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Abstract 

Background We aimed to evaluate the pulmonary and cerebral effects of low-tidal volume ventilation in pressure-
support (PSV) and pressure-controlled (PCV) modes at two PEEP levels in acute ischemic stroke (AIS).

Methods In this randomized experimental study, AIS was induced by thermocoagulation in 30 healthy male Wistar 
rats. After 24 h, AIS animals were randomly assigned to PSV or PCV with  VT = 6 mL/kg and PEEP = 2  cmH2O (PSV-
PEEP2 and PCV-PEEP2) or PEEP = 5  cmH2O (PSV-PEEP5 and PCV-PEEP5) for 2 h. Lung mechanics, arterial blood gases, 
and echocardiography were evaluated before and after the experiment. Lungs and brain tissue were removed for his-
tologic and molecular biology analysis. The primary endpoint was diffuse alveolar damage (DAD) score; secondary 
endpoints included brain histology and brain and lung molecular biology markers.

Results In lungs, DAD was lower with PSV-PEEP5 than PCV-PEEP5 (p < 0.001); interleukin (IL)-1β was lower with PSV-
PEEP2 than PCV-PEEP2 (p = 0.016) and PSV-PEEP5 than PCV-PEEP5 (p = 0.046); zonula occludens-1 (ZO-1) was lower 
in PCV-PEEP5 than PCV-PEEP2 (p = 0.042). In brain, necrosis, hemorrhage, neuropil edema, and CD45 + microglia were 
lower in PSV than PCV animals at PEEP = 2  cmH2O (p = 0.036, p = 0.025, p = 0.018, p = 0.011, respectively) and PEEP = 5 
 cmH2O (p = 0.003, p = 0.003, p = 0.007, p = 0.003, respectively); IL-1β was lower while ZO-1 was higher in PSV-PEEP2 
than PCV-PEEP2 (p = 0.009, p = 0.007, respectively), suggesting blood–brain barrier integrity. Claudin-5 was higher 
in PSV-PEEP2 than PSV-PEEP5 (p = 0.036).

Conclusion In experimental AIS, PSV compared with PCV reduced lung and brain injury. Lung ZO-1 reduced in PCV 
with PEEP = 2 versus PEEP = 5  cmH2O, while brain claudin-5 increased in PSV with PEEP = 2 versus PEEP = 5  cmH2O.
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Background
Patients with acute ischemic stroke (AIS) are frequently 
admitted to the intensive care unit [1–4]. Patients with 
AIS are at risk for pulmonary complications such as 
pneumonia and neurogenic edema, and may require 
respiratory support to protect the airways and optimize 
arterial blood gas exchange [1–3, 5]. However, there is a 
lack of consensus on how to set the ventilatory param-
eters under mechanical ventilation.

Pressure-controlled ventilation (PCV) and pressure-
support ventilation (PSV) have been used worldwide in 
patients with neurologic disease [6]. During PCV, seda-
tion is often increased, and inspiratory effort reduced, 
which may lead to hemodynamic impairment as well 
as lung and respiratory muscle dysfunction [7]. During 
PSV, less sedation is needed with better hemodynam-
ics [8]. During assisted spontaneous ventilation, such as 
PSV, pleural pressure decreases, leading to tensile stress 
[9], whereas during PCV, a positive increase in pleural 
pressure is observed, resulting in compressive stress [10]. 
Pleural pressure during assisted spontaneous breathing 
effectively decreases intracardiac pressures [11], thus 
increasing venous return and contributing to heart–lung 
interaction. In addition, for the same tidal volume  (VT), 
PSV reduces both atelectasis and heterogeneity when 
compared to PCV [12]. The changes in hemodynamics, 
whether by increasing blood flow or promoting venous 
congestion, may have positive or negative consequences 
on the brain and lungs, organs that are sensitive to blood 
flow. In addition, there is no consensus about the use of 
positive end-expiratory pressure (PEEP) in AIS. PEEP 
may not induce detrimental effects on intracranial pres-
sure when set appropriately according to respiratory 
mechanics and lung imaging [13, 14].

The present study sought to evaluate the effects of 
mechanical ventilation with low  VT (6  mL/kg) under 
PSV and PCV at two different levels of PEEP (2 and 5 
 cmH2O) on lung and brain damage in experimental AIS. 
We hypothesized that PSV, compared with PCV, might 
improve diffuse alveolar damage (DAD) rather than 
induce further brain injury, regardless of the PEEP level.

Methods
Study approval
This prospective, randomized experimental study was 
approved by the Institutional Ethical Animal Care and 
Use Committee (CEUA CCS-017/19) of the Federal Uni-
versity of Rio de Janeiro (UFRJ) Health Sciences Center, 
Rio de Janeiro, Brazil. The principles of laboratory ani-
mal care proposed by the National Society for Medical 
Research (now the National Association for Biomedical 
Research) and the U.S. National Academy of Sciences 
Guide for the Care and Use of Laboratory Animals were 

followed throughout. Reporting followed the ARRIVE 
guidelines [15].

Animal preparation
Animals were maintained at a fixed temperature (23 °C) 
and 12–12  h light–dark cycle. Free access to water and 
food was provided. After appropriate acclimation, 30 
healthy Wistar rats (all male; weight 370 ± 12  g) were 
anesthetized by intraperitoneal (i.p.) injection of xyla-
zine (2.5  mg/kg) and ketamine (75  mg/kg) and secured 
in a stereotactic frame. Ischemic stroke was then induced 
by thermocoagulation of pial blood vessels overlying the 
somatosensory, motor, and primary sensorimotor corti-
ces, as previously described [16, 17]. In order to guaran-
tee the same stroke severity pattern, the procedure was 
always performed by the same investigator (A.L.S.).

Experimental protocol
Twenty-four hours after stroke induction, midazolam 
(1–2  mg/kg, i.p.) and ketamine (100  mg/kg, i.p.) were 
administered. A 24G catheter  (Jelco®, BD, Franklin 
Lakes, NJ, USA) was placed in the tail vein, and total 
intravenous anesthesia was induced and maintained with 
midazolam (2  mg/kg/h) and ketamine (50  mg/kg/h). A 
continuous infusion of Ringer’s lactate (10  ml/kg/h; B. 
Braun, Crissier, Switzerland) was maintained throughout 
the experiment [18, 19]. Experiments were initiated once 
motor responses to stimuli, such as noise (handclap), 
whisker stimulation, and tail clamping, were absent. Ani-
mals were breathing spontaneously with no respiratory 
effort or gasping. The plane of anesthesia was monitored 
by MAP, heart rate, and RR during the experiment.

Animal temperature was kept at 37.5  °C ± 1  °C with a 
heating bed (EFF 421, Insight, Ribeirão Preto, Brazil). 
After local anesthesia (lidocaine 1.0%), tracheostomy was 
performed and a polyethylene cannula was introduced 
into the trachea. The right internal carotid artery was 
catheterized (18G; Arrow International, Reading, PA, 
USA) for blood gas analysis and MAP monitoring (Net-
worked Multiparameter Veterinary Monitor LifeWin-
dow 6000  V; Digicare Animal Health, Boynton Beach, 
FL, USA). Animals were attached to an airway pressure 
transducer (UT-PDP-70; SCIREQ, Montreal, Canada) 
and a two-sidearm pneumotachograph [20] was con-
nected to a differential pressure transducer (UT-PDP-02; 
SCIREQ), for measurement of the airflow (V′).

Once the animals were hemodynamically stable 
(MAP > 100  mmHg), mechanical ventilation was started 
(Servo-i; Getinge AB, Göteborg, Sweden) via PSV for 
5  min. During this 5-min period, delta pressure was 
constantly adjusted to reach a  VT = 6  mL/kg, end-expir-
atory pressure of zero, and fraction of inspired oxygen 
(FiO2) of 0.25 for all animals. Thus, all animals had the 
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same starting point prior to randomization into different 
groups. Animal preparation was performed by an expe-
rienced researcher (A.L.S.), which also contributed to 
similar preparatory times.

At BASELINE, arterial blood (300 μL) was drawn for 
blood gas analysis. MAP, body temperature, and res-
piratory parameters were also gathered. Transthoracic 
echocardiography was performed (Fig. 1A). Five minutes 
after BASELINE, the animals were randomly assigned 
by the sealed-envelope method to the following ventila-
tory strategies (n = 6 animals/ventilatory strategy): PCV 
under PEEP of 2  cmH2O (PCV-PEEP2); PCV under 
PEEP of 5  cmH2O (PCV-PEEP5); PSV under PEEP of 2 
 cmH2O (PSV-PEEP2); and PSV under PEEP of 5  cmH2O 

(PSV-PEEP5). During PCV, pancuronium bromide 
(2 mg/kg; Cristália, Itapira, SP, Brazil) was intravenously 
administered.  VT was maintained aiming 6  mL/kg by 
constantly adjusting the delta pressure as mentioned 
earlier, for the PSV and PCV strategies. Six animals sub-
jected to ischemic stroke but not ventilated (STROKE) 
were used for molecular biology analysis (Fig. 1B).

Data on blood gas analysis, functional data analysis, 
and echocardiography were collected 2  min after rand-
omization, at INITIAL, and after 2 h of mechanical ven-
tilation (FINAL). At FINAL, heparin (1,000 IU) was then 
administered into the tail vein, followed 2  min later by 
i.v. injection of sodium thiopental (100 mg/kg, Cristália), 
after which a laparotomy was performed to access the 

Fig. 1 A Timeline representation of the experimental protocol. Respiratory system mechanics, arterial blood gases, and echocardiography were 
evaluated at the INITIAL and FINAL time points. B Schematic flowchart of the study design. BGA, blood gas analysis; ECHO, echocardiography; 
FDA, functional data acquisition;  FiO2, fraction of inspired oxygen; PCV, pressure-controlled ventilation; PEEP, positive end-expiratory pressure; PSV, 
pressure-support ventilation;  VT, tidal volume
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aorta for terminal exsanguination. The full process lasted 
around 5 min; the procedure and duration were the same 
in all animals. The brain and lungs were removed (the lat-
ter at an airway pressure equivalent to PEEP) for histo-
logic and molecular biology analyses.

Respiratory data acquisition and processing
Airflow and airway pressure were recorded continu-
ously by running software written in LabVIEW (National 
Instruments; Austin, TX, USA). All signals were filtered 
(200  Hz), amplified by a 4-channel conditioner (SC-24, 
SCIREQ), and sampled at 200  Hz with a 12-bit analog-
to-digital converter (National Instruments).  VT was 
obtained by integration of inspiratory airflow. The RR 
was estimated from Pes swings. Airway peak pressure 
(Ppeak,RS), plateau pressure (Pplat,RS), and driving pres-
sure (∆P,RS) were obtained after 3 s of inspiratory pause, 
when the airflow was zero [12].  P0.1 was computed and 
represented the esophageal pressure obtained 100  ms 
after initiation of inspiratory effort. The respiratory data 
were assessed by two researchers (A.L.S. and C.M.B.) 
blinded to group allocation by a routine written in MAT-
LAB (version R2007a; MathWorks Inc, Natick, MA, 
USA).

Echocardiography and left carotid Doppler
This assessment was performed by an expert (N.N.R.) 
blinded to group allocation, using a 7.5-MHz probe 
(UGEO HM70A, 8–13 MHz transducer; Samsung). The 
following parameters were analyzed by transthoracic 
echocardiography: heart rate, right ventricular systolic 
volume, left ventricular systolic volume, cardiac output, 
and left carotid peak systolic velocity. Measurements 
were obtained from transthoracic parasternal and short-
axis views, as recommended [21, 22].

Histology
Lung
The left lung was fixed in 4% buffered formalin and 
paraffin-embedded for microtomy into 3  μm-thick sec-
tions, which were stained with hematoxylin and eosin. 
To obtain a panoramic view of the lung parenchyma, they 
were completely scanned (3DHISTECH, Budapest, Hun-
gary). Photomicrographs at × 25, × 100, and × 400 mag-
nification were obtained from 10 non-overlapping fields 
of view per section in the digitalized images. DAD was 
quantified by one expert pathologist (V.L.C.) who was 
blinded to group allocation. Six features—atelectasis, 
overdistension, interstitial edema, hemorrhage, throm-
bosis, and inflammation—were graded on scales of 0 to 
4 in terms of severity (0, no effect; 4, maximum severity) 
and extent (0, not visualized; 4, (complete involvement). 
Final scores, ranging from 0 to 16, were then calculated 

as the product of the severity and extent of each feature. 
The cumulative DAD score thus ranged from 0 to 96 [16, 
23].

Brain
Brains were fixed in 4% paraformaldehyde for 24  h and 
paraffin-embedded for microtomy into section  3  μm 
thick. The histoarchitecture of the hypothalamus was 
evaluated by hematoxylin and eosin staining, followed 
by immunostaining for CD11b + and CD45 + cells. 
CD11b + cells comprised mononuclear phagocytes, 
which were divided further into two populations: 
CD11b + cells characterized by microglia that reside in 
the dentate gyrus of the hippocampus parenchyma, and 
CD45 + cells that reside in the choroid plexus (internal 
pyramidal cells). These represented mainly myeloid-
derived macrophages that reside at the interfaces of the 
brain and periphery [24].

Quantification was done using a weighted scoring sys-
tem, adapted from a previous study [25], to represent the 
severity of brain tissue injury (necrosis, hemorrhage, neu-
ropil edema, CD11b + dentate gyrus, CD11b + pyramidal, 
and CD45 + microglia), ranging from 0 (no injury) to 4 
(severe injury). The extension of each feature was ranked 
from 0 (not visualized) to 4 (complete involvement). 
Again, sum scores ranging from 0 to 16 were calculated 
as the product of the severity and extent of each feature. 
The quantification was done by one expert pathologist 
(V.L.C.) who was blinded to group assignment.

Biological markers in lung and brain tissues
Reverse transcriptase-polymerase chain reaction was 
used to measure biological markers in the lung and per-
ilesional brain tissue [26]. In the lungs, markers associ-
ated with inflammation (interleukin [IL]-1β), epithelial 
cell damage (ZO-1), and (surfactant protein [SP]-B) were 
evaluated. In the brain, markers associated with inflam-
mation (IL-1β), and blood–brain barrier integrity (ZO-1, 
claudin-5) [27] were evaluated. Additional file 1: Table S1 
lists the primer sequences. Total RNA was extracted 
from frozen lung and brain sections tissues with the Reli-
aPrep™ RNA Tissue Miniprep System (Promega Cor-
poration, Fitchburg, WI, USA), following manufacturer 
recommendations. RNA concentration measurement, 
cDNA synthesis, and relative mRNA quantitation were 
performed as described elsewhere [23]. Samples were 
measured in triplicate. For each sample, the expression 
of each gene was normalized to the 36B4 housekeep-
ing gene and expressed as the fold change relative to 
STROKE, using the  2−ΔΔCt method, where ΔCt = Ct (tar-
get gene) − Ct (reference gene) [28].
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Statistical analysis
Six animals per group would give adequate power 
(1 − β = 0.8) to identify significant differences (p < 0.05) in 
the DAD score (the primary endpoint) between SHAM 
and STROKE, according to a previous study [23], taking 
into account an effect size d = 2.0, a two-sided test, and 
a sample size ratio = 1 (G ∗ Power 3.1.9.2; University of 
Düsseldorf, Düsseldorf, Germany).

Normality was verified by the Kolmogorov–Smirnov 
test with Lilliefors’ correction, and homogeneity of vari-
ances, by the Levene median test. The primary endpoint 
was the DAD score, and secondary endpoints consisted 
of blood gas exchange, respiratory variables, and brain 
biological markers, as well as brain histology. The respira-
tory variables and blood gas exchange data were analyzed 
by two-way ANOVA followed by the Holm–Šidák multi-
ple comparisons test to compare parameters among the 
groups and over time (INITIAL and FINAL). One-way 
ANOVA followed by the Holm–Šidák multiple compari-
sons was done to compare parametric data. The Kruskal–
Wallis test followed by Dunn’s multiple comparisons test 
was used to compare nonparametric data obtained at the 
end of the experiment. Spearman correlation was done 
between brain biological markers and cardiac output. A p 
value < 0.05 was considered significant.

Results
All animals survived to the end of the experiment 
(FINAL) and there were no missing data. Mean arte-
rial pressure (MAP) remained ≥ 70  mmHg (minimal 
value, 97 ± 38  mmHg; maximal value, 118 ± 26  mmHg) 
during the experiments (Additional file  1: Table  S2). At 
FINAL, no differences were observed in cumulative flu-
ids (Additional file 1: Table S2). At INITIAL, left carotid 
peak systolic velocity was lower in the both PCV and PSV 
groups at PEEP of 5  cmH2O compared with PEEP of 2 
 cmH2O (Additional file 1: Table S3). No differences were 
observed in oxygenation  (PaO2/FiO2; minimal value, 
340 ± 39 mmHg, maximal value, 479 ± 69 mmHg) (Addi-
tional file 1: Table S4).

Lung
No differences were observed in  VT among the groups 
and over time.  P0.1 did not differ between PSV groups 
(Additional file  1: Table  S3). At FINAL, the respira-
tory rate (RR) was higher in PSV-PEEP2 compared with 
PCV-PEEP2 (92 ± 16 bpm versus 66 ± 11 bpm, p = 0.023). 
At INITIAL, Ppeak,RS and Pplat,RS were higher in both 
PCV-PEEP5 (16 ± 4, 13.6 ± 2.7  cmH2O, respectively) and 
PSV-PEEP5 (14.5 ± 3.3, 12.9 ± 2.3  cmH2O, respectively) 
compared with PCV-PEEP2 (11.3 ± 3.2, 9.9 ± 2.4  cmH2O, 
respectively) and PSV-PEEP2 (10.5 ± 1.8, 9.3 ± 1.6  cmH2O, 
respectively) (Additional file  1: Table  S3). Interstitial 

edema and inflammation were lower in PSV-PEEP2 than 
PCV-PEEP2 (p = 0.029 and p = 0.045, respectively). 
Atelectasis, overdistension, interstitial edema, hemor-
rhage, thrombosis, and inflammation were lower in PSV-
PEEP5 than PCV-PEEP5 (p = 0.002, p = 0.004, p = 0.011, 
p = 0.008, p = 0.004, and p = 0.030, respectively). The 
cumulative DAD score was lower in PSV-PEEP5 (median, 
7; interquartile range [IQR], 5.75–8.25) than in PCV-
PEEP5 (median, 40.5; IQR, 35.5–50.5, p < 0.001), and in 
PSV-PEEP2 (median, 9; IQR, 7–10.25) than PCV-PEEP2 
(median, 34; IQR, 29.25–37.25, p < 0.001) (Fig. 2, Table 1 
and Additional file 1: Table S5). IL-1β was lower in PSV-
PEEP2 than PCV-PEEP2 (p = 0.046), and PSV-PEEP5 
compared with PCV-PEEP5 (p = 0.016). Surfactant pro-
tein-B (SP-B) was higher in both PSV groups compared 
with the PCV groups, regardless of the PEEP levels. 
Zonula ocludens-1 (ZO-1) was lower in PCV-PEEP5 than 
PCV-PEEP2 (p = 0.042), but was higher in PSV-PEEP5 
compared with PCV-PEEP5 (p = 0.006) (Fig. 3).

Brain
Necrosis, hemorrhage, neuropil edema, and 
CD45 + microglia were higher in PCV-PEEP2 compared 
with PSV-PEEP2 (p = 0.036, p = 0.025, p = 0.018, and 
p = 0.011, respectively). Necrosis, hemorrhage, neuro-
pil edema, CD11b + dentate gyrus, CD11b + pyramidal, 
and CD45 + microglia were higher in PCV-PEEP5 com-
pared with PSV-PEEP5 (p = 0.003, p = 0.003, p = 0.007, 
p = 0.005, p = 0.003, p = 0.001, respectively) (Fig.  4, 
Table 2 and Additional file 1: Table S6). IL-1β was higher 
in PCV-PEEP2 than PSV-PEEP2 (p = 0.009), and PCV-
PEEP5 compared with PSV-PEEP5 (p = 0.004). ZO-1 
gene expression was higher in PSV-PEEP2 than PCV-
PEEP2 (p = 0.007). Claudin-5 was higher in PSV-PEEP2 
than PSV-PEEP5 (p = 0.036) (Fig. 5).

Cardiac output was negatively correlated with IL-1β 
(r = − 0.46, p = 0.023) and positively associated with ZO-1 
gene expression (r = 0.76, p < 0.001) (Fig. 6).

Discussion
In the present model of AIS, PSV compared with PCV 
(1) reduced the DAD score and markers of lung inflam-
mation while increasing the gene expression of SP-B, 
regardless of the PEEP level; (2) decreased histologic 
features of brain necrosis, hemorrhage, and neuropil 
edema, regardless of the PEEP level; (3) reduced mark-
ers of brain inflammation regardless of the PEEP level; 
and (4) increased the expression of markers associated 
with blood–brain barrier protection (ZO-1) at a PEEP of 
2  cmH2O. In addition, lung ZO-1 reduced in PCV with 
PEEP = 2  cmH2O compared with PEEP = 5  cmH2O, while 
brain claudin-5 increased in PSV with PEEP = 2  cmH2O 
compared with PEEP = 5  cmH2O.
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In this study, we chose to use a model of focal AIS, 
instead of global ischemia, because this has a higher 
incidence in clinical practice, accounting for more 
than 90% of all strokes worldwide [29, 30]. In accord-
ance with previous experimental studies [16, 23, 31], 
thermocoagulation of pial vessels over the primary 
sensorimotor cortices was chosen as the stroke model 
as it replicates the complex hemodynamic status and 
sensorimotor dysfunction 24  h after induction of 

AIS. Neurocritical patients usually require invasive 
mechanical ventilation after ischemic stroke [32] to 
ensure adequate airway protection and gas exchange 
[5]. Current knowledge suggests maintaining a pro-
tective  VT of 6–8  mL/kg of predicted body weight in 
patients with AIS. Hemodynamics may differ accord-
ing to mechanical ventilation strategies and the level of 
sedation. PCV associated with high levels of sedation 
impairs hemodynamics and may lead to respiratory 

Fig. 2 Histoarchitecture of the lung. Representative images stained with hematoxylin and eosin (HE) according to diffuse alveolar damage (DAD) 
features: collapse/overdistension; edema/hemorrhage; edema/thrombosis; edema/inflammation. PCV, pressure-controlled ventilation; PEEP, 
positive end-expiratory pressure; PSV, pressure-support ventilation

Table 1 Diffuse alveolar damage score

Cumulative DAD score representing injury from atelectasis, overdistension, interstitial edema, hemorrhage, thrombosis and inflammation. PCV, pressure-controlled 
ventilation; PEEP, positive end-expiratory pressure; PSV, pressure-support ventilation. Values are given as medians (interquartile ranges) of 6 animals in each group. 
Comparisons were done by Kruskal–Wallis test followed by Dunn’s multiple comparisons test (p < 0.05). *Versus the PSV-PEEP2 group; #versus the PSV-PEEP5 group

PCV-PEEP2 PSV-PEEP2 PCV-PEEP5 PSV-PEEP5

Atelectasis (0–16) 3.5 (2.0–4.5) 1.0 (0.0–1.3) 7 (4–12)# 1.0 (0.0–1.0)

Overdistension (0–16) 4.0 (3.8–4.5) 0.5 (0.0–1.0) 8.5 (4–13)# 1.0 (0.0–1.0)

Interstitial edema (0–16) 8.5 (7.0–9.8)* 2.0 (1.8–2.5) 8.5 (4–13)# 2.0 (1.8–2.0)

Hemorrhage (0–16) 4.0 (3.0–5.3) 1.0 (1.0–2.5) 5 (3–6.75)# 1.0 (1.0–1.3)

Thrombosis (0–16) 8.5 (7.5– 9.8) 2.0 (2.0–2.5) 8.5 (5.5–12)# 1.5 (1.0–2.0)

Inflammation (0–16) 4.0 (3.5.– 6.8)* 2.0 (1.0–2.0) 3.5 (2.0–4.0)# 1.0 (1.0–1.3)

Cumulative DAD (0–96) 34.0 (29.3–37.3)* 9.0 (7.0–10.3) 40.5 (35.5–50.5)# 7.0 (5.8–8.3)
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muscle dysfunction [7]. During PSV, hemodynamics 
are preserved due to less sedation [8], which may pro-
tect cerebral blood flow without affecting pH,  PaCO2, 
and oxygenation [33]. Low or high PEEP levels may also 
have detrimental effects on cardiorespiratory function. 
In the present study, PEEP levels of 2 and 5  cmH2O 
were evaluated; human levels would require a 2-to-
threefold increase, i.e., 6 and 15  cmH2O [34]. A pro-
spective study on patients with traumatic brain injury 
demonstrated that increasing PEEP up to 15  cmH2O 
can improve brain tissue oxygenation [35]. Similar lev-
els have been observed in clinical surveys on patients 
with severe traumatic brain injury without intracranial 
hypertension [36]. Specific areas of the brain were ana-
lyzed, such as the dentate gyrus in the hippocampus 
and the choroid plexus. The dentate gyrus plays a criti-
cal role in learning and memory [37], while the choroid 
plexus produces cerebrospinal fluid via the ependymal 
cells and serves as a barrier in the brain separating 
blood from cerebrospinal fluid [38].

In the present study, the cumulative DAD score was 
lower with PSV than PCV, independent of the PEEP 
levels. At INITIAL, both PSV and PCV under PEEP of 
5  cmH2O showed high Ppeak,RS and Pplat,RS compared 
the respective groups at PEEP of 2  cmH2O. Throughout 
the experiment, there was an overall time effect toward 
a reduction in Ppeak,RS and Pplat,RS and ∆P,RS, which 
prevented differences among the groups at FINAL. The 
improvement in respiratory system mechanics over time 
might reflect some recruitment effect. An increased 
DAD score is associated with increased alveolar hetero-
geneity and viscoelastic mechanical properties of the res-
piratory system [39]. This is in line with the adoption of 
protective mechanical ventilation in lungs that are prone 
to injury due to crosstalk between the brain and distal 
organs [40]. Even under protective mechanical ventila-
tion  (VT = 6 mL/kg), the role of compressive stress com-
pared with tensile stress should be considered as well as 
hemodynamics. During assisted spontaneous ventila-
tion, such as PSV, pleural pressure decreases, leading to 

Fig. 3 Expression of biological markers in the lung related to inflammation (interleukin [IL]-1β), epithelial cell damage (surfactant protein-B 
[SP-B]), and endothelial cell damage (zonula occludens-1 [ZO-1]). Boxes show the interquartile range (25% to 75%), whiskers encompass the range 
(minimum to maximum), and horizontal lines represent median values of 6 animals/group. Comparisons were done by Kruskal–Wallis test followed 
by Dunn’s multiple comparisons test (p < 0.05)



Page 8 of 12da Silva et al. Intensive Care Medicine Experimental           (2023) 11:93 

Fig. 4 Histoarchitecture of the hypothalamus. Visualized at low magnification stained by hematoxylin and eosin and at high magnification 
immunostained for CD11b and CD45 in PCV-PEEP2, PSV-PEEP2, PCV-PEEP5, and PSV-PEEP5. PCV-PEEP2 and PCV-PEEP5 exhibiting necrosis (*) 
and hemorrhage (#) in the hippocampus distorting the curved histoarchitecture (a, lateral) of the pyramidal cells band encircling the dentate 
gyrus (b, lateral) and obstructing the choroid plexus. At high magnification, numerous CD11b + mononuclear phagocytes visualized in microglia 
(thin arrows) adjacent to the dentate gyrus (DG) of hippocampus parenchyma, and numerous CD45 + cells in the choroid plexus (CP, thick arrows), 
representing mainly myeloid-derived macrophages that reside at the interfaces of the brain and periphery. Compared with the PCV-PEEP5 
group, the number of microglia and CD11b + myeloid cells, as well as choroid plexus CD45 +, was more abundant in the PCV-PEEP2 group 
in the three brain compartments of the hippocampus parenchyma including the DG, pyramidal neurons, and CP (arrows). Note the intense 
edema of the neuropils (NP) in the PCV group. PSV-PEEP2 and PSV-PEEP5 showing preserved hippocampus histoarchitecture as a multiply curved 
structure (a, middle, bottom) with pyramidal cells forming a band that circles the denser line of small cells comprising the DG (b, top) and CP (c, 
center). At high magnification, CD11b + cells comprised mononuclear phagocytes, which were divided further into two populations: CD11b + cells 
characterized by microglia (thin arrows) that reside in the DG of hippocampus parenchyma, and CD45 + cells that reside in the CP (thick arrows). 
They represented mainly myeloid-derived macrophages that reside at the interfaces of the brain and periphery. Compared with the PSV-PEEP5 
group, the numbers of microglia and CD11b + myeloid cells, as well as Cp CD45 +, were more prominent in the PCV-P2 group in the three brain 
compartments of the hippocampus parenchyma, including the DG, pyramidal neurons and CP. PCV, pressure-controlled ventilation; PEEP, positive 
end-expiratory pressure; PSV, pressure-support ventilation

Table 2 Histoarchitecture of the hypothalamus score

Cumulative score representing hypothalamus injury from necrosis, hemorrhage, neuropil edema, CD11b + dentate gyrus, CD11b + pyramidal, and CD45 + microglia. 
PCV, pressure-controlled ventilation; PEEP, positive end-expiratory pressure; PSV, pressure-support ventilation. Values are given as medians (interquartile ranges) of 6 
animals in each group. Comparisons were done using Kruskal–Wallis test followed by Dunn’s multiple comparisons test (p < 0.05). *Versus PSV-PEEP2 group; #versus 
PSV-PEEP5 group

PCV-PEEP2 PSV-PEEP2 PCV-PEEP5 PSV-PEEP5

Necrosis (0–16) 3.0 (2.0–4.0)* 1.0 (0.0–1.0) 6.0 (4.0–10.0)# 1.0 (0.0–1.0)

Hemorrhage (0–16) 4.0 (3.0–4.0)* 0.0 (0.0–1.0) 9.0 (6.0–14.0)# 1.0 (0.0–1.0)

Neuropil edema (0–16) 8.0 (6.0–9.0)* 2.0 (1.0–2.0) 9.0 (6.0–14.0)# 2.0 (1.0–2.0)

CD11b + dentate gyrus (0–16) 4.0 (3.0–4.0) 1.0 (1.0–4.0) 6.0 (3.5–7.5)# 1.0 (1.0–2.0)

CD11b + pyramidal (0–16) 8.0 (6.0– 9.0)* 2.0 (2.0–2.0) 8.0 (5.0–12.0)# 1.0 (1.0–2.0)

CD45 + microglia (0–16) 4.0 (4.0–8.0)* 2.0 (1.0–2.0) 3.0 (2.0–4.0) 1.0 (1.0–2.0)
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tensile stress [9], whereas during PCV, a positive increase 
in pleural pressure is observed, resulting in compres-
sive stress [10]. In PSV, cardiac output was higher than 
in PCV, and this can be partially explained by the pleu-
ral pressure (negative in PSV). In PSV, pleural pressure 
is negative during the expiratory phase and even more 
negative during inspiration [41]. Hence, venous return 
is favored toward the thorax during physiologic inspira-
tion. In PSV groups, cardiac output values were between 
108 and 149 mL/min, in agreement with studies on rats 
under spontaneous breathing [42]. On the other hand, 
during PCV, even at a similar protective  VT value (6 mL/
kg), pleural pressure is positive, thus reducing venous 
return and cardiac output. In PCV groups, cardiac out-
put values were between 76 and 126  mL/min. Reduced 
cardiac output values are in line with pre-acinar capil-
lary blood stasis and may increase the hydrostatic pres-
sure in lung capillaries. Hydrostatic pressure induces a 
dysfunction of the pulmonary capillary endothelium, 
which is mediated by active second messenger responses 
and characterized by an imbalanced release of biologi-
cal markers [43]. It has been shown that patients with 
hydrostatic edema fluid showed increased neutrophils 

and inflammatory cytokines in the bronchoalveolar lav-
age fluid due to various causes [44–46]. We observed an 
increase in IL-1β and a decrease in SP-B during PCV, 
which is in line with early dysfunction of endothelial and 
epithelial cells [47], respectively. This can further explain 
the greater reduction in gene expression of ZO-1 in PCV 
than PSV. Reduced levels of ZO-1 are consistent with 
interstitial and alveolar edema due to diminished epithe-
lial and endothelial integrity [48].

In the brain, we observed an increase in necrosis, hem-
orrhage, and neuropil edema in the hypothalamus in the 
PCV and PSV groups with similar PEEP levels. Positive 
pleural pressure, as seen in PCV, may lead to significant 
changes in systemic venous congestion (termed “back-
ward failure”), which raises jugular venous pressure; 
this, in turn, is transmitted to the cerebral circulation 
[49]. It has been shown that cerebral venous conges-
tion promotes blood–brain barrier disruption and neu-
roinflammation [50]. We observed an increase in IL-1β 
as well as a decrease in ZO-1 gene expression in the 
PCV compared with the PSV groups. Furthermore, the 
PCV groups showed reduced cardiac output levels (76–
126  mL/min), which may be associated with increased 

Fig. 5 Expression of biological markers in the brain related to neuroinflammation (interleukin [IL]-1β), and endothelial cell damage (claudin-5 
and zonula occludens-1 [ZO-1]) in the following groups: NV, nonventilated; PCV, pressure-controlled ventilation; PSV, pressure-support ventilation; 
PEEP, positive end-expiratory pressure. Relative gene expression was calculated as a ratio of the average gene expression levels compared 
with the reference gene (acidic ribosomal phosphoprotein P0 [36B4]) and expressed as fold change relative to nonventilated animals (NV). Boxes 
show the interquartile range (25–75%), whiskers encompass the range (minimum to maximum), and horizontal lines represent median values of 6 
animals/group. Comparisons were done by Kruskal–Wallis test followed by Dunn’s multiple comparisons test (p < 0.05)

Fig. 6 Cardiac output and brain damage correlation. Cardiac output was negatively correlated with interleukin (IL)-1β (r = − 0.46, p = 0.023) 
positively associated with Zonula occludens (ZO)-1 gene expression at brain tissue (r = 0.38, p = 0.068)
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CD11b + cells in the dentate gyrus and pyramidal hip-
pocampus. CD11b + is a marker of activated microglia, 
representing the key immune effector cells of the central 
nervous system. Microglia cells can be activated by alter-
ations in brain homeostasis leading to morphological 
and molecular changes. We may infer that the alteration 
in systemic venous congestion due to changes in pleural 
pressure and heart–lung interaction during PCV is likely 
able to change microglia activation. We also observed 
an increase in CD45 + in microglia cells, which is in line 
with the M1 activation phenotype, which releases inflam-
matory mediators and induces inflammation and neuro-
toxicity [51]. This is in line with our molecular biology 
of the brain tissue. Apart from hemodynamics, vagus 
nerve activation may have played a role in the PSV group, 
although this could not be explored fully in our experi-
mental setting. Injurious mechanical ventilation has been 
associated with transient receptor potential cation chan-
nel subfamily V member 4 receptors (mechanorecep-
tors) activation. Following that, the pulmonary afferent 
purinergic receptors (vagal afferent receptors) may be 
activated, which may increase dopamine release in the 
hippocampus and triggering the intrinsic apoptotic cas-
cade [52, 53]. Thus, it is expected that, during PSV, vagus 
nerve activity may be more physiological, while during 
PCV, it would tend toward the non-physiological. The 
level of sedation and anesthesia may also play a role.

Limitations
This study has some limitations that need to be men-
tioned. First, the depth of sedation and anesthesia may 
have affected the neurological outcomes presented by 
PCV group in comparison to PSV group (Additional 
file  1: Table  S7). Second, the study design precluded 
neurofunctional status evaluation. However, markers of 
inflammation and endothelial cell injury within perile-
sional brain tissue as well as morphological features and 
markers of microglia activation were analyzed. Third, 
we evaluated experimental AIS by thermocoagulation, 
therefore the results cannot be extrapolated to other 
models. Fourth, the rats were previously healthy, young, 
and male, and the data may not be directly extrapolated 
to the complexity of clinical practice. Fifth, we did not 
evaluate cerebral blood flow velocity; instead, we meas-
ured cardiac output and left carotid peak systolic velocity 
as surrogates. Sixth, no differences in ventilator-induced 
lung injury susceptibility have been associated with sex 
[54], a finding that supports the inclusion of both sexes 
[55] instead of justifying the use of single-sex samples in 
experimental studies. Whether sex would have an impact 
on brain damage after ventilation in PSV or PCV should 
be studied in future preclinical research.

Conclusions
In experimental AIS, PSV compared with PCV reduced 
lung and brain injury. In addition, lung ZO-1 was reduced 
in PCV with PEEP = 2  cmH2O versus PEEP = 5  cmH2O, 
while brain claudin-5 increased in PSV with PEEP = 2 
 cmH2O versus PEEP = 5  cmH2O.
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