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Neurovirulent cytokines increase neuronal 
excitability in a model of coronavirus‑induced 
neuroinflammation
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Abstract 

Background  Neurological manifestations of severe coronavirus infections, including SARS-CoV-2, are wide-ranging 
and may persist following virus clearance. Detailed understanding of the underlying changes in brain function may 
facilitate the identification of therapeutic targets. We directly tested how neocortical function is impacted by the spe-
cific panel of cytokines that occur in coronavirus brain infection. Using the whole-cell patch-clamp technique, we 
determined how the five cytokines (TNFα, IL-1β, IL-6, IL-12p40 and IL-15 for 22–28-h) at concentrations matched 
to those elicited by MHV-A59 coronavirus brain infection, affected neuronal function in cultured primary mouse neo-
cortical neurons.

Results  We evaluated how acute cytokine exposure affected neuronal excitability (propensity to fire action poten-
tials), membrane properties, and action potential characteristics, as well as sensitivity to changes in extracellular 
calcium and magnesium (divalent) concentration. Neurovirulent cytokines increased spontaneous excitability 
and response to low divalent concentration by depolarizing the resting membrane potential and hyperpolarizing 
the action potential threshold. Evoked excitability was also enhanced by neurovirulent cytokines at physiological 
divalent concentrations. At low divalent concentrations, the change in evoked excitability was attenuated. One hour 
after cytokine removal, spontaneous excitability and hyperpolarization of the action potential threshold normalized 
but membrane depolarization and attenuated divalent-dependent excitability persisted.

Conclusions  Coronavirus-associated cytokine exposure increases spontaneous excitability in neocortical neurons, 
and some of the changes persist after cytokine removal.
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Background
Serious neuropsychiatric manifestations of SARS-CoV-2 
infection include impaired cognition, altered attentive-
ness, reduced consciousness, seizures, and abnormal 
movements [1–4]. The persistence of some neuropsy-
chiatric features beyond clearance of the infection 
underlines the need for new treatments [4, 5]. The cor-
onavirus-mediated modifications of neuronal activity 
and connectivity that underlie these acute and chronic 
clinical changes are unknown. Changes at the single neu-
ron level will alter interneuronal communication and 
thereby modify the computational properties of circuits 
and higher level function [6]. Consequently, therapeutic 
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target identification requires a more detailed understand-
ing of the underlying pathogenesis [7]. Emerging data 
indicate that neuronal injury in COVID-19 could arise 
from either sterile inflammation or direct viral infection 
of the brain [8–12]. The mouse coronavirus, MHV-A59, 
was utilized as part of an animal model to safely study 
the actions of the virulent coronaviruses SARS-CoV-1 
and MERS-CoV [13]. MHV-A59 is also similar to SARS-
CoV-2, as both viruses possess a spike glycoprotein, 
concentrate in the olfactory mucosa, cause respiratory 
diseases including ARDS, and lead to acute encephalitis 
and neuroinflammation [8, 9, 13, 14].

Neuroinflammation, identified by elevated levels of 
brain cytokines, occurs in COVID-19 and is associated 
with acute neurological disturbances, persistent structural 
changes, and severe disease [15–17]. Moreover, markers of 
neuronal injury such as neuron-specific enolase and S100B 
correlate with virulence in COVID-19 [18, 19]. MHV-A59 
brain infection elevates five proinflammatory cytokines: 
TNFα, IL-1β, IL-6, IL-12p40, and IL-15. The cytokine sig-
nature differs when coronavirus infects the brain com-
pared to when the virus stays outside the central nervous 
system [20]. We hypothesized that the specific neuro-
virulent cytokines (NVC), at concentrations matched to 
those elicited by MHV-A59 coronavirus infection, would 
change neuronal function. Our rationale was that deter-
mining how neuronal function was altered by NVCs would 
provide a foundation to later identify druggable targets 
that may reduce or reverse the neuronal and neurologi-
cal dysfunction associated with viral neuroinflammation 
[21]. Neocortical neurons were studied because of the 
global cortical distribution of inflammation in COVID-19 
patients with impaired neurological function [3, 22]. We 
directly assessed neuronal excitability by studying the fre-
quency of action potentials (APs), the fundamental electri-
cal signal in neurons [23, 24]. A priori it was unclear how 
NVCs would affect neuronal function overall so we used 
a range of stimuli to more broadly explore the parameter 
space of excitability. We examined if NVCs affected the 
response to a range of current injections as well as reduced 
extracellular divalent concentration (calcium and mag-
nesium). Decreased extracellular calcium concentration 
([Ca2+]o) increases the propensity of neurons to fire APs 
while reducing the probability of synaptic transmission 
[29]. Substantial decreases in extracellular calcium occur in 
association with physiological stimuli and acute neurologi-
cal insults [25–28]. While viral encephalitis reduces serum 
calcium and increases extracellular brain levels of calcium-
binding proteins [30, 31], it is unclear if brain [Ca2+]o is sig-
nificantly reduced by coronavirus infection. We report that 
NVCs depolarized neurons and increased baseline excit-
ability while simultaneously changing neuronal sensitivity 
to the microenvironment. Cytokine clearance promptly 

normalized baseline excitability without reversing mem-
brane potential depolarization, but the changes in sensitiv-
ity to the microenvironment were more complex. The loss 
of sensitivity to divalents persisted for evoked activity, while 
spontaneous response to decreased divalents was substan-
tially attenuated following cytokine clearance. These data 
indicate that at least two mechanisms underlie the changes 
in neuronal function following exposure to coronavirus-
associated cytokines.

Methods
Primary neocortical cultures
All animal procedures were approved by VA Portland 
Health Care System Institutional Animal Care and Use 
Committee in accordance with the U.S. Public Health Ser-
vice Policy on Humane Care and Use of Laboratory Ani-
mals and the National Institutes of Health Guide for the 
Care and Use of Laboratory Animals (IRBNetID: 1,659,311, 
Protocol 4359-20). Neocortical neurons were isolated from 
1- to 2-day-old mice of both sexes from a stable breeding 
colony of wild-type  C57BL/6JX129X1 mice as described 
previously [32]. Briefly, animals were decapitated follow-
ing anesthesia with isoflurane and cerebral cortices were 
removed. Cortices were incubated in trypsin and DNase 
(5 mg/mL and 0.1 mg/mL for 5 min at 34° C) and disso-
ciated with heat polished pipettes. Dissociated cells were 
maintained in Minimum Essential Medium with Earle’s 
balanced salt solution (MEM/EBSS, HyClone Labs, South 
Logan, UT) plus 5% fetal bovine serum (FBS) on glass 
coverslips in an incubator (humidified air and 5% CO2) 
at 37° C. Cytosine arabinoside (4 µM) was added 48–72 h 
after plating to limit glial division. Cells were used after 
10–30 days in culture.

Preparation of neurovirulent cytokines
NVC cytokines were applied at final concentrations 
described in Table  1 below. These levels were selected to 
match average values measured in astrocytes infected with 
MHV-A59 for TNFα, IL-6 and IL-12p40 [20]. The concen-
trations of IL-1β and IL-15 were estimated by multiplying 
basal values by the expression level ratios for control and 
infected cells. NVC stock solution was prepared imme-
diately prior to application and contained all cytokines at 
100 or 1000-times the final concentrations listed in Table 1 
below combined in water. The individual stock solutions 
used to prepare the NVC solution were made by dissolv-
ing lyophilized cytokines (Peprotech, NJ) in MEM plus 5% 

Table 1  Neurovirulent cytokine concentrations (pg/ml) used

Cytokine TNF-α IL-1β IL-6 IL-12 p40 IL-15

Conc. (pg/ml) 185 400 380 690 1
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FBS or water plus 0.1% BSA at 0.1–0.5  µg/µL and stored 
at −80  °C in individual aliquots. In control experiments, 
equivalent solutions minus the cytokines were used to treat 
the cultures.

Electrophysiological recordings
Adjacent coverslips on the same culture plate were 
treated with NVC solution (1% or 0.1% v/v) or vehicle 
control (0.0002% BSA) for 22–28 h after which the cover-
slips were transferred to a recording chamber and contin-
uously perfused with extracellular Tyrode solution (Ca1.1) 
containing (in mM): 150 NaCl, 4 KCl, 10 HEPES, 10 glu-
cose, 1.1 MgCl2, 1.1 CaCl2, pH corrected to 7.35 with 
NaOH. Solutions were applied by gravity from a glass 
capillary (1.2 mm outer diameter) placed 1–2 mm from 
the neuron under study. Recordings were made using an 
amplifier (Heka EPC10, Lambrecht, Pfalz, Germany) and 
5–10 MΩ resistance electrodes. Recordings were filtered 
at 2.9 kHz and acquired by digitizing at 20 kHz. Approxi-
mately 5 min after establishing whole-cell configura-
tion and balancing the amplifier circuits, neurons were 
subjected to current injection protocols as described in 
individual experiments. Recordings were made in Ca1.1 
prior to switching over to a similar solution with reduced 
divalents (Ca0.2, 0.2  mM CaCl2 and MgCl2). The patch 
electrode contained the following (in mM): 135 K-gluco-
nate, 10 HEPES, 4 MgCl2, 0.3 NaGTP, 4 NaATP, 10 phos-
phocreatine disodium, pH corrected to 7.20 with KOH. 
All reagents were supplied by Sigma-Aldrich (St. Louis, 
MO). Voltages were corrected for liquid junction poten-
tials. Experiments were performed at 21–23° C.

Statistical analysis
Analysis was performed using Igor Pro (Wavemetrics, 
OR). APs were identified as brief deflections from the 
resting membrane potential (RMP) that peaked at or 
above − 20 mV. AP threshold was measured as the point 
at which dV/dt reached 40  mV/ms (see Supplemental 
Figure s3A). AP amplitude was defined as the voltage dif-
ference between membrane potential and peak. AP half-
width was defined as the time between rising and falling 
phases of the AP, measured at the midpoint between 
the peak and membrane potential. To standardize the 
approach and minimize variation, measurements were 
restricted to the first AP elicited by a 40 pA injection. 
Only neurons that fired APs in both Ca1.1 and Ca0.2 were 
subject to analysis of AP characteristics in order to ena-
ble paired analysis. All data values were reported as mean 
(± SE). Statistical tests were performed using IBM SPSS 
v28 or GraphPad Prism 9. Data from control and NVC-
treated neurons at Ca1.1 and Ca0.2 were analyzed using 
two-way repeat measures ANOVA. For groups exhibit-
ing a significant interaction between divalent change and 

NVC treatment (P < 0.05), we performed simple main 
effects analysis. If there was no interaction, we analyzed 
the individual group differences (NVC or divalents) inde-
pendently. Post hoc tests were performed when appropri-
ate by Sidak’s multiple comparison tests. For analyzing 
contingencies, such as comparing the likelihood of neu-
rons staying electrically silent, we used the Fisher exact 
test. For comparing two individual groups, we used the 
Student’s t-test.

Microarray analysis of gene expression in neocortical 
cultures
Data from microarray analysis used to characterize RNA 
expression levels of receptors for cytokines in these cul-
tures are available at NCBI GEO (GSE218028) [33] and 
shown in Additional file 1: Table S1.

Results
NVC increases spontaneous excitability
Action potentials are transient membrane depolariza-
tions that propagate along neuronal processes and may 
evoke synaptic transmission, a major form of interneu-
ronal communication. The propensity of neurons to gen-
erate APs (excitability) can be evaluated by measuring 
AP frequency [23, 24]. APs occur when changes in mem-
brane conductance, usually due to presynaptic release of 
neurotransmitter, depolarize the membrane potential to 
threshold. Initially, we tested if NVC incubation changed 
the propensity to fire spontaneous APs under resting 
conditions. In neurons at resting membrane potential, 
activity was low and 13/42 neurons (31%) fired APs spon-
taneously over a 100-s period. NVC-treated neurons 
were more excitable, and 18/24 (75%) fired APs over the 
same time (P = 0.0008, Fisher’s exact test).

We next tested how reduced extracellular divalent 
concentration affected neuronal excitability, because 
decreases in external calcium change brain activity in 
physiological and pathophysiological conditions [25–28]. 
We counted the spontaneously occurring APs acquired 
over 100  s in physiological solution (Ca1.1), and after 
reducing extracellular divalent concentrations (Ca0.2, 
Fig. 1A). NVC treatment (P = 0.017) and reduced divalent 
concentration (P < 0.0001) both substantially increased 
AP firing with no interaction (Fig. 1B). Our finding that 
NVC treatment increases the likelihood of AP generation, 
indicates neuroinflammatory cytokines change the func-
tional properties of neocortical neurons.

Usually, lowered extracellular divalent concentration 
increases neuronal excitability, in part, by facilitating acti-
vation of voltage-gated sodium channels (VGSCs) and 
depolarizing the membrane potential [32]. NVC treat-
ment substantially depolarized RMP in Ca1.1 (Fig. 1C,  P 
= 0.025) and Ca0.2 (P < 0.0001). The independent variables 
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interacted such that NVC increased the divalent-depend-
ent depolarization (P = 0.016). The enhanced sensitiv-
ity to divalents was also illustrated by comparing RMP 
depolarization upon switching to Ca0.2 (2.7 ± 1.1  mV 
and 8.1 ± 1.9  mV for control and NVC-treated neurons, 
respectively, P = 0.019, Additional file 1: Fig. S1A). NVC 

and Ca0.2 depolarized the membrane potential towards 
the AP threshold, presumably contributing to the 
observed increase in excitability. This may arise due to 
shifts in VGSC gating or activation of other membrane 
conductances [32, 34–36].

NVC clearance rapidly restores baseline spontaneous 
activity
We evaluated if NVC-mediated changes in neuronal 
function were affected by the removal of cytokines. 
The fraction of neurons in which spontaneous APs 
were recorded ~ 1  h after clearance of NVC (NVCc), 
was similar to control (P > 0.99, 5/15 (33%) of NVCc 
and 13/42 (31%) of control neurons). Similarly, NVCc 
reduced the total number of APs generated in Ca1.1 in 
contrast to sustained NVC treatment (Fig.  2B). How-
ever, NVCc-treated neurons were surprisingly differ-
ent to both control and NVC-treated neurons in terms 
of their sensitivity to external divalent concentration. 
In NVCc-treated neurons, application of Ca0.2 did not 
change AP count (Fig.  2B; P = 0.99), which contrasted 
with control and NVC-treated neurons (Figs.  1B, 2B). 
In NVCc-treated neurons, cytokines and reduced diva-
lents both independently depolarized the RMP (Fig. 2C, 
P < 0.0001, P = 0.0004) as observed with NVC treatment 
(Fig.  1C). However, the lack of an interaction between 
cytokines and reduced divalents represented another 
difference between NVC- and NVCc-treated neurons 
(Supplemental Figure s1). The loss of exaggerated depo-
larization with the switch to low divalent levels in the 
NVCc-treated neurons, is likely to contribute to the 
coincident change in divalent-dependent excitability. 
Overall, while NVCC-treated neurons exhibited reduced 
[Ca2+]o-dependent excitability, the NVC-mediated 
changes in RMP persisted.

NVC attenuates divalent‑dependent increase in evoked 
APs
In addition to counting spontaneous APs, neuronal excit-
ability can be evaluated by eliciting APs with depolariz-
ing currents [37]. This approach may enhance our ability 
to detect decreases in excitability by increasing the basal 
activity. We injected depolarizing currents from RMP 
and the number of APs increased with current ampli-
tude and Ca0.2 as expected for control neurons (Fig. 3A, 
B, [32]). NVC treatment did not affect neuronal excit-
ability when assessed by the number of APs elicited by 
current injections (Fig.  3C, P = 0.91), in contrast to its 
action on spontaneous activity (Fig. 1B). Overall, lower-
ing the external divalent concentration increased the AP 
count (P = 0.0008) but this was confined to control neu-
rons (Fig.  3C, P = 0.0005). This attenuation of evoked 
divalent-dependent excitability in NVC-treated neurons 
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Fig. 1  NVC increases spontaneous excitability. A Representative 
voltage tracers of spontaneous APs. Blue represents control 
and red, NVC. Shaded area indicates Ca0.2. Each trace represents 
160 s of continuous acquisition. B Violin density plots (shaded) 
showing total AP count at 100 s in Ca1.1 and Ca0.2. Paired values 
represented by connected open circles showing change in AP 
count following divalent switch from Ca1.1 to Ca0.2. Diamonds 
indicate mean values, solid Ca1.1 and open Ca0.2. Mean AP counts 
in control were 35 ± 15 in Ca1.1, increasing to 670 ± 170 in Ca0.2. NVC 
exposure increased AP counts in Ca1.1 to 448 ± 131 and 1002 ± 182 
in Ca0.2. Two-way repeated measures (RM) ANOVA suggested 
no interaction between divalent reduction and NVC (F(1,45) = 0.099, 
P = 0.753). However, both divalents (P < 0.0001) and NVC (P = 0.017) 
independently increased AP counts. Post hoc testing with Sidak 
multiple comparisons reveals divalent change increased firing 
in both control (P = 0.001) and NVC (P = 0.004). NVC increased AP 
firing at Ca1.1 (P = 0.002) but not Ca0.2 (P = 0.190), N = 24 (control) 
and 23 (NVC), respectively. C Plot with individual values of RMP. RMP 
in control was -78.4 ± 1.5 mV in Ca1.1 and −75.7 ± 1.5 mV in Ca0.2. 
NVC treatment depolarized neurons to −72.1 ± 1.6 mV in Ca1.1 
and −64.0 ± 2.3 mV in Ca0.2. Solid circles represent Ca1.1 and open 
circles, Ca0.2. Two-way RM ANOVA indicates that divalent reduction 
and NVC treatment interact to depolarize RMP (F (1,48) = 6.281, 
P = 0.016). Post hoc testing with Sidak multiple comparisons 
reveals that NVC depolarizes RMP at both Ca1.1 (P = 0.025) and Ca0.2 
(P < 0.0001). N = 26 (control) and 24 (NVC). Solid diamonds with error 
bars represent mean ± SEM. Control indicated by blue and NVC, red. 
Statistically significant P-values in this figure and all others denoted 
by schema * < 0.05, ** < 0.01, *** < 0.001 and **** < 0.0001
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contrasted with our observations on spontaneous activity 
(Fig. 1 and Additional file 1: S1). The membrane potential 
deflection appeared reduced following current injection 
in the NVC-treated neurons consistent with a reduced 
input resistance. However, measurement of the volt-
age deflection elicited by −20 pA injections revealed the 
trend towards a lower input resistance was non-signifi-
cant (P = 0.269, Additional file 1: Fig. S2A).

We next examined if cytokine removal affected evoked 
excitability. NVCc-treated cells were insensitive to the 
switch from Ca1.1 to Ca0.2 when assessed by current 

injection (Fig.  4A–C) similar to NVC-treated neurons 
(Fig. 3). In addition, both NVC- and NVCc-treated neu-
rons showed trends towards increased basal activity in 
Ca1.1. Taken together, these data indicate that the impact 
of NVC on excitability depends on the approach used to 
measure excitability.

NVC transiently modifies AP threshold
There are many mechanisms by which changes in AP 
shape elicit short- and long-term alterations in neuronal 
excitability [23, 24, 38]. We tested how AP character-
istics were affected by NVC treatment. The effects of 
NVC treatment and external divalent concentration on 
AP threshold interacted (Fig. 5A) [32]. As expected, AP 
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and NVC treatment (F (1,48) = 3.616, P = 0.06) or independent effect 
of NVC (P = 0.91) but decreasing divalents had an effect (P = 0.0008). 
Post hoc analysis with Sidak multiple comparisons shows different 
effects in control and NVC, with increase in average cumulative AP 
count in control (P = 0.0005) but no effect of NVC (P = 0.436). N = 26 
and 24 for control and NVC groups
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threshold was hyperpolarized by Ca0.2 in control neu-
rons [32]. In NVC-treated neurons, the AP threshold was 
relatively hyperpolarized in Ca1.1 and unaffected by the 
switch to Ca0.2 (Fig. 5A). Shifts in RMP and threshold will 
both impact excitability because spike generation is more 
likely when the gap between RMP and AP threshold 
decreases which may account for the divalent-depend-
ent evoked excitability in controls (Fig. 3A). However, in 
NVC-treated neurons there was no significant change 
in the number of APs following the switch from Ca1.1 to 
Ca0.2 (Fig.  3C) despite the relatively hyperpolarized AP 
threshold and depolarized RMP.

Cytokine-mediated changes to AP threshold were 
quickly reversed following NVC clearance. AP thresholds 
(Fig.  5B) were indistinguishable in control and NVCc 
groups and were similarly hyperpolarized by lowering 
divalent levels (P = 0.004 and 0.041 for control and NVCc, 
respectively). In NVCc-treated neurons, the absence of 

divalent-dependent excitability (Fig.  4) despite the diva-
lent sensitivity of AP threshold (Fig. 5B) indicates that AP 
threshold changes do not explain the cytokine-generated 
alterations in excitability. NVC did not independently 
affect AP amplitude (P = 0.281) and AP half-maximal 
width (P = 0.796, Additional file 1: Fig. S3) and NVCc had 
no independent effect on AP amplitude (P = 0.082) and 
AP half-maximal width (P = 0.473, Additional file 1: Fig. 
S4B, C).

Discussion
Using the MHV-A59 model, originally developed to 
study the SARS and MERS coronaviruses, we investi-
gated the action of a specific panel of NVCs on neo-
cortical neurons. Our major finding was that day-long 
exposure to the specific panel of NVCs produced an aver-
age 12.8-fold increase in the likelihood of spontaneous 
action potential generation (Fig.  1B). Despite this large 
increase in excitability, NVC-treated neurons retained 
their ability to detect and respond to decreases of the 
divalent ion concentration in the extracellular environ-
ment (Fig. 1B). However, divalent-dependent excitability 
was lost by NVC-treatment when the APs were elic-
ited by current injection (Fig.  3). We also determined 
that NVCs depolarized the resting membrane potential, 
increased the sensitivity of the membrane potential to 
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decreased [Ca2+]o and hyperpolarized the AP threshold. 
Only the effects of NVCs on resting membrane poten-
tial and evoked divalent-dependent excitability per-
sisted after cytokine removal (Figs.  2C, 4C). Otherwise, 
NVCC-treated cells and control neurons were indistin-
guishable except for the unexpected loss of spontaneous 
divalent-dependent excitability (Fig. 2).

It is not immediately apparent how NVC application 
caused these many changes in neuronal function and 
how the changes interacted. The action of low divalents 
was studied because [Ca2+]o decreases by 30–90% during 
times of high neuronal activity and following acute neu-
rological insult [25–28], and this stimulus modifies neu-
ronal excitability [32, 37, 39]. As mentioned above, we 
hypothesized that incorporation of [Ca2+]o as a parame-
ter would expand our study of the effects of NVC, but we 
were surprised by their different effects on spontaneous 
and evoked excitability (Figs. 1, 3). Previously, spontane-
ous and evoked APs were both used as fairly equivalent 
measures of excitability [32, 40]. In our recordings, the 
evoked APs occurred as a result of experimental depo-
larizations (1  s), whereas spontaneous APs were more 
likely to result from synaptic inputs. Consequently, the 
enhanced effect of NVC on spontaneously measured 
excitability may have arisen if NVCs were acting in part, 
by increasing excitatory synaptic transmission. Another 
important finding was the rapid reduction in spontane-
ous excitability to control levels only one hour after NVC 
removal (Fig. 2B). On its own, this suggested the impact 
of NVCs on neuronal function was rapidly reversible 
consistent with a direct pharmacological effect. How-
ever, the associated loss of calcium-dependent excitabil-
ity (Fig. 2B) indicated some additional sustained effects of 
NVCs. Persistent effects were also apparent in the experi-
ments evaluating evoked excitability after NVC clearance 
(Fig. 4B) which were indistinguishable from those where 
NVCs were not removed. Our evaluation of excitability 
under a range of conditions, point to two or more mecha-
nisms working together, and that one causes effects that 
persist for at least an hour after NVC clearance.

NVC depolarized the RMP, hyperpolarized the AP 
threshold, and increased divalent-dependent depolariza-
tion (Fig. 1C, 5A). The changes in RMP and AP threshold 
both reduced the voltage deflection required to trigger an 
AP following a depolarizing synaptic input. The height-
ened sensitivity of the RMP to decreased extracellular 
divalent concentrations also increased neuronal excit-
ability by further depolarizing the neuron towards the AP 
threshold. The increase in synaptic activity, hypothesized 
to explain the pronounced effects on spontaneous excita-
bility (Fig. 1) could arise as a result of changes in RMP, AP 
threshold, calcium-dependent excitability or represent a 
distinct action of cytokines. The measured  increases in 

excitability,  were all expected to alter the input–output 
functions of individual neurons, increase the likelihood 
of AP-evoked synaptic transmission, modify the compu-
tational properties of circuits and consequently, behav-
iors [41–43].

A key finding was the apparent stability of the NVC-
induced changes in RMP (Figs. 1C, 2C), contrasting with 
the reversibility of the changes in AP threshold (Fig. 5), 
and may point to the mechanisms behind the changes 
in excitability. Using this approach, the reversal of spon-
taneous activity in Ca1.1 could reflect the change in AP 
threshold with NVC clearance, whereas the sustained 
changes in evoked calcium-regulated excitability could 
depend on the largely intact NVC-mediated changes in 
RMP. Further complexity is indicated by the complete 
loss of spontaneous calcium-dependent excitability after 
NVC clearance which starkly contrasts with the intact 
calcium-dependent excitability after sustained NVC-
treatment. In addition, it may be necessary to invoke 
downregulation of synaptic activity as a result of cytokine 
induced homeostatic plasticity [44] to explain the rapid 
switch from heightened to absent calcium-dependent 
excitability in the NVC- and NVCC-treated neurons.

We have not yet experimentally addressed the mech-
anisms of action of NVC on neuronal function. The 
transient effects of NVC on RMP depolarization, AP 
threshold, and excitability could have arisen in a number 
of ways. The VGSC is an important candidate because 
a gating shift could increase channel availability, result-
ing in an increase in persistent VGSC currents, hyper-
polarization of the AP threshold, and an increase in the 
likelihood of AP generation [32]. This would also explain 
the enhanced depolarization following the switch to 
Ca0.2 as divalent-dependent depolarization is mainly 
due to increased VGSC current in these neurons [32]. 
VGSC regulation by GPCRs and intracellular messen-
gers usually increases VGSC inactivation [45, 46] so the 
observed NVC actions would require reversal of one of 
these pathways [47] or a counteracting mechanism [48]. 
Mechanisms that may contribute to the observed tran-
sient effects of NVCs, also include functional changes in 
one or more other ion channels. For instance, reduced 
potassium channel activity, including the two-pore leak 
channels, or increased non-selective channel activity, 
such as hyperpolarization-activated, cyclic nucleotide 
gated channel (HCN), at baseline, would depolarize the 
neurons and increase the likelihood of AP generation. 
The change in AP threshold might also be attributable 
to potassium channel closure, while increased divalent 
sensitivity of the RMP could reflect upregulation of a 
[Ca2+]o-sensitive non-selective cation channel such as 
calcium homeostasis modulator (CALHM1) [36] or the 
sodium leak channel non-selective protein NALCN [35]. 
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In addition to these post-synaptic mechanisms, enhanced 
excitatory synaptic transmission could also contribute 
to the transient effects of NVC by increasing the likeli-
hood of AP generation. The persistent effects of NVC 
treatment observed after NVC clearance may have arisen 
from changes in expression levels of membrane proteins 
that impact the RMP. Candidates include many of the 
channels listed above as well as the sodium–potassium-
ATPase pump. Interest in a potential role for some of 
these targets is heightened by reports linking their regu-
lation by neuroinflammation. Inhibition of HCN chan-
nels has known anti-inflammatory effects [49], while 
CALHM1 and potassium channels are thought to be 
activated by inflammation [50]. Future experiments will 
focus on determining the involvement of these candidate 
mechanisms in the regulation of excitability by NVCs in 
order to identify therapeutic targets.

Neuropsychiatric illnesses occur during and follow-
ing infection with coronaviruses and are important con-
tributors to the morbidity of the COVID-19 pandemic. 
Inflammation of the brain and the associated encepha-
lopathy may occur early in the disease course, especially 
in the setting of severe illness [1–3], and present as delir-
ium. Using the MHV-A59 model, originally developed to 
study severe coronavirus infections, we determined that 
the viral cytokine signature substantially changed neu-
ronal function. If we were to speculate about the clinical 
implications of this study, then the changes in neuronal 
function during (NVC) cytokine application could repre-
sent the changes underlying acute illnesses such as delir-
ium or encephalopathy. Likewise, the changes observed 
in the NVCC-treated neurons might explain post-viral 
illnesses such as long-COVID. Other viral illnesses have 
also been associated with neuroinflammation, clinical 
seizures, and chronic neurodegeneration [51, 52]. While 
there is some overlap in the types of cytokine that are 
elevated in the various viral encephalitides, it is clear that 
a distinct group of cytokines has not been identified as 
responsible for the neuropsychiatric manifestations of 
all types of viral illness [52, 53]. Individually cytokines 
have a multiplicity of actions on neuronal function [54, 
55], and it is unclear if the cytokine signatures of other 
viruses would alter neuronal function in the same ways as 
the NVCs we utilized here. However, the increased neu-
ronal excitability we observed with sustained cytokine 
exposure, could feasibly predispose to seizures, a com-
mon clinical manifestation of encephalitis.

Intrinsic neuronal function and synaptic transmission 
in the primary neocortical culture share many properties 
with those observed in the acute brain slice [24, 56] sup-
porting our use of this preparation here. Moreover, the 
neocortical culture expresses receptors to the NVC panel 
(Table 1) and its use facilitated the direct and safe testing 

of how neuronal function was affected by prolonged 
exposure to the cytokine signature of a coronavirus CNS 
infection [20]. However, an in  vivo model remains an 
important next step to directly study the pathogenesis 
of SARS-CoV-2-associated delirium and encephalopathy 
as it would facilitate the linking of changes in neuronal 
function with altered behavior. Such a model would 
also enable studies to determine if the effects of NVCs 
changed with neurodevelopment. Addressing these 
limitations, would better position us to identify and test 
plausible druggable targets to reduce the dysfunction 
associated with coronavirus neuroinflammation. Another 
question raised by the study is whether similar changes in 
neuronal excitability occur with other types of infection? 
The answer will help determine if the mechanisms under-
lying neuropsychiatric manifestations of other infections 
overlap. Finally, experiments extending the duration of 
exposure with NVC are required to begin understanding 
the consequences of prolonged neuroinflammation aris-
ing from SARS-CoV-2 infection.

Conclusions
In conclusion, we have described the changes in neuronal 
function that occur following exposure to the cytokine 
signature of a serious central coronavirus infection. 
This dysfunction was partially reversible and included 
a substantial increase in excitability, altered sensitivity 
to changes in the extracellular microenvironment, and 
depolarization of the resting membrane potential.
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