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Take‑home message
Proper ventriculo-arterial coupling results in optimal 
cardiac output, adequate peripheral organ perfusion, and 
efficient circulation.

The relation between stroke volume and the developed 
arterial pressure defined by the relative elastances of the 
left ventricle and arterial circuit reflect ventriculo-arterial 
coupling. Decoupling of either or both commonly occur 
in sepsis and are associated with inefficient LV ejection 
that can lead to LV failure. Ventriculo-arterial decoupling 
in sepsis can lead to decreased effectiveness of cardiovas-
cular treatments.

Introduction
The left ventricular (LV) ejection phase interaction 
between the cardiac function and the arterial system is 
called ventriculo-arterial coupling (VAC) and reflects 
global cardiovascular performance and efficiency [1]. The 
goal of LV ejection is to increase central arterial pres-
sure, such that the organs downstream can autoregulate 
their inflow of blood relative to their metabolic needs. 
The determinants of VAC linkage are complex, but beat-
to-beat VAC analysis can be assessed at the bedside and 
help define cardiovascular status and predict responses 
to therapies. Similar VAC occurs for the right ventri-
cle (RV), but is usually not clinically relevant, because 

pulmonary arterial load is low. However, if pulmonary 
arterial pressure rise RV VAC would also become clini-
cally relevant.

Septic shock is a life-threatening condition resulting 
from an uncontrolled host inflammatory response to 
infection [2] leading to acute cardiovascular decompen-
sation and severe hemodynamic impairment. A primary 
feature of septic shock is systemic arterial hypotension 
owing to vasoplegia, which itself impairs peripheral per-
fusion, leading to inadequate tissue oxygen delivery inde-
pendent of total blood flow. The associated intracellular 
metabolic disturbances result in profound microcircula-
tory disturbances and multi-organ dysfunction [4].

In this regard, septic shock can disrupt the normal 
interaction between both the heart ejecting its stroke 
volume and the arterial central vessels receiving it caus-
ing ventricular–arterial decoupling. Such decoupling in 
septic shock is a key factor in the pathologic processes of 
hemodynamic instability [1] and the main determinant of 
cardiovascular responsiveness to specific therapies [3].

This review will focus on the macro-physiological 
aspects of LV VAC in septic shock and why treatments 
aimed at restoring cardiovascular homeostasis are 
affected.

What is ventriculo‑arterial coupling (VAC)
Ventriculo-arterial coupling (VAC) refers to the dynamic 
interaction between the ventricular pump ejection and 
the subsequent change in arterial pressure [3, 5–7]. It 
reflects global cardiovascular performance and efficiency. 
As such VAC describes the relationship between the con-
tractile function of the ventricles (the left and right ven-
tricles) and the arterial load during each cardiac cycle. 
As such changes in VAC, either due to disease, time or 
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treatments may trend in ways independent of microcir-
culatory blood flow and end-organ function, as often do 
all macrocirculatory measures during shock resuscita-
tion. The left ventricle is responsible for pumping oxygen-
ated blood into the systemic circulation, while the right 
ventricle pumps deoxygenated blood into the pulmonary 
circulation. The arterial load refers to the resistance that 
the ventricles encounter when pushing blood into the 
central arterial compartment. In an optimally coupled 
system, the ventricles effectively match their pumping 
ability with the arterial load and with a resultant arte-
rial pressure allowing peripheral autoregulation of blood 
flow throughout the vascular tree. Healthy VAC results in 
optimal cardiac output, adequate peripheral organ per-
fusion and an efficient circulation, while an imbalance, 
referred to as “uncoupling”, can lead to impaired cardiac 
function and potential cardiovascular failure [1]. Under-
standing and maintaining VAC is useful for assessing 
cardiac performance and designing effective treatments 
for various cardiovascular conditions [8]. VAC can be 
graphically described using ventricular pressure–volume 
relations during a cardiac cycle and superimposing the 
associated arterial pressure to stroke volume relation.

Left ventricular systolic pump function can be sim-
plistically quantified as the end-systolic pressure–vol-
ume relations (ESPVR) whose slope, called end-systolic 
elastance (Ees) (Fig. 1), defines the maximal LV stiffness 
or elastance at end-systole [5, 6, 9]. Importantly, both 
the ESPVR and Ees are independent of arterial pressure, 
though the exact end-systolic volume and this stroke vol-
ume created on a single beat are highly dependent on 
the arterial pressure. As arterial pressure increases for 
the same Ees, end-systolic volume will also proportion-
ally increase. If LV contractility were to decrease it would 
manifest itself as a decrease in Ees, whereas an increase 
in contractility would increase Ees.

Similarly, the arterial outflow pressure can also be 
described as the relation between changing LV stroke 
volume and end-systolic pressure (Fig.  1). The slope of 
the line describing changes in stroke volume to changes 
in arterial pressure defined the arterial vascular stiffness 
and is a function of vasomotor tone and the viscoelastic 
properties of the large arterial vessel walls. In analogy to 
Ees, it is called arterial elastance (Ea). And just like Ees, if 
arterial tone were to decrease, Ea would decrease and if 
arterial tone were to increase Ea would increase. Tradi-
tionally one plots Ea on the LV pressure–volume relation 
as a line with a negative slope starting at zero pressure 
and maximal end-systolic volume and intersecting the LV 
pressure–volume loop at end-systole.

The ratio Ees/Ea defines VAC (Fig.  1). Normal VAC 
values are new unity, ranging between 0.8 and 1.36 

under normal circumstances. Decoupling is defined as 
VAC values outside this range. Selectively decreasing 
contractility (Fig.  2a) will result in a decrease in end-
systolic arterial pressure and an increase in end-systolic 
volume resulting in a decreased stroke volume. Simi-
larly, a selective decrease in arterial vasomotor tone 
(Fig.  2b) will also decrease end-systolic arterial pres-
sure but end-systolic volume will decrease causing 
stroke volume to increase. Thus, for the same decrease 
in arterial pressure stroke volume can either increase 
or decrease depending on the primary cause of that 
change, either ventricular contractility or arterial tone. 
In practice, both arterial tone and contractility can be 
depressed in severe sepsis. However, if Ees and Ea are 
markedly dissimilar, decoupling occurs resulting in 
impaired LV ejection efficiency. If this decoupling per-
sists, acute heart failure can ensue [1, 8–11]. Impor-
tantly, decoupling can be due to changes in Ees, Ea or 
both.

In disease states where the cardiovascular system is 
involved either primarily or secondarily to treatments, 
VAC is frequently altered [1]. Furthermore, as will be 
discussed below, VAC estimations can be valuable for 
defining the pathophysiological alteration of cardiovas-
cular function in septic shock and guiding therapeutic 
interventions [8, 12].

Fig. 1 Pressure/volume loop describing ventriculo-arterial coupling. 
Plv left ventricular pressure, Vlv left ventricular volume, ESP left 
ventricle end-systolic pressure, ESV left ventricle end-systolic volume, 
EDV left ventricle end-diastolic volume, Ea arterial elastance, Ees 
end-systolic elastance, VAC ventriculo-arterial coupling, LVeff left 
ventricular efficiency, PVA pressure/volume area, SW stroke work, 
PE potential energy, SV stroke volume.  Modified from Guarracino 
et al. (2019) Cardiovascular determinants of resuscitation from sepsis 
and septic shock. Crit Care 23:118 (http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/)
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Bringing VAC physiology to bedside
Patients with septic shock show a large heterogeneity in 
response to standardized treatment making the effec-
tive application of such standardized treatments across 
patients problematic [13]. Much of the pathophysiologi-
cal reasons for this heterogeneity of response to treat-
ments is understandable through an analysis of VAC. To 
illustrate this we describe below three main clinical sce-
narios that are often encountered in septic shock:

a) myocardial depression with preserved cardiac output 
(CO)

b) heterogeneous response to vasopressors in hypoten-
sion

c) pulmonary artery hypertension in acute respiratory 
distress syndrome (ARDS)

Myocardial depression with preserved CO
Myocardial depression is often seen in septic patients, 
though CO may not be decreased if fluid resuscitation 
is also given, owing to the associated decrease in arterial 
pressure caused by sepsis-induced vasoplegia. We have 
previously described the physiology of VAC in critically 
ill septic patients [1] and the role of altered VAC in the 
specific setting of septic shock [14].

In analyzing a cohort of septic shock patients in whom 
Ea and Ees were measured at several time intervals [3], 

we noted that most of the septic shock patients show 
ventriculo-arterial decoupling at the time of septic shock 
diagnosis and that reduced myocardial contractility is 
present despite an associated decreased arterial vasomo-
tor tone.

Most clinicians consider that reduced myocardial func-
tion should cause reduced systemic flow. However, by 
analyzing VAC during sepsis, one can see how blood flow 
can be maintained despite a reduced Ees and a preserved 
LV ejection fraction (LVEF). Recall that LVEF depends 
on both contractility and arterial elastance. Vasodila-
tors increase LVEF while vasopressors decrease it. This 
implies that the use of vasopressors or other agents that 
selectively increase arterial tone in a septic shock patient 
with myocardial depression, while potentially improving 
blood pressure, may decrease LVEF enough to reduce 
CO. Indeed, the use of nitric oxide synthetase inhibi-
tors in sepsis uniformly demonstrated that the increase 
in arterial pressure was associated with a decrease in CO 
[15]. Furthermore, we documented similar CO decreases 
in some hypotensive patients receiving norepinephrine 
[3].

The case of myocardial depression and preserved CO 
in a septic shock patient following volume resuscitation 
nicely illustrates how by measuring VAC we can under-
stand whether our treatments can have hemodynamic 
consequences beyond the apparently responsive (for 
example preserved CO) or non-responsive (persistent 
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Fig. 2 Effect of alterations in either Ees (A) or Ea (B) on stroke volume. P left ventricular pressure, V left ventricular volume, ESP left ventricle 
end-systolic pressure, EDP left ventricle end-diastolic pressure, ESV left ventricle end-systolic volume, EDV left ventricle end-diastolic volume, Ea 
arterial elastance, Ees end-systolic elastance
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low MAP) macro-hemodynamic values coming from 
bedside monitoring displays. A decoupled physiology 
means a high myocardial energetic cost to maintain the 
“normal values” of CO [1], and explains why, despite 
preserved CO, blood pressure often does not reach the 
recommended target threshold values with volume 
administration alone, and also suggests caution with 
drugs increasing Ea as it may worsen decoupling in the 
face of impaired Ees [14] (Fig. 3).

A typical example of such pathophysiological infer-
ence on clinical management is described by one of the 
patients in whom we administered norepinephrine to 
restore MAP < 65  mmHg despite fluid resuscitation in 
the presence of preserved CO. In this case, we observed 
[3] that vasopressor, while increasing MAP, further wors-
ened the VAC, causing left ventricular end-systolic vol-
ume to increase and stroke volume to decrease so making 
the cardiovascular system inefficient and not increasing 
CO (Fig. 3).

Heterogeneous response to vasopressors
The current recommended approach to rapidly coun-
teract the impact of sepsis on blood flow in the first few 
hours after diagnosis and promptly restore adequate 
blood flow and perfusion pressure consists of an initial 

volume expansion (VE) with crystalloids to achieve the 
mean arterial pressure (MAP) of at least 65 mmHg [2]. If 
this initial treatment fails to restore MAP, then clinicians 
are allowed to use vasopressors agents and subsequently 
inotropic support to achieve this goal.

This standardized approach to cardiovascular stabiliza-
tion achieves the target in restoring MAP in the majority 
of patients but not in all. Previously reported success rate 
for VE was around 60%, and we also reported that such 
approach is not successful in all cases [3], and underlined 
the heterogeneous response of MAP [13].

From a physiological point of view fluid resuscitation 
increases circulating blood volume and thus mean sys-
temic pressure (Pms) [16–18], which is the upstream 
pressure driving venous return and then allowing CO 
to increase. However, for an increase in Pms to increase 
CO, the right ventricle needs to be volume responsive 
as manifest by an associated increase in the right atrial 
pressure (Pra) to Pms gradient, because venous return 
can only increase if this gradient increases, the resist-
ance to venous return decreases or both. Finally, in a 
fluid-responsive septic patient for MAP to also increase 
in parallel to the increase in CO, arterial tone must be 
adequate enough to realize an associated increase in 
pressure to follow the increase in flow as quantified by 

Fig. 3 Effect of vasopressor on systolic pressure and stroke volume in the presence of reduced Ees. P left ventricular pressure, V left ventricular 
volume, ESP left ventricle end-systolic pressure, EDP left ventricle end-diastolic pressure, ESV left ventricle end-systolic volume, EDV left ventricle 
end-diastolic volume, Ea arterial elastance, Ees end-systolic elastance, VAC ventriculo-arterial coupling, LVeff left ventricular efficiency, CO cardiac 
output, CI cardiac index, NE norepinephrine.  Modified from Guarracino et al. (2019) Cardiovascular determinants of resuscitation from sepsis 
and septic shock. Critical Care 23:118 (http:// creat iveco mmons. org/ licen ses/ by/4. 0/)

http://creativecommons.org/licenses/by/4.0/
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Ea. Despite the strong rationale of this physiological 
approach, it is still unclear how these processes play out 
in individual patients presenting with hypotensive sepsis 
and why sometimes the response to vasopressors can be 
disappointing.

We showed in a previous clinical study that NE could 
increase Ea and MAP in most hypotensive septic patients 
but did not achieve a MAP > 65 mmHg in a majority and 
induced ventriculo-arterial uncoupling to levels seen 
prior to resuscitation [3]. This decreased LV ejection 
efficiency, if sustained, might impair LV performance. 
These data support the clinical finding that sustained 
vasopressors use of > 6 h to maintain a MAP > 75 mmHg 
in septic shock is associated with increased mortality. We 
observed that only patients with higher Ees and normal-
ized VAC increased CO during NE infusion, presumably 
because they can tolerate the increased afterload.

When dobutamine was added to VE and norepineph-
rine in a few patients, it restored normal VAC and CO, 
suggesting that inotropic support may improve contrac-
tility in septic patients who may be affected by septic 
cardiomyopathy.

These observations support the concept of monitor-
ing VAC at the bedside in septic shock patients to per-
sonalize treatment and assess the response. We recently 
suggested a structured approach that incorporates VAC 
measurement and hemodynamic monitoring to better 
inform treatment decisions (FIG BEAT modified) [8]. 
Based on elastance values and their ratio, one can focus 
treatment either on the volume side or on the vaso-
pressor and inotrope side. Moreover, in septic patients 
exhibiting persistent tachycardia even after achieving 
hemodynamic stabilization, the assessment of VAC can 
help determine whether introducing a beta-blocker is 
appropriate to reduce heart rate and improve myocardial 
efficiency. Specifically, if the evidence shows preserved 
Ees in the presence of increased Ea (Fig. 4), this supports 
the decision to administer a beta-blocker without the risk 
of negative hemodynamic consequences.

Pulmonary artery hypertension in ARDS and sepsis
Pulmonary hypertension (PulHPT) and right ventricu-
lar (RV) dysfunction can have significant implications 
in sepsis complicated by acute respiratory distress syn-
drome (ARDS). ARDS occurs in approximately 6–7% 
of the patients with sepsis [19, 20], whether because of 
a primary pulmonary process (i.e., pneumonia, aspira-
tion) or secondary one (i.e. peritonitis, pancreatitis). 
During sepsis, the body’s response to infection triggers 
widespread inflammation and lead to the development 
of ARDS, which is characterized by severe respiratory 
failure. Although most clinicians focus on the effects of 
ARDS on gas exchange and lung compliance, increased 

pulmonary Ea can also occur, especially in patients 
receiving mechanical ventilation and higher levels of 
positive end-expiratory pressure. Whatever the primary 
disease, the systemic inflammation can damage the pul-
monary vasculature, resulting in increased pulmonary 
vascular resistance and elevated pulmonary arterial pres-
sures, leading to pulmonary hypertension. As PulHPT 
worsens, the right ventricle faces increased afterload. 
This increased workload can lead to right ventricular dys-
function, compromising the heart’s ability to effectively 
pump blood and maintain cardiac output [21].

In combined sepsis and ARDS, the development of pul-
monary hypertension leads to disrupted right-sided VAC 
[22, 23], making the following pathophysiological picture 
happen:

Pulmonary hypertension leads to an increase in the 
afterload on the right ventricle (RV). In the context of 
sepsis with ARDS and pulmonary hypertension, RV ven-
triculo-arterial decoupling occurs due to both an increase 
in pulmonary Ea and a decrease in RV Ees. Thus, the 
right ventricle’s ability to generate pressure and sustain 
CO is limited. As RV workload increases further, its con-
tractile function may become impaired, further decreas-
ing RV stroke volume and CO, while increasing right 
atrial pressure. Such venous congestion further impairs 
organ blood flow.

Overall, the disruption of RV VAC due to both pul-
monary hypertension and right ventricular dysfunction 
in sepsis with ARDS can have significant consequences 
on cardiovascular function. Monitoring and managing 
the hemodynamic status of these patients is essential to 
optimize ventricular performance and maintain ade-
quate blood flow throughout the body. Interventions may 
include vasopressors to sustain RV coronary blood flow, 
inotropic agents, and therapies aimed at reducing pulmo-
nary vascular resistance to improve ventricular–arterial 
interaction and overall cardiac function [24, 25].

Fig. 4 Ventriculo-arterial coupling guided hemodynamic 
treatment. Ees ventricularelastance, EA arterialelastance, VAC 
ventriculo-arterialcoupling.  (Modified from: Guarracino et al. 
Management of cardiovascular insufficiency in ICU: the BEAT 
approach. Minerva Anestesiol 2021 87(4):476–480. With permission.)
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How to measure VAC at the bedside
Since VAC is defined by the ratio of arterial elastance 
(Ea) to left ventricle (LV) end-systolic elastance (Ees), the 
tools used must be capable of measuring both Ea and Ees 
[23].

Invasive ventricular catheterization allows for pressure/
volume loop analysis, which was initially demonstrated 
by Suga and Sugawa [26–29] can be used to estimate the 
ESPVR and Ees. However, this approach is not practical 
for bedside ICU care.

To assess ventriculo-arterial coupling (VAC) in criti-
cally ill patients, diagnostic tools that can be easily 
brought to the bedside and used repeatedly are required. 
Non-invasive methods can be used. Ea can be estimated 
as the ratio of end-systolic pressure to stroke volume. 
End-systolic pressure is approximately 90% of systolic 
pressure. Ea is calculated as [0.9 × systolic arterial pres-
sure]/SV) [28]. However, for a clinician to use this for-
mula at the bedside heart rate must remain constant, 
because changes in heart rate will independently alter 
this calculation even if Ea is unchanged.

Ees can be estimated using the modified single-beat 
method proposed by Chen et  al. It is the most accu-
rate and well-validated to estimate Ees [30–32]. This 
non-invasive method utilizes echocardiography to 
estimate Ees from LV end-diastolic and end-systolic 
areas, along with systolic and diastolic arterial pressure 

measurements. While the Chen et al. method is consid-
ered the clinical reference for non-invasive assessment of 
VAC, other non-invasive methods are available that esti-
mate Ees, such as the ESP/ESV-based methods. However, 
these alternative methods may not adequately substitute 
the Chen et  al. method for assessing changes in VAC 
induced by therapeutic interventions [28].

To facilitate the bedside calculation of Ees, we devel-
oped a mobile app called “iElastance” (Fig.  5), freely 
available online [33] that calculates VAC using the Chen 
et al. method. The application utilizes echocardiographic 
measures (stroke volume, ejection fraction, total ejection 
time, and pre-ejection time) and hemodynamic param-
eters (blood diastolic and systolic pressure) to calculate 
Ea, Ees and subsequently VAC.

The application is easy to use and provides rapid bed-
side assessment of VAC following a focus echocar-
diographic examination. While the application cannot 
replace clinical evaluation and judgement, it can be help-
ful, especially in critically ill patients where the initial 
therapeutic intervention did not achieve the expected 
effect, In the recent literature, the iElastance app has 
been reported to be easily measurable and have a clinical 
impact [34, 35].

Measuring the coupling between the right heart ventri-
cle and the arterial system in septic patients is also essen-
tial for understanding RV performance and its interaction 

Fig. 5  iElastance App. Operator inserted blood pressure, stroke volume, ejection fraction, and ejection times allows for the immediate display of Ea, 
Ees and VAC. On the right panel the echo images show how to measure the left ventricle ejection fraction (EF) and to detect the systolic ejection 
times. Abbreviations as defined in the text
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with the pulmonary circulation, especially in light of the 
pathophysiological scenarios described above [36].

Similar to the left heart, invasive ventricular and pul-
monary artery catheterization allows for pressure/vol-
ume loop analysis. However, non-invasive approaches 
have also been introduced for assessing the right side of 
the heart [37–39], the majority based on echocardiog-
raphy. Though several methods have been proposed to 
noninvasively measure pulmonary artery Ea from pul-
monary artery pressure trace and Ees of the RV based on 
ventricular volume assessment by echocardiography, the 
most validated measure of right heart VAC is the ratio 
of tricuspid annular plane systolic excursion (TAPSE) to 
pulmonary artery pressures (PAPs) [20, 21, 40–44]. This 
measure, differently from others, can be rapidly obtained 
at the bedside of a critically ill septic patient through 
echocardiography without the challenges of right ven-
tricular volume measurement.

Conclusions
The considerable variability observed in responses to 
time and treatment of septic shock patients poses chal-
lenges when trying to apply standardized interventional 
protocols. The inherently varied VAC status of these 
patients affecting Ees, Ea or both requires that the bed-
side clinician develop a deeper understanding of the 
mechanisms underlying the hemodynamic instability and 
to measure VAC in complex patients. Non-invasive echo-
cardiographic assessment of VAC has shown to be a valu-
able tool in evaluating the intrinsic factors contributing 
to hemodynamic impairment in human septic shock and 
monitoring the effectiveness of therapeutic interventions 
(Table 1).

Given that septic shock patients often have impaired 
cardiovascular reserve, a more personalized approach to 
therapy, tailored based on volume responsiveness and VA 
coupling, may be essential to achieve effective and effi-
cient resuscitation from severe sepsis. Integrating bed-
side assessment of Ea and Ees with dynamic indexes of 
fluid responsiveness provides a multi-modality approach 
that enhances our understanding of the pathophysiology 
and should guide personalized management of the severe 
hemodynamic instability seen in septic shock.
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