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Abstract 

Capillary leak syndrome (CLS) represents a phenotype of increased fluid extravasation, resulting in intravascular hypo‑
volemia, extravascular edema formation and ultimately hypoperfusion. While endothelial permeability is an evolution‑
ary preserved physiological process needed to sustain life, excessive fluid leak—often caused by systemic inflamma‑
tion—can have detrimental effects on patients’ outcomes. This article delves into the current understanding of CLS 
pathophysiology, diagnosis and potential treatments. Systemic inflammation leading to a compromise of endothelial 
cell interactions through various signaling cues (e.g., the angiopoietin–Tie2 pathway), and shedding of the glycocalyx 
collectively contribute to the manifestation of CLS. Capillary permeability subsequently leads to the seepage of pro‑
tein‑rich fluid into the interstitial space. Recent insights into the importance of the sub‑glycocalyx space and pre‑
serving lymphatic flow are highlighted for an in‑depth understanding. While no established diagnostic criteria exist 
and CLS is frequently diagnosed by clinical characteristics only, we highlight more objective serological and (non)‑
invasive measurements that hint towards a CLS phenotype. While currently available treatment options are limited, 
we further review understanding of fluid resuscitation and experimental approaches to target endothelial permeabil‑
ity. Despite the improved understanding of CLS pathophysiology, efforts are needed to develop uniform diagnostic 
criteria, associate clinical consequences to these criteria, and delineate treatment options.

Keywords Capillary leak syndrome, Critical care, Fluid balance, Endothelial permeability, Angiopoietin‑2

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Intensive Care Medicine
Experimental

†Babak Saravi and Ulrich Goebel contributed equally.

*Correspondence:
Babak Saravi
babak.saravi@jupiter.uni‑freiburg.de
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2298-3696
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40635-023-00582-8&domain=pdf


Page 2 of 21Saravi et al. Intensive Care Medicine Experimental           (2023) 11:96 

Introduction
Capillary leak syndrome (CLS) refers to a syndrome of 
deranged fluid homeostasis, often observed in critically 
ill [1–3]. In clinical practice, CLS is frequently defined 
by excessive fluid shift from the intravascular to the 
extravascular space, resulting in intravascular hypov-
olemia, extravascular edema formation, and hypoperfu-
sion—necessitating further fluid resuscitation [3].

In health, fluid exchange between intravascular and 
extravascular spaces is vital for maintaining the body’s 
homeostasis. However, disturbances in this delicate equi-
librium, often driven by systemic inflammation (e.g., sep-
sis) can lead to the clinical picture of CLS [4–6].

Despite efforts to define CLS, there is no established 
clinical definition nor accepted diagnostic criteria [1, 
3]. Previously, Marx et  al. characterized CLS as a fluid 
extravasation, resulting in edema and hypoperfusion 
[3]. The authors studied septic shock patients using vari-
ous methods such as indocyanine green measurements, 
chromium-51 labeled erythrocytes, and colloid osmotic 
pressure measurements, aiming to differentiate CLS from 
other hypo-oncotic conditions and clinical scenarios 
associated with fluid retention [3]. The definition of CLS 
proposed by Marx et al. in 2000 emphasized three main 

aspects: intravascular hypovolemia despite fluid resusci-
tation, generalized edema, and hemodynamic instability. 
This pivotal description, while not universally adopted, 
offers valuable insight into the key features of CLS, aid-
ing in the differentiation of this syndrome from other 
conditions that share similar clinical manifestations. It 
underlines the necessity for an accepted definition of this 
syndrome to develop targeted and effective therapeutic 
interventions [3].

This article will review the current understanding add-
ing new aspects of CLS in clinical practice, and give an 
overview about the pathophysiology, clinical presenta-
tion, diagnostic and therapeutic options.

Pathophysiology of CLS and implications
Triggers and key features
A CLS phenotype can be triggered by numerous dis-
ease states as well as certain medications and tox-
ins [7]. Depending on the literature source, terms like 
“generalized hyperpermeability syndrome”, “endothe-
lial permeability” or “capillary leakage” may be used 
synonymously for CLS. As an important semantic dis-
tinction, the “idiopathic systemic capillary leak syn-
drome”, also referred as Clarkson’s disease [8], needs to 
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be distinguished from CLS observed in the critically ill 
with a clear triggering condition. Clarkson’s disease is 
a rare and potentially fatal condition that is character-
ized by recurrent episodes of highly acute fluid shifts in 
otherwise healthy individuals, which can occur in two 
phases: an initial phase of fluid extravasation associated 
with syncope, dyspnea, and hypovolemia, followed by a 
second phase characterized by fluid reabsorption with 
polyuria and flash pulmonary edema [9]. This condi-
tion is rare with limited case reports describing these 
patients, however the term “systemic capillary leak 
syndrome” has the potential to cause confusion and 
impede accurate scientific exchange.

Aside from sepsis triggering CLS [6], other inflamma-
tory states like cardiac surgery using cardiopulmonary 
bypass [10], anaphylaxis, or major burn injuries can 
lead to a CLS phenotype. Other rare causes have been 
described and span from ovarian hyperstimulation syn-
drome [11, 12], hemophagocytic lymphohistiocytosis 
[13, 14], viral hemorrhagic fevers [15, 16], autoimmune 
diseases [17–19], snakebite envenomation [20, 21], and 
ricin poisoning [22]. Certain drugs, including some 
interleukins (ILs) [23], monoclonal antibodies and gem-
citabine [24], anti-thymocyte globulin may also hold 
the potential to induce a CLS phenotype [7]. Despite 
the diverse terminology and triggering factors, the core 
manifestations remain intravascular hypovolemia, gen-
eralized edema, and hemodynamic instability, forming 
the cornerstone of any definition for this clinical entity.

Due to the heterogenous clinical definition, the rel-
evance of CLS is hard to accurately depict in clinical 
practice. Good scientific evidence for CLS’ impact on 
general patient outcomes is lacking. However, its patho-
physiological effects on fluid distribution and oxygen 
transfer can be delineated from a pathophysiological 
standpoint. Given that endothelial hyperpermeability 
is a key part of the host’s response to infections, some 
authors hypothesize that CLS could be a putative target 
for novel sepsis treatment [25]. A key feature of CLS is 
represented by capillary permeability, which results in 
fluid shifts and a decrease in colloid oncotic pressure, 
often exacerbated by the subsequent fluid resuscitation 
[26, 27].

Furthermore, an important pathophysiological consid-
eration is the potentially harmful effect on the microcir-
culation, the network of small vessels crucial for oxygen 
delivery to the tissues. When fluid leaks out of these ves-
sels into the surrounding tissue, it increases the diffusion 
distances between capillaries and cells [28]. The systemic 
implications of CLS underscore the importance of strate-
gies to mitigate the detrimental effects of fluid shifts in 
key organ systems, maintaining intravascular euvolemia, 
and ensure adequate oxygenation at the tissue level.

Inflammatory breakdown of endothelial barrier
Physiologic vascular permeability is a tightly controlled 
process that is vital to the overall bodily function. How-
ever, the extent of permeability varies not only in health 
and disease, but is also specific to different organ sys-
tems and metabolic needs, thereby mirroring each 
organ’s unique biological requirements.

The endothelium is a single layer of cells lining the 
interior surface of all blood vessels. Its surface area has 
been estimated to be equivalent to a soccer field [29, 
30]. Various endothelial subtypes have been described 
(e.g., fenestrated, non-fenestrated, sinusoidal), fulfill-
ing specialized and organ-specific functions. It plays 
an integral role in a diverse array of vascular functions, 
creating a complex interface between the extra- and 
intravascular space. Endothelial cells intricately regu-
late permeability across the endothelium. This is largely 
due to their ability to form tight, adherens, and gap 
junctions, the latter of which allow for the exchange 
of ions, various metabolites, and regulatory factors 
[31]. Such dynamic functionality marks endothelial 
activation as a key hallmark for capillary leak [30]. 
Furthermore, the vascular endothelium acts as a semi-
permeable barrier, controlling the exchange of mac-
romolecules and fluids between interstitial fluid and 
blood. Vascular leakage can occur through two primary 
pathways [32]: the paracellular and the transcellular 
pathway [33].

The function of the endothelial barrier varies across 
different segments of the microvasculature, with perme-
ability increasing from arterioles to venules [34]. There 
are three types of capillaries: continuous, fenestrated, 
and discontinuous, which display functional differences 
specific to the organ [35]. While fenestrated capillaries 
feature openings with a diameter of 60 nm, their perme-
ability is primarily restricted to water and minor hydro-
philic solutes. This limitation is due to the presence of a 
diaphragm that only allows molecules smaller than 5 nm 
to pass through [31, 36]. Venules, in contrast, possess 
endothelial cells with greater permeability characteris-
tics, allowing not just fluids but also solutes and proteins 
to pass. These cells are particularly responsive to agents 
that increase permeability [31]. Another factor contrib-
uting to the heterogeneity of endothelial permeability 
across various vascular beds is the extent of coverage by 
supporting cells, such as pericytes [37]. In the context of 
inflammation, leukocytes typically exit the bloodstream 
through venules. This is facilitated by endothelial cells 
that, when exposed to inflammatory cytokines, present 
adhesion molecules to which leukocytes can attach. 
Large veins, however, are less prone to fluid leakage and 
are not as responsive to agents that increase permeability 
[38].
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In inflammation, the endothelial barrier can be com-
promised in its integrity (see Fig. 1) [39]. During con-
ditions such as infection (via pathogen-associated 
molecular patterns, PAMPs) or tissue injury (via dam-
age-associated molecular patterns, DAMPs), endothe-
lial cells undergo a transformation into an activated, 
proinflammatory state [39]. This activated state is typi-
fied by the production and release of various proteins 
stored in intracellular vesicles known as Weibel–Pal-
ade bodies [40]. When endothelial cells are activated, 
they release proteins such as tissue factor, P-selectin, 
von Willebrand factor, interleukins, angiopoietin-2 
(Ang-2) and many more into the bloodstream [41]. 
Furthermore, stimulated endothelial cells can pro-
duce and distribute proinflammatory cytokines into 
the bloodstream, which amplifies and exacerbates the 
inflammatory reaction. In a physiological state, this 
aims to attract immune cells to localized sites of infec-
tion or damage [40]. In case of systemic activation, it 
may lead to deleterious consequences. Endothelial cells 
further produce chemoattractants and adhesion mol-
ecules, thereby promoting the movement of leukocytes 

towards inflamed tissues [42, 43]. In a localized inflam-
matory process, the increase in vascular leakage sup-
ports the process of blood cell trafficking and the 
extravasation of macromolecules to the site. On the 
local level, this response is beneficial for resolving 
inflammation and facilitating tissue repair at a given 
site of an infection [44, 45]. However, when the pro-
inflammatory response escalates to a systemic level, it 
can  lead to a widespread compromise of the endothe-
lial barrier function. This may lead to CLS with relevant 
fluid shifts, hypotension, intravascular hypovolemia 
with the need for fluid resuscitation and edema forma-
tion. Of note, Kubicki et al. were able to show that CLS 
in consequence to pediatric cardiac surgery with car-
diopulmonary bypass is associated with tissue inflam-
mation as quantified by microdialysis [46]. In case of 
ongoing hypoperfusion, severe consequences such as 
organ dysfunction are possible (e.g., acute respiratory 
distress syndrome, acute kidney injury, etc.) [39, 47, 
48]. Furthermore, little is known about the resolution 
from endothelial dysfunction when inflammatory trig-
gers subside, thus prompting future investigations.
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Fig. 1 Pathophysiological understanding of selected features of capillary leak including inflammation‑induced glycocalyx shedding with increased 
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Pathways in maintaining and compromise 
of inter‑endothelial adhesion
Recent studies have shed light into mechanisms that are 
involved in destabilizing the endothelial barrier function, 
prompting the need for innovative therapeutic strategies 
targeting these pathways to enhance patient outcomes 
[39]. One identified pathway central to regulation of 
inter-endothelial adhesions and vascular permeability 
is the angiopoietin–Tie2 signaling axis [39, 41, 49, 50]. 
This pathway involves the Tie2 receptor, a second class 
tyrosine kinase that is almost exclusively expressed by 
endothelial cells, and its associated ligands, namely angi-
opoietin 1 (Ang-1) and Ang-2 [39].

Under normal physiological conditions, Tie2 is sig-
nificantly activated, thereby inhibiting the transcrip-
tion factor Foxo1, which is responsible for transcribing 
the Ang-2 gene [51]. However, during inflammation, 
Ang-2 antagonizes Tie2, disrupting this inhibitory pro-
cess and permitting Foxo1 to produce more Ang-2 [52]. 
The activation of Tie2 during vascular quiescence trig-
gers a signaling cascade that strengthens the endothelial 
cytoskeleton via the inhibition of small GTPases such 
as RhoA [38, 53]. Nevertheless, this safeguarding effect 
is negated during inflammation due to the inhibition of 
Tie2 induced by Ang-2, which results in the production 
of adhesion molecules and facilitates the migration of 
immune cells into the inflamed tissue [39, 54]. Another 
layer of complexity has recently been added to this con-
cept, as it has been observed that not just the activation 
but also the expression of Tie2 can be severely altered 
during systemic inflammation [55]. Mechanistically, this 
could be addressed as a proteolytic shedding process of 
the Tie2 ectodomain by matrix metalloproteinase 14 [56, 
57].

In a resting state, mesenchymal cells, mostly pericytes, 
secrete Ang-1, which acts as a stimulant for the Tie2 via 
its phosphorylation, thereby promoting the survival of 
endothelial cells and maintaining the stability of blood 
vessels with augmenting its inter-endothelial cellular 
adhesions [58, 59]. Conversely, Ang-2, stored within the 
endothelial Weibel–Palade bodies, acts as a context-
dependent inhibitor to the Ang1–Tie2 interaction, effec-
tively reducing the activation of the Tie2 receptor [60, 61]. 
When inflammatory cytokines stimulate the endothelial 
cells, Ang-2 is released from its storage within the cells, 
leading to an autocrine deactivation of the Tie2 recep-
tor, a process further intensified by the shedding of the 
Tie1 ectodomain [62]. It has been observed that Ang-2 
levels rise sharply within hours of the onset of sepsis in 
patients, and these elevated levels have been linked to 
adverse outcomes and increased mortality rates [63, 64].

It is worth noting that the interplay of these mecha-
nisms result in a reinforcing cycle of inflammation [39]. 

Besides sepsis, an imbalance in angiopoietin has been 
associated with negative outcomes in a range of con-
ditions, such as hantavirus, dengue virus, influenza, 
malaria, and sterile inflammation resulting from exten-
sive surgeries and/or trauma [65–70]. This underscores 
the potential of the Ang/Tie2 axis as a therapeutic target 
in various systemic inflammation conditions. Further 
research into the modulation of this critical pathway may 
open doors to new therapeutic strategies for systemic 
inflammation.

Syndecans, comprising Syndecan-1 to -4, are trans-
membrane proteoglycans essential in endothelial bar-
rier integrity, especially under inflammatory conditions 
[71]. These proteoglycans interact with various ligands, 
influencing cell adhesion, angiogenesis, and inflam-
mation [72]. Syndecan-1 and -4 are particularly note-
worthy, regulating inflammatory responses in contexts 
like myocardial injury and sepsis [71, 73]. Syndecan-2 
responds to inflammatory stimuli in several cell types, 
further emphasizing the syndecans’ role in inflamma-
tion [74, 75]. Syndecan-1 and -4 are pivotal in leukocyte 
extravasation, facilitating initial rolling and then modu-
lating adhesion and migration to balance inflammation 
[76–78]. Syndecan-1 also controls leukocyte adhesion to 
the endothelium, crucial for inflammation regulation [71, 
79]. Syndecan-3, while less studied compared to its coun-
terparts, has shown involvement in endothelial function 
across various vascular beds and influences angiogenesis 
and vascular permeability [80–83]. In conclusion, current 
evidence underscores the multifaceted roles of syndecans 
in endothelial dynamics, particularly emphasizing their 
significant contribution to inflammation regulation and 
vascular response under various pathological conditions.

Glycocalyx shedding
The endothelial glycocalyx (eGC), a coating of sugar mol-
ecules on the inner surface of the vascular endothelium, 
is vital for maintaining vascular stability, fluid homeosta-
sis, and serves as a sophisticated protective shield against 
inflammation and coagulation [84]. This highly dynamic 
molecular shield is now viewed as a pivotal player in the 
pathophysiology of sepsis [85] and has been shown to be 
compromised in various surgical procedures [10].

In the course of sepsis, the degradation of the glyco-
calyx takes place through two interrelated "sheddase" 
mechanisms [85]. These mechanisms pertain to the 
breakdown of glycosaminoglycans and the cleavage of the 
core proteoglycans [86–88]. Studies have identified circu-
lating glycosaminoglycans and proteoglycans extracellu-
lar domains in sepsis, indicating that these components 
are released from the glycocalyx, thereby contributing 
to its thinning and degradation [89–92]. One of the key 
players in this degradation process is an enzyme known 
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as heparanase-1 [89–92], the only identified mamma-
lian enzyme capable of degrading heparan sulfate poly-
saccharides into shorter chain oligosaccharides [93]. 
Heparanase-1 is activated during sepsis, contributing sig-
nificantly to the degradation of the glycocalyx [85]. The 
role of heparan sulfate degradation in sepsis, mediated by 
heparanase-1, has been solidified through numerous pre-
clinical and clinical studies [85, 89–92]. At the same time, 
septic patients acquire a relevant deficiency of the endog-
enous heparanase-1 counterpart termed heparanase-2. 
This dys-equilibrium may represent a novel therapeutic 
target [94, 95].

Another critical element of the glycocalyx is hya-
luronan. Uniquely, hyaluronan is unsulfated and not 
covalently bound to proteoglycans [96, 97]. Despite its 
structural differences, hyaluronan plays a crucial role 
in maintaining the structural stability of the glycocalyx, 
primarily through its ability to form complexes with pro-
teins and other sulfated glycosaminoglycans [98]. In sep-
sis, patients have been observed to possess elevated levels 
of serum hyaluronan, indicating an increase in its deg-
radation [99, 100]. The exact mechanism of hyaluronan 
degradation in sepsis, however, remains unclear, and this 
is an active area of research. While there is less under-
standing regarding the behavior of chondroitin sulfate, 
dermatan sulfate, and keratan sulfate during sepsis, it is 
hypothesized that proteoglycans carrying these glycosa-
minoglycans are expelled from the endothelial glycocalyx 
during this severe condition [87, 100, 101]. However, the 
exact mechanism of this shedding process and the iden-
tification of the enzymes involved remain as open ques-
tions in the field. Further complicating the process, the 
ectodomains of proteoglycans are also discharged from 
the endothelial glycocalyx during sepsis [102–104]. This 
is largely mediated by a group of enzymes known as 
matrix metalloproteinases (MMPs) and members of the 
A Disintegrin and Metalloproteinase (ADAMs) fam-
ily. These enzymes are capable of cleaving proteogly-
cans from the endothelial glycocalyx and their plasma 
concentrations are correlated with the severity of sepsis 
[105–107].

The activation of these sheddase mechanisms is not 
random. Instead, it is modulated by upstream factors, 
including proinflammatory cytokines [85]. For instance, 
sepsis-related activation of the glycosaminoglycans 
sheddase heparanase-1 is dependent upon endothelial-
derived TNF-α [89]. Furthermore, the Ang-2/Tie2 path-
way, critical in maintaining endothelial homeostasis, 
has been shown to regulate glycocalyx sheddases [87, 
108–110]. Interestingly, other molecules such as mac-
rophage migratory inhibitor factor, phorbol esters, and 
tissue inhibitors of matrix metalloproteinases, which 
are involved in glycocalyx degradation in other diseases, 

may also be relevant to septic glycocalyx degradation 
[111–116].

The destructive process of glycocalyx during sepsis has 
substantial physiological implications. The loss of this 
protective barrier directly impacts local tissue, but the 
degradation products themselves can also circulate and 
affect distant sites in the body [85]. This leads to a sys-
tem-wide impact that contributes to fluid shifts and the 
multiple organ dysfunction often seen in septic patients. 
The extent and the specific mechanisms through which 
glycocalyx degradation affects the progression and prog-
nosis of sepsis are still being uncovered. This under-
standing is critical for the development of therapeutic 
strategies to preserve the eGC, attenuate the inflamma-
tory response, and ultimately improve the outcomes of 
sepsis.

Fluid overload and dynamics
The human body contains various fluid compartments, 
both intravascular and extravascular, which have specific 
volumes and protein contents. According to indicator 
dilution studies, a healthy 70 kg adult typically has about 
3 L of plasma, containing around 210 g of protein [117]. 
On the other hand, the same adult will have approxi-
mately 12 L of interstitial fluid. This fluid resides in a 
gel phase and contains 240–360 g of protein. The capil-
lary pressure in this system is higher than the pressure 
in the interstitial space, which drives the movement of 
the solvent and its small lipophobic solutes towards the 
interstitial space [118]. Trans-endothelial fluid shifts are 
regulated by the vascular barrier in addition to hydro-
static and oncotic forces, as described by the revised 
Starling equation [119]. In healthy organs, the increased 
permeability and movement of proteins and plasma fluid 
are temporary and decrease once the stimulating factor 
is removed. Edema is traditionally perceived as a conse-
quence of a pressure-driven net outward filtration in the 
capillary, partially reversed by fluid reabsorption at the 
venous end by an oncotic pressure gradient [120]. Con-
trary to traditional perspectives, more recent theories 
propose that continuous net filtration is the norm in most 
capillary networks [121]. Apart from an increased pres-
sure gradient, edema can also be caused by hypo-oncotic 
states, changes in permeability and impaired lympathics. 

The capillary wall includes a glycocalyx layer, which is 
a complex meshwork of glycosaminoglycans and addi-
tional glycoproteins. This layer serves as a filtration 
barrier, featuring gaps where capillary filtration takes 
place [121–123]. The movement occurs through regula-
tion of the glycocalyx and the occasional breaks in the 
inter-endothelial junctions. These breaks constitute less 
than 0.1% of the total endothelial surface area, allow-
ing a highly regulated fluid exchange process [117]. The 
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glycocalyx layer was previously assumed to have an 
almost perfect reflection coefficient for proteins, par-
ticularly albumin. However, albumin diffusion through 
capillary pores results in about half of the body’s albumin 
content residing extravascularly, with interstitial oncotic 
pressure reaching 30–60% of plasma oncotic pressure 
[124]. The complexity of the interstitial space has been 
underestimated in the past. It actually consists of a 
triphasic system that includes freely moving fluids, a gel-
like phase rich in large polyanionic glycosaminoglycans 
molecules, and a collagen framework [117, 124]. Albu-
min is predominantly absent from this luminal surface, 
leading to a stronger intravascular oncotic pressure than 
what direct measurements of interstitial albumin con-
centration would suggest [125]. As a result, the net filtra-
tion process is more influenced by the oncotic pressure 
beneath the endothelial glycocalyx than by the capillary 
membrane itself [123].

The clinical consequences of these fluid shifts can be 
manifold, yet not immediately visible to the clinician. 
The lungs are especially prone to pulmonary edema due 
to the unfavorable ratio of endothelium per tissue with 
the clinical potential to impact gas exchange, and pre-
dispose the lungs to further infectious complications 
[126]. Additionally, the gastrointestinal tract may become 
edematous, leading to paralytic ileus, an increase in intra-
abdominal pressure and subsequent tissue hypoxia, and 
impaired wound healing [127, 128]. It is noteworthy that 
the endothelium is highly heterogeneous across different 
vascular beds; for example, CLS commonly affects vari-
ous organs but is rarely observed in the brain due to the 
unique properties of the blood–brain barrier, including a 
higher pericyte-to-endothelial cell ratio that contributes 
to its greater impermeability [129].

While CLS is widely acknowledged in the critical 
care settings, there is a surprising lack of clinical stud-
ies exploring its impact on organ dysfunction and mor-
tality [1]. This may stem from the current absence of 
accepted diagnostic criteria for CLS. However, associated 
conditions like an inflammatory state and positive fluid 
balance—circumstances inevitably related to CLS—cor-
relate with higher mortality rates in the ICU [130]. For 
example, elevated levels of serum cytokines are com-
monly observed in non-survivors of critically illness, and 
a positive fluid balance is acknowledged as an independ-
ent predictor of outcomes in patients with sepsis [131, 
132].

Fluid management can be complex in ICU settings, 
demanding a thorough understanding of body fluid 
homeostasis [133]. Fluid overload, which comprises 
whole body water, i.e., extra- and intravascular fluid, 
can be detrimental and associated with negative out-
comes in patients who are critically ill [134–145]. It 

has been linked to extended duration of mechanical 
ventilation [135], increased rate of AKI [136] and renal 
replacement therapy (RRT) [137], longer ICU stays 
[135], and increased risk of infectious complications 
[141]. Furthermore, fluid overload can precipitate intra-
abdominal hypertension in ICU patients, regardless of 
the underlying reason for their admission [142]. In all 
the aforementioned patient categories, fluid overload is 
consistently associated with increased mortality rates 
[134, 137, 138, 140–145]. A systematic review by Mess-
mer et al. in 2020, which encompassed 31 observational 
and three randomized controlled trials involving a total 
of 31,076 ICU patients, confirmed a significant corre-
lation between fluid overload and cumulative fluid bal-
ance with mortality [146].

While there is a lack of direct evidence on CLS and its 
impact on patient outcomes, the documented adverse 
outcomes related to fluid overload strongly underline 
the importance of further exploring excessive endothe-
lial permeability in the ICU settings. Future research in 
this area could profoundly influence management strat-
egies and potentially improve outcomes for critically ill 
patients. Therapeutically, IV fluids may only exert a tran-
sient effect on hemodynamics due to their half-life and 
physiological features to rather liberally cross the vascu-
lar barrier [147–149]. It is estimated that less than 5% of 
infused crystalloid may remain in the vasculature after 
1 h [150].

The presence of hypovolemia with peripheral edema 
represents a counterintuitive scenario that has often 
baffled physicians. Fluids in the intercellular space can 
be categorized into two types: unbound fluid and fluid 
that is part of the gel phase. The gel phase consists of a 
lattice-like structure made up of collagen and various 
other fibrous matrix proteins [151]. Fluids are typically 
free to move between the interstitial space and plasma. 
Post-filtration, these fluids are channeled back into the 
circulatory system through the lymphatic network. 
However, pathological states and certain drugs can dis-
rupt this equilibrium [151]. In inflammatory conditions 
like sepsis, the fluid’s return from the interstitial space 
towards the plasma may be significantly hindered, lead-
ing to the characteristic triad of low blood volume, low 
albumin levels, and peripheral edema [151, 152]. Even 
general anesthesia, without the use of mechanical ven-
tilation, has been observed to cause an accumulation of 
crystalloid fluid, that was previously infused, in a slowly 
equalizing segment of extravascular spaces [151, 153]. To 
comprehend the fluid kinetics, it is necessary to integrate 
data from various fields, including interstitial fluid physi-
ology, lymphatic pathology, and inflammation. It is cru-
cial to understand that the electrolyte composition of the 
majority crystalloids does not significantly affect kinetics 
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of fluids and, consequently, has limited effects on intersti-
tial fluid pressure [154].

Diagnostic approach
Clinical diagnosis
Diagnosis of CLS is complex (see Fig. 2). So far, no estab-
lished diagnostic criteria for CLS exist. The need for fluid 
resuscitation is a critical aspect of CLS diagnosis and 
management. Clinical hallmarks of CLS may encompass 
hemodynamic instability, intravascular hypovolemia and 
generalized edema [7]. Most evident to the clinician at 
bedside is the systemic pitting edema—but especially 
effusions in the thoracic and abdominal cavities, non-car-
diogenic pulmonary edema, and intestinal swelling can 
contribute to worse outcomes [155]. While the diagno-
sis of CLS itself remains a complex endeavor, the assess-
ment of edema, a hallmark feature, presents its own set 
of challenges. Though various methods for the quantifi-
cation of peripheral edema exist—ranging from clinical 
assessments to ultrasound and other advanced imag-
ing modalities—there are no standardized guidelines 
for the critical care setting [156, 157]. The most com-
mon method remains a subjective pitting test, where the 
severity of edema is graded based on pit depth and skin 
recovery time [157]. This traditional approach, although 
quick and widely used, lacks the objectivity and reliability 
needed for critical assessment.

The management of fluid balance in critically ill 
patients is a nuanced task. Excessive fluid resuscita-
tion can lead to hypervolemia, ultimately increasing the 
damage to the glycocalyx and increased vascular perme-
ability [130, 142]. On the other hand, hypovolemia is det-
rimental for organ perfusion. The diagnosis of CLS can 
be challenging given the lack of standardized criteria and 
the varied clinical presentations [1, 3]. Yet, a careful and 
comprehensive evaluation of patient status, consider-
ing the clinical context and use of appropriate diagnostic 
tools, which will be described below, can assist in identi-
fying the CLS phenotype [1].

Non‑invasive evaluation of extracellular water
Bioelectrical impedance analysis (BIA) offers an approach 
for non-invasively quantifying the water contents inside 
and outside cells [158, 159]. This method measures 
impedance due to the varying electrical conductivity of 
different biological tissues such as muscle and fat. Given 
that electrical conductivity correlates with electrolyte 
and/or water content, BIA can provide a quantitative 
evaluation of the body’s water content, along with fat and 
muscle mass [159–162].

In a previous study by Marx et  al. in critically ill 
patients, the extracellular water, derived using BIA, cor-
related well with invasive measurements of extracellular 
water content [3]. Patients with an elevated extracellular 
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water ratio on the third day in the ICU showed a higher 
likelihood of postoperative complications and in-hospital 
mortality [159]. In a recent study conducted on patients 
undergoing multivisceral debulking surgery, thoracic 
fluid content, assessed via electrical cardiometry, was 
found to continuously increase up to the third postopera-
tive day and remained elevated until discharge [163]. This 
prolonged alteration in fluid status suggests that bioelec-
trical impedance analysis, including metrics like thoracic 
fluid content, may offer nuanced insights into volume 
shifts and their association with postoperative complica-
tions. Hence, this non-invasive measurement can be an 
effective tool for managing volume status, tailoring fur-
ther therapy, and improving the prognosis for patients in 
the ICU.

Serum markers and CLS‑scoring system
In their prospective study, Wollborn et  al. sought to 
find common characteristics of CLS in a heterogenous 
cohort of critically ill patients [1]. They employed a vari-
ety of measurement techniques, from non-invasive BIA 
to serum biomarker analysis, to distinguish patients with 
CLS from those without [1]. The findings indicated that 
specific biomarkers previously identified in CLS patho-
physiology, particularly Ang-2, showed significantly 
higher concentrations in CLS patients [1]. Other mark-
ers of endothelial integrity, such as the inter-endothelial 
adherens junction molecule VE-cadherin, and glycocalyx 
markers like syndecan-1 were elevated in CLS patients 
as well. In their statistical modellings, Wollborn and col-
leagues derived a scoring system (“CLS-Score”) which 
involved seven parameters: ultrasound echogenicity to 
determine the degree of edema, the Sepsis-related organ 
failure assessment score (SOFA) score for disease sever-
ity, Ang-2, syndecan-1, ICAM-1, lactate, and the proin-
flammatory cytokine interleukin-6 [1]. By incorporating 
these components, the score aimed to provide a more 
objective diagnostic tool for CLS. Many of the identified 
hallmarks were recently reproduced in a study in cardiac 
surgery patients [10].

Vascular Leak Index
As a straightforward yet effective approach to gauge vas-
cular leak in patients suffering from sepsis, Chandra et al. 
developed the Vascular Leak Index in 2022 [164]. The 
Vascular Leak Index is calculated using a formula which 
considers the change in the hematocrit levels at two dif-
ferent timepoints during fluid administration, and the net 
volume of the administered fluid [164]. In essence, the 
Vascular Leak Index shows the correlation between the 
quantity of fluid infused and the change in hematocrit, 
thereby providing an indication of the amount of fluid 
that remains in or has escaped from the vascular space. 

This correlation is normalized to account for differences 
in each patient’s blood volume. The result is then multi-
plied by 1000 for easier interpretation. By using large ICU 
databases, the researchers’ analysis revealed that higher 
Vascular Leak Index values are linked to an increased 
risk of in-hospital death. Furthermore, patients with 
high Vascular Leak Index values may be at a greater risk 
of fluid accumulation [164]. A possible limitation is that 
the Vascular Leak Index cannot differentiate between 
effects of vascular leak versus concurrent vasodilation or 
vasoconstriction, especially on the venous side leading 
to an increase or decrease of venous volume and thereby 
changing the hematocrit, too [165].

Invasive assessment of fluid status
Among more invasive diagnostic tools, the use of 
transpulmonary thermodilution not only presents an 
approach for hemodynamic monitoring, but also to 
approximate a patient’s fluid status [166]. Extravascu-
lar lung water is defined as the fluid volume outside the 
pulmonary vasculature, within the interstitial and alveo-
lar spaces [166, 167]. It was previously validated against 
the reference method of gravimetry in autopsy studies 
[167–169]. Transpulmonary thermodilution (e.g., with 
use of the PiCCO™ system) and can be helpful in bed-
side clinical diagnosis and decision-making. It has been 
observed that an elevated extravascular lung water is 
linked to a higher mortality risk in ICU patients [166]. 
This association held true for both acute respiratory dis-
tress syndrome patients and critically ill patients without 
acute respiratory distress syndrome, suggesting the broad 
applicability of extravascular lung water as an indicator 
of disease severity [166]. It is important to clarify that 
extravascular lung water is a measure of accumulated 
extravascular water and not a direct indicator of perme-
ability. The Pulmonary Vascular Permeability Index can 
further distinguish whether the elevated extravascu-
lar lung water may be due increased permeability (high 
Pulmonary Vascular Permeability Index) [170]. It has 
to be noted that lung-specific pathologies can lead to 
an increase in extravascular lung water due to localized 
increase in permeability which may not necessarily rep-
resent systemic vascular leak.

Monitoring endothelial damage and microcirculation
Intravital microscopy utilizing sidestream darkfield or 
incidental darkfield imaging is gaining popularity for the 
assessment of the sublingual microcirculation, a non-
invasive method that visualizes red blood cells within 
the microvasculature with light emitted by a light-emit-
ting diode probe, which is then reflected by hemoglobin 
and detected by a special camera [171]. This technique 
facilitates the estimation of total vessel density, perfused 
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vessel density, proportion of perfused vessels, and the 
microvascular flow index, typically through offline com-
puter analysis [172–175].

Moreover, the intravital microscopy imaging of red 
blood cells serves as a marker of microvascular perfu-
sion, while the measurement of the perfused boundary 
region provides an indirect marker for endothelial glyco-
calyx barrier dimensions [125]. Research has shown asso-
ciations between the perfused boundary region and the 
presence of red blood cells in the microvascular circula-
tion [176]. This method has further revealed that changes 
in sublingual microvascular blood flow are prevalent in 
sepsis patients, with the severity of blood flow abnor-
mality correlating to disease severity [177, 178]. How-
ever, these techniques have their limitations, and the 
low reproducibility of three sublingual microcirculation 
parameters (vascular density, red blood cell filling, and 
perfused boundary region) estimated by sidestream dark-
field imaging remains a topic of discussion. The recently 
published DAMIS study showed no benefit on survival by 
including intravital microscopy in clinical decision-mak-
ing in patients in shock [172, 175].

Improving technology could further help to visualize 
the endothelial barrier. For instance, the "GlycoCheck™" 
camera has been shown as a tool to indirectly evaluate 
the size of the endothelial glycocalyx [179]. Interestingly, 
Rovas et al. found that the damage to the endothelial gly-
cocalyx seems to be independent of any microcirculatory 
disruption as gauged by traditional consensus param-
eters [179]. This implies that patients can have impaired 
microcirculation without damage to the endothelial gly-
cocalyx, and vice versa.

Treatment considerations
Phases of fluid resuscitation
Importantly, there is no specific treatment for CLS which 
means tailored therapy needs to focus on nuanced and 
goal-directed measures to maintain euvolemia and 
organ perfusion. Fluid administration has to be weighed 
against potential harm from fluid overload [130, 142], 
while overzealous fluid resuscitation may further con-
tribute to the degradation of the eGC and subsequently 
aggravate endothelial injury [108]. While CLS is widely 
acknowledged in the critical care settings, there is a 
surprising lack of clinical studies exploring its impact 
on organ dysfunction and mortality [1]. This may stem 
from the current absence of accepted diagnostic criteria 
for CLS. However, associated conditions like an inflam-
matory state and positive fluid balance—circumstances 
inevitably related to CLS—correlate with higher mortal-
ity rates in the ICU [130]. For example, elevated levels 
of serum cytokines are commonly observed in non-sur-
vivors of critically illness, and a positive fluid balance is 

acknowledged as an independent predictor of outcomes 
in patients with sepsis [131, 132].

Fluid management can be complex in ICU settings, 
demanding a thorough understanding of body fluid 
homeostasis [133]. Fluid overload, which comprises 
whole body water, i.e., extra- and intra-vascular fluid, 
can be detrimental and associated with negative out-
comes in patients who are critically ill [134–145]. It has 
been linked to extended duration of mechanical ventila-
tion [135], increased rate of acute kidney injury [136] and 
renal replacement therapy [137], longer ICU stays [135], 
and increased risk of infectious complications [141]. Fur-
thermore, fluid overload can precipitate intra-abdominal 
hypertension in ICU patients, regardless of the underly-
ing reason for their admission [142]. In all the aforemen-
tioned patient categories, fluid overload is consistently 
associated with increased mortality rates [134, 137, 138, 
140–145]. A systematic review by Messmer et al., which 
encompassed 31 observational and three randomized 
controlled trials involving a total of 31,076 ICU patients, 
confirmed a significant correlation between fluid over-
load and cumulative fluid balance with mortality [146]. 
Therapeutically, IV fluids may only exert a transient effect 
on hemodynamics due to their half-life and physiologi-
cal features to rather liberally cross the vascular barrier 
[147–149]. It is estimated that less than 5% of infused 
crystalloid may remain in the vasculature after one hour 
[150].

To foster the concept of "fluid stewardship" [180], the 
ROSE model presents a guide for fluid resuscitation in 
patients with critical illnesses [130]. It revolves around 
the four D’s—the specific drug (type of fluid), dose (vol-
ume), duration, and de-escalation (fluid removal) [130, 
180]. These four questions aim to guide clinicians in 
determining the appropriate timing for initiating and 
discontinuing fluid therapy, as well as when to begin and 
cease fluid removal. The four indications refer to the pur-
poses of fluid administration: resuscitation, maintenance, 
replacement, and nutrition [130]. In the ROSE model, 
fluid management is conceptualized into four distinct 
phases: Resuscitation, Optimization, Stabilization, and 
Evacuation. During the Resuscitation phase, fluids are 
administered to correct hypovolemia. In the Optimiza-
tion phase, careful titration of fluids is done to ensure 
adequate organ perfusion. The Stabilization phase then 
involves a reduction in fluid administration to prevent 
fluid overload. Finally, in the Evacuation phase, efforts 
are made to remove excess fluid and return the patient 
to normovolemia [130]. A possible parallelism to CLS 
is that during the optimization phase the fluid adminis-
tration should be guided to maintain/optimize preload 
despite the developing CLS. During the stabilization 
phase the intravascular fluid losses due to CLS should be 
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counterbalanced by a restricted fluid administration, and 
during the progressive recovery from the CLS permits 
negative fluid balances during the evacuation phase (see 
Fig. 3).

Preservation of the endothelial surface layer (ESL)
In this section, the term ’Endothelial Surface Layer (ESL)’ 
will be used to refer to the intricate structure formed 
by the endothelial glycocalyx (eGC) along with associ-
ated plasma proteins. The eGC serves as a luminal mesh 
that provides endothelial cells with a framework to bind 
plasma proteins and soluble glycosaminoglycans [181]. 
While the eGC itself is considered inactive, it becomes 
physiologically active once it binds with or is immersed 
in plasma constituents, thereby forming the ESL. It is 
worth noting that the specific roles and clinical relevance 
of the eGC as part of the broader ESL are subjects of 
ongoing research. The ESL is instrumental in maintain-
ing vascular homeostasis, regulating vascular perme-
ability, and acting as a mechanosensor for hemodynamic 
shear stresses, in addition to displaying antithrombotic 
and anti-inflammatory characteristics [182]. Plasma pro-
teins, especially albumin, bind within the glycocalyx and 
aid in stabilizing this layer [183]. Albumin’s function is 
particularly important as it contributes to plasma colloid 
osmotic pressure (among other, often unmeasured mol-
ecules). Moreover, albumin performs a range of roles—
from acting as a free radical scavenger and transporting 

sphingosine-1-phosphate (which has protective effects 
on the endothelium), to providing immunomodulatory 
and anti-inflammatory effects [125].

Experimental studies have highlighted the multifunc-
tional nature of albumin, which includes maintaining 
ESL integrity, partially restoring compromised vascu-
lar permeability, exhibiting anti-oxidative properties 
and anti-inflammatory properties, improving hemody-
namics and microcirculation following endotoxemia or 
hemorrhagic shock, and acting as an effective plasma 
volume expander [125, 184–190]. Interestingly, ben-
eficial effects appear to be independent of albumin’s 
oncotic properties. Additional research has shown that 
the choice of fluid for infusion significantly affects the 
ESL [125, 191]. For instance, in vivo experiments con-
ducted on anesthetized rats subjected to hemorrhagic 
shock followed by fluid resuscitation, the use of normal 
saline failed to restore ESL thickness and plasma levels 
of syndecan-1 [192]. Conversely, albumin was found to 
stabilize permeability and leukocyte rolling/adhesion, 
partially restoring ESL thickness and reducing plasma 
syndecan-1 to baseline levels [125, 192]. Authors have 
proposed several mechanisms to elucidate the positive 
influence of albumin on the endothelium [193]. Primar-
ily, albumin might alleviate sepsis-induced damage to 
the ESL. As reviewed by Aldecoa et  al., albumin, due 
to its amphoteric properties, has the ability to estab-
lish strong bonds with the ESL, while its negative 
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charge aids in maintaining its parietal electrical barrier 
[125]. In addition, the antioxidant functions of albu-
min are well-documented [125]. Albumin’s free thiol 
group, carried by a cysteine residue (Cys-34), assists 
in neutralizing harmful plasma free radicals, which 
is highly relevant in the septic environment marked 
by a high oxidative state. Lastly, albumin’s capacity to 
form complexes with heavy metals provides protection 
against oxidation via the Fenton reaction [193]. Hariri 
et  al. underscore the mounting evidence, both from 
experimental models and in the context of critically ill 
patients, that suggests the protective role of albumin 
on the endothelium during acute injury [193]. Pres-
ervation of the ESL using albumin (and fresh frozen 
plasma) is intriguing, however clinical studies need to 
confirm these findings. It is anticipated that the ongo-
ing multicenter ARISS trial will further shed light into 
the effects of albumin on clinical outcomes [194]. It is 
crucial to note that commercial albumin solutions are 
often heated to 60 °C for several hours for inactivation 
of infectious agents [195]. This heat treatment can lead 
to protein denaturation and alterations in its negative 
charge [195], raising the question of the comparability 
of administered albumin with physiologically circulat-
ing albumin synthesized by the liver.

Various clinical studies examine the effects of albumin 
in the clinical context. Zdolsek et  al. have shed light on 
the impact of exogenous albumin administration on fluid 
dynamics under various clinical conditions [196]. The 
primary focus of their study was to evaluate the rate at 
which infused albumin dissipates from the bloodstream, 
quantified as the half-life (T1/2), under different clinical 
scenarios. Their research involved intravenously infus-
ing 3 mL/kg of 20% albumin into a varied population that 
included healthy volunteers, patients after burns, post-
operative patients, and patients who underwent surgery 
with both minor and significant bleeding. The results 
showed a consistent  T1/2 across all groups, except for 
those who experienced surgery with major bleeding. In 
the latter case, the infused albumin disappeared faster, 
indicating a greater loss of albumin in  situations of sig-
nificant hemorrhage. Zdolsek and colleagues further 
compared the effects of 20% and 5% albumin concen-
trations on plasma volume expansion [197]. The study 
was designed in a way that the same mass of albumin 
was administered under both scenarios. Their findings 
showed that while both concentrations led to plasma 
volume expansion, the 5% albumin concentration had a 
slightly higher rate of volume expansion. However, they 
found that a third of the 5% albumin solution quickly 
leaked from the plasma, likely due to the higher colloid 
osmotic pressure of volunteer plasma than that of the 
albumin solution. By the 6-h mark, about 42–47% of the 

administered albumin had leaked from the capillaries, 
regardless of the concentration used.

Further research by Hahn and colleagues investigated 
the body fluid shifts when 20% albumin is adminis-
tered intravenously, with a specific focus on postopera-
tive patients [198]. They found that the infused albumin 
expanded the plasma volume beyond the volume of the 
infusion itself by moving non-circulating fluid. However, 
the same mechanism also increased fluid losses from the 
system. Despite these dynamics, they observed that the 
plasma albumin level and plasma volume remained sta-
ble for about 2 h post-infusion. Therefore, the effective-
ness of albumin as an administered fluid may depend 
on the specific clinical scenario and the administered 
concentration.

Microvascular and ESL protection prior to surgeries 
(i.e., before an anticipated inflammatory insult) presents 
an interesting area of research, as highlighted by Yanase 
et  al. [199]. In their study, they explored the feasibil-
ity, efficacy, and safety of potential protective influence 
of dexamethasone and albumin on the ESL in patients 
undergoing abdominal surgery. In this trial, patients were 
randomly assigned to two groups. One group was given 
intravenous dexamethasone and 20% albumin at the 
onset of anesthesia, followed by additional albumin with 
each subsequent crystalloid administration. The control 
group, conversely, received only crystalloid fluid without 
dexamethasone leading to differences in the crystalloid, 
colloid administration. The outcomes were evaluated 
based on alterations in plasma syndecan-1 and heparan 
sulfate levels as markers for eGC damage, and inflamma-
tory markers measured at four perioperative timepoints. 
Although no significant differences were noted in syn-
decan-1 levels between the two groups, the group that 
received the dexamethasone-albumin treatment dem-
onstrated lower heparan sulfate and C-reactive protein 
levels on the first postoperative day, suggesting a poten-
tial protective effect on the glycocalyx. This group also 
experienced fewer postoperative complications [199]. 
It remains uncertain if this effect is related to the dexa-
methasone or albumin administration, or the combina-
tion thereof.

It has to be noted that the role of albumin administra-
tion in critically ill patients has been studied extensively 
in the past. The ALBIOS trial conducted by Caironi et al. 
[200] aimed to evaluate the efficacy of albumin adminis-
tration in patients with severe sepsis. In this multicenter, 
open-label trial, 1818 patients with severe sepsis were 
randomized to receive either a 20% albumin and crystal-
loid solution or a crystalloid solution alone. The albumin 
group was targeted to maintain a serum albumin con-
centration of 30 g per liter or more until discharge from 
the ICU or 28 days after randomization. During the first 
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7 days, the albumin group demonstrated a higher mean 
arterial pressure and a lower net fluid balance compared 
to the crystalloid group. However, no significant differ-
ence was observed in the total daily amount of admin-
istered fluid between the two groups. The 28-day and 
90-day mortality rates did not show significant differ-
ences between the two groups, indicating that albumin 
replacement in addition to crystalloids did not improve 
survival rates at these timepoints [200]. These findings 
do not support the hypothesis that albumin administra-
tion has survival benefits in severe sepsis, despite previ-
ous studies and experimental evidence for its protective 
role. However, the ALBIOS trial did confirm some physi-
ological benefits of albumin administration. Patients in 
the albumin group exhibited superior hemodynamic 
responses, with a higher mean arterial pressure, lower 
heart rate, and lower net fluid balance in the first 7 days 
of treatment [200]. The average cardiovascular SOFA 
subscore was lower in the albumin group, and the time 
to suspension of inotropic or vasopressor agents was 
shorter, suggesting a decreased need for vasopressors 
[200]. Similar to the ALBIOS trial, the ALBICS trial for 
albumin use in cardiac surgery did not show a benefit on 
major adverse events at 90 days [201]. Many unanswered 
questions remain around the role of albumin administra-
tion, e.g., its role in effective de-resuscitation and aug-
menting loop diuretic effects [202] and the comparability 
of exogenously administered albumin’s properties com-
pared to that of circulating albumin. Due to these rea-
sons, no final recommendation can be given for the role 
of albumin administration for CLS treatment.

Lymphatics in ICU patients
Unlike the cardiovascular system, which ensures bidi-
rectional blood flow, the lymphatic system is specifically 
designed for unidirectional transit from the extracellular 
space to the venous system [45]. The lymphatic system 
plays a pivotal role, actively participating in maintaining 
tissue fluid equilibrium, aiding in the absorption of lipids 
from the gastrointestinal tract, and playing an important 
role in the immune response by transporting antigen-
presenting cells and lymphocytes to lymphoid organs 
[203]. Of note, the lymphatic flow can be increased in 
health and disease. In the context of critical care, the 
lymphatic system’s potential for increased flow offers 
interesting avenues for research.

In the critical care setting, physical therapy involv-
ing manual lymphatic drainage presents an interesting 
approach as it has been shown to enhance lymphatic out-
flow and mobilize fluid [204–206]. Studies have found 
that manual lymphatic drainage can significantly improve 
the transportation of various substances within the lym-
phatic system [204–207]. The findings indicated that 

manual lymphatic drainage can lead to a modest increase 
in plasma volume, averaging around 1.5 ± 0.8% [207]. This 
expansion suggests that lymphatic fluid is being mobi-
lized into the bloodstream. Recent research showed an 
increase in albumin levels following manual lymphatic 
drainage [207]. These changes were not solely due to 
fluid shifts, as albumin concentrations were corrected 
for changes in plasma volume, and hematocrit remained 
unaffected by the lymphatic drainage. These observa-
tions could imply that the mobilized fluid entering the 
bloodstream after manual lymphatic drainage therapy 
possesses a higher albumin content than plasma. The 
long-term implications of these physiological changes are 
yet to be fully understood. Nonetheless, the potential role 
of manual lymphatic drainage in influencing fluid balance 
and lymphatic outflow could have relevant implications 
for managing conditions in the ICU.

Experimental approach for endothelial stabilization
Phosphodiesterase (PDE) inhibitors exhibit a diverse 
range of pharmacological effects, encompassing prop-
erties such as anti-inflammatory, antioxidant, vasodila-
tory, cardiotonic, and anticancer activities, alongside 
enhancing memory. This expansive superfamily of PDEs 
is categorized into 11 distinct groups, differentiated by 
their structural characteristics, cellular localization, gene 
expression patterns, protein attributes, and a variety of 
pharmacological properties, influenced by both internal 
and external regulatory factors. Particularly, phosphodi-
esterase-4 inhibitors (PDE4-Is, e.g., rolipram and roflu-
milast) have been explored as potential treatment options 
stabilizing endothelial interaction during systemic 
inflammation and sepsis [208, 209]. The proposed mech-
anism is thought to involve the control of the cAMP/
Rac1-signaling pathway, which is integral to the stability 
of intercellular junctions [208, 210–212]. The intracellu-
lar second messenger cyclic adenosine monophosphate 
(cAMP) decreases in endothelial cells under inflam-
matory conditions, associated with the breakdown of 
endothelial barrier properties in vitro [210]. Experimen-
tal studies further suggest that administration of PDE4-
Is which increases endothelium-specific cAMP holds the 
potential to maintain cellular adhesion and endothelial 
barrier properties during acute inflammation. Schick 
et  al. showed in a rodent model that the application of 
rolipram or roflumilast effectively attenuated capillary 
leakage and improved microcirculatory flow by prevent-
ing the inflammation-induced loss of endothelial cAMP 
[208]. Wollborn et  al. further confirmed the effects of 
PDE4-Is in extracorporeal circulation-induced capillary 
leak [209]. Various other pathways remain under inves-
tigation to evaluate means to stabilize vascular endothe-
lium [39].
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In addition to PDE4-Is, other PDE-Is also show poten-
tial in endothelial stabilization. The PDE1 family, known 
for its vasodilatory effects and reduced activity in plate-
let aggregation, may influence endothelial stability by 
modifying vascular tone and cellular cAMP levels, crucial 
factors in maintaining endothelial barrier integrity [213–
215]. Experimental studies suggest that PDE1 inhibi-
tors, by modulating cGMP and cAMP pathways, could 
potentially reinforce endothelial cell adhesion and barrier 
properties, similar to the effects observed with PDE4-Is 
[216–218]. PDE2-Is, through their unique mechanism of 
cGMP-mediated cAMP regulation, may also contribute 
to endothelial stability. By enhancing intercellular com-
munication and barrier function, they could offer a novel 
approach to managing endothelial disruption in condi-
tions such as pulmonary hypertension and heart failure 
[219–221]. Furthermore, PDE3-Is, while primarily rec-
ognized for their cardiac effects, could indirectly influ-
ence endothelial function. Given their role in modulating 
intracellular cAMP levels, they might impact endothelial 
cell junction stability and barrier properties, particu-
larly under stress conditions such as sepsis or systemic 
inflammation [222–224]. Among the most promising 
for endothelial stabilization are PDE5-Is like sildena-
fil and tadalafil. These agents have shown effectiveness 
in improving hemodynamics and endothelial function 
in heart failure and pulmonary arterial hypertension 
[225–227]. Their mechanism, which involves modulat-
ing cGMP-dependent signaling, makes them particularly 
relevant for maintaining endothelial barrier integrity. 
While primarily associated with visual functions, the role 
of PDE6 in other cellular processes remains under-inves-
tigated in the context of endothelial stabilization [228], 
PDE7-Is are present in immune cells and cardiac myo-
cytes and might influence endothelial function indirectly 
through immunomodulatory pathways [229, 230]. Both 
PDE8 and PDE9 are involved in cAMP and cGMP sign-
aling, respectively. While their direct role in endothelial 
stabilization is not as prominent, they may offer insights 
into cardiovascular functions and pathologies [231–233]. 
PDE10 and PDE11 are primarily explored for neurologi-
cal and psychiatric disorders, and tumor development. 
Their role in endothelial stabilization is less defined [234, 
235].

Recent insights have highlighted the pivotal role of 
vasodilators, particularly prostaglandins, in regulating 
endothelial capillary permeability. Prostaglandins, nota-
bly prostaglandin E2, play a significant role in this regard. 
Activation of the prostaglandin E2 receptor signal, which 
induces vasodilation, could be targeted to enhance 
endothelial barrier function and counteract capillary leak 
syndrome [236]. Experimental strategies might involve 
modulating these pathways to optimize vascular tone 

and permeability. Endothelium-derived vasodilators, 
including NO, prostacyclin, and endothelium-derived 
hyperpolarizing factors, play a central role in maintain-
ing vascular tone. NO, synthesized by endothelial nitric 
oxide synthase, is instrumental in regulating vascular 
tone and endothelial function [237–239]. For example, 
strategies that enhance endothelial nitric oxide synthase 
activity or NO bioavailability could effectively stabilize 
endothelial function. This might include gene therapy 
to upregulate endothelial nitric oxide synthase expres-
sion, pharmacological agents to increase NO production, 
or novel compounds to mimic NO’s vasodilatory effects 
[236]. Additionally, addressing endothelial hyperpolari-
zation through endothelium-derived hyperpolarizing fac-
tors could offer a novel experimental avenue. This might 
involve manipulating calcium-activated potassium chan-
nels or exploring the roles of gap junctions and epoxyei-
cosatrienoic acids in endothelial cell signaling [240, 241]. 
Prostacyclin, generated by cyclooxygenase in endothe-
lial cells, activates adenylate cyclase, leading to vascular 
smooth muscle relaxation [242]. Its role in vasorelaxation 
suggests potential therapeutic applications in managing 
endothelial dysfunction. Modulating prostacyclin levels 
or mimicking its action through pharmacological agents 
could be an experimental approach to stabilize endothe-
lial cells and maintain vascular homeostasis [236].

Recently, therapeutic plasma exchange has been used 
in clinical trials to modulate the injurious endothe-
lial activation. The rationale behind this combines two 
aspects in one procedure: the removal of injurious circu-
lating factors (e.g., Ang-2, heparanase-1) and the replace-
ment of protective factors that have been consumed by 
the disease process (e.g., heparanase-2 or Ang-1) [243]. 
This concept has been demonstrated both by quantifying 
these factors before and after and by ex vivo stimulation 
of endothelial cells with plasma from these patients [95, 
244, 245].

Conclusion
This review elucidates the multifaceted nature of CLS, 
underscoring the importance of recognizing its diverse 
triggers, including systemic inflammation and endothe-
lial barrier breakdown. While current diagnostic meth-
ods, such as bioelectrical impedance analysis and serum 
markers, provide insights, their limitations highlight the 
need for more precise and universally accepted diag-
nostic criteria. Treatment strategies, primarily focusing 
on fluid management and endothelial stabilization, have 
shown potential, yet they lack specificity and efficacy 
for CLS. Innovative approaches, like the exploitation of 
the angiopoietin–Tie2 signaling axis, preservation of the 
endothelial surface layer, and experimental therapies like 
phosphodiesterase inhibitors, offer promising directions. 
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Future research should aim to develop a consensus on 
CLS definition, establish reliable diagnostic benchmarks, 
and explore these novel therapeutic strategies to enhance 
patient outcomes in critical care settings.

Take‑home message
CLS presents a diagnostic and therapeutic challenge in 
critical care due to its complex pathophysiology and the 
absence of standardized diagnostic criteria. According to 
the authors of this review, prioritizing research to refine 
diagnostic tools and explore novel treatments, includ-
ing endothelial stabilization strategies and experimental 
pharmacological interventions, is crucial for improving 
patient management and outcomes in CLS.
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