such experiments are 
essential prior to advocating  PaO2 oscillation analysis as 
a marker of cyclical R/D, if appropriate.

Take‑home message
Intra-tidal oscillations in arterial oxygen tension have 
been demonstrated in animal models of the acute res-
piratory distress syndrome. In this study functional prin-
cipal component analysis was used to identify unique 
morphologies of these oscillations which are potentially 
generated by distinct cardiorespiratory physiologies.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40635- 023- 00544-0.

Additional file 1: Figure S1. Example of alignment of  PaO2 signals with 
the phases of ventilation. The restart of mechanical ventilation following 
a prolonged breath hold at end-expiration was used to align the  PaO2 
waveform with airway pressure (Paw). At the end of a breath hold, the 
increase in airway pressure (black arrow) indicated the timepoint when 
inspiration began. Following this beginning of inspiration, the timepoint 
at which the  PaO2 waveform began to rise was visually identified (red 
arrow). The period between these two timepoints was applied retrospec-
tively to the tidal ventilation prior to the breath hold and used to align the 
two waveforms. a) The typical case where a discrete change point in the 
 PaO2 signal is present. b) The uncommon occurrence where a discrete 
change point in the  PaO2 waveform was not obvious. In this case, the 
intersection between two straight lines representing the gradient of the 
 PaO2 decline at the end of the breath hold and the rise during inspiration 
was used (shown here as dotted red lines).

https://doi.org/10.1186/s40635-023-00544-0
https://doi.org/10.1186/s40635-023-00544-0


Page 10 of 11Cronin et al. Intensive Care Medicine Experimental           (2023) 11:60 

Additional file 2: Figure S2. Trajectories of  PaO2 during lung lavage for 
the three lung injured animals. Each line represents a single lavage. Time-
point 0 represents the restart of ventilation at the end of the lavage. Points 
before this represent the  PaO2 at the start of the lavage and the  PaO2 at 30 
s intervals after the lavage is provided.

Additional file 3: Figure S3. Fraction of variance in the  PaO2 oscillation 
waveform data set explained by successive principal components. Bars 
represent the fraction explained by each individual principal component 
and the line is the cumulative sum of all principal components up to 
and including the current. Five principal components were required to 
explain ≥ 95% of the variance in the  PaO2 waveforms.

Additional file 4: Figure S4. Akaike Information Criterion (AIC) analysis to 
identify the optimum number of clusters. Given that k-means clustering is 
inherently stochastic, a Monte Carlo simulation was run over 10000 itera-
tions for each individual total number of clusters. Points denote mean and 
error bars SD of AIC. AIC was optimised with between 3 and 5 clusters.

Additional file 5: Figure S5. Coefficients of first three principal com-
ponents grouped by cluster membership (colours) and animal number 
(shapes).

Additional file 6: Figure S6. Effect of progression through clusters from 
5 (non-inverted, ventilation-dependent) through cluster 4 (inverted, 
perfusion-dependent) upon the estimates of each individual functional 
principal component (PC). In the first principal component a linear pro-
gression was noted (P < 0.001, R2 = 0.88). Each individual point represents 
the PC estimate for a single ventilatory condition.

Additional file 7: Table S1. Cluster membership by animal. Values repre-
sent number of ventilatory conditions from each animal included in each 
 PaO2 cluster.

Additional file 8: Table S2. Sensitivity analysis of effect of cluster mem-
bership upon cardiorespiratory parameters excluding cluster 4 which was 
predominantly comprised of ventilatory conditions from a single animal.  
Values represent mean (SD) unless otherwise stated.  P values are result 
of one-way analysis of variance or χ2 test as appropriate comparing the 
individual clusters.  Clusters arranged as per Table 1 with the exclusion of 
Cluster 4 (inverted, perfusion-dependent).
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