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Abstract 

Background Sepsis, the life‑threatening host response to infection, is a major cause of mortality. Obesity increases 
vulnerability to sepsis; however, some degree of obesity may be protective, called the “obesity paradox”. This scop‑
ing review systematically maps the literature on outcomes associated with diet‑induced obesity and sepsis‑induced 
organ injury, focusing on non‑transgenic murine models.

Methods A literature search of primary articles was conducted from database inception to June 2023. Eligible 
articles compared diet‑induced obesity to non‑obese mice in sepsis models involving live pathogens. Two reviewers 
screened articles and extracted data on obesogenic and sepsis models utilized, and organ injury outcomes, includ‑
ing physiological dysfunction, histological alterations, and biochemical changes.

Results Seventeen studies met eligibility criteria; 82% used male C57BL/6 mice, and 88% used cecal ligation 
and puncture to induce sepsis. Most studies used 60% high‑fat diets compared to 10–16% fat in controls. Seven (64%) 
studies reported increased mortality in obese septic mice, one (9%) observed a decrease, and three (37%) found 
no significant difference. The liver, lungs, and kidneys were the most studied organs. Alanine transaminase results 
were inconclusive. Myeloperoxidase levels were increased in the livers of two studies and inconclusive in the lungs 
of obese septic mice. Creatinine and neutrophil gelatinase‑associated lipocalin were elevated in obese septic mice.

Conclusions There is variability in the methodology and measured outcomes in murine models of diet‑induced 
obesity and sepsis and a lack of studies in female mice. The absence of standardized models has produced conflicting 
findings on the impact of obesity on sepsis outcomes.
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Take‑home message
This scoping review highlights the varied use of murine 
models in studying sepsis and obesity’s effects on organ 
injury, leading to inconsistent data and hindering pro-
gress. Standardizing mouse models, incorporating both 
sexes, and agreeing on outcome measures are essential 
for enhancing comprehension of obesity’s influence on 
sepsis response.

Introduction
Sepsis, the life-threatening response to infection result-
ing in organ damage and dysfunction, is the lead-
ing cause of death worldwide [1, 2]. The substantial 
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healthcare burden is evident, with intensive care unit 
(ICU) stays costing billions in Canada [3]. Despite 
advancements in sepsis understanding, treatment 
remains supportive due to the diverse disease trajectory 
among patients. Co-existing conditions such as obesity, 
diabetes, heart disease, renal failure, and alcohol use 
disorder further complicate sepsis, altering the immune 
response [4]. Yet, the specific impact of these co-mor-
bidities on sepsis outcomes remains elusive.

Obesity, characterized by a BMI exceeding 30, is 
a widespread issue globally, disregarding socioeco-
nomic differences [5]. Overweight and obese patients 
are increasingly represented in critical care, account-
ing for a significant proportion of ICU admissions [6]. 
Paradoxically, observational studies suggest that obe-
sity might confer a survival advantage in sepsis, defy-
ing conventional health implications [7–10]. However, 
pre-clinical research outcomes on obesity’s influence in 
sepsis are inconsistent, hampering effective translation 
to clinical practice. It imperative to establish relevant 
models mimicking human scenarios to unravel obesity’s 
intricate role, encompassing its impact on sepsis occur-
rence, organ dysfunction, and mortality. Such insights 
hold the key to innovative therapeutic strategies in sep-
sis management.

Murine models are pivotal for comprehending sep-
sis–obesity dynamics, driven by their simplicity, repro-
ducibility, and cost-effectiveness in sepsis research 
[11, 12].  The established "gold-standard" sepsis model 
is cecal ligation and puncture (CLP), involving cecal 
puncture and fecal introduction into the peritoneal cav-
ity [13]. Another model, fecal-induced peritonitis (FIP), 
injects bacterial inoculum from a donor animal’s cecal 
contents into the peritoneal cavity [14]. Murine obe-
sity research employs genetic (monogenic or polygenic) 
or non-genetic models, such as diet-induced obesity 
(DIO). While genetic models unravel gene mechanisms, 
they might lack translational relevance due to rare or 
non-existent human-equivalent mutations [15]. In con-
trast, DIO mirrors human dietary imbalances contrib-
uting to obesity more faithfully. However, the lack of 
consensus on optimal pre-clinical model combinations 
leads to conflicting findings and literature gaps.

This scoping review aims to comprehensively explore 
the literature on the effects of live pathogens in murine 
models of diet-induced obesity (DIO) and sepsis, with 
the objective of systematically assessing and synthesiz-
ing available research to elucidate the impact of DIO 
on sepsis-related organ injury. Additionally, this review 
intends to evaluate methodological aspects and identify 
knowledge gaps, thereby contributing to the enhance-
ment of research quality and understanding.

Methods
This scoping review adheres to the PRISMA–ScR guide-
lines [16] and follows a five-stage process based on the 
framework by Arksey and O’Malley [17], as well as 
advancements by Levac et  al. [18]. The stages encom-
passed defining the research question, identifying per-
tinent studies, selecting studies, data charting, and 
summarizing and reporting results. The review’s protocol 
is available on Open Science Framework with the identi-
fier https:// doi. org/ 10. 17605/ OSF. IO/ FE7KY.

Stage 1: identifying a research question

• Primary: In murine models of DIO and pathogen-
driven sepsis, what are the reported outcomes on the 
impact of obesity on sepsis-induced organ injury?

• Secondary: In murine sepsis models, is there evi-
dence that DIO protects against sepsis-induced 
organ dysfunction?

Stage 2: identifying relevant studies
Relevant studies were identified by searching PubMed, 
Medline, EMBASE, Web of Science, and CINAHL from 
inception to June 2023. Search terms included sepsis, 
septicemia, bacteremia, murine model, mouse model, 
obesity, and high-fat diet. The search terms were adapted 
to each database as needed. Additional file  1 presents a 
sample search strategy.

Stage 3: study selection
Relevant studies were screened by title and abstract, fol-
lowed by full-text review using Covidence (Veritas Health 
Innovation, Melbourne, Australia) [19]. Two reviewers 
conducted independent screenings, resolving discrepan-
cies through discussion or a third reviewer’s input.

A modified SYRCLE tool with 21 sub-items was used, 
(excluding sub-item 17 due to lack of relevance) (Addi-
tional file 2: Table S1). This aimed to evaluate each study’s 
quality, bias, strengths, and limitations in murine sep-
sis and obesity research. Despite its uncommon use in 
scoping reviews, risk of bias assessment was conducted 
to enhance discussions on study quality and inform 
future research, involving two independent reviewers 
and resolving disagreements through a third reviewer’s 
consultation.

Stage 4: eligibility
This scoping review included non-transgenic murine 
models investigating the impact of high-fat and/or diet-
induced obesity (DIO) on sepsis outcomes. Eligible sep-
sis models encompassed bacterial sepsis, polymicrobial 
sepsis, and cecal ligation and puncture. Included studies 
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explored histological, biochemical, physiological, and 
immune changes associated with organ injury. Excluded 
were studies involving humans, rats, other animal mod-
els, lipopolysaccharide sepsis models, obesity knock-out 
models (ob/ob, db/db), and solely in  vitro approaches. 
Publications such as editorials, abstracts, commentar-
ies, letters, systematic reviews, and meta-analyses were 
excluded, though their reference lists were reviewed for 
relevant articles.

Stage 5: charting the data
Key information from the included studies was 
abstracted, independently and in duplicate, using stand-
ardized data abstraction forms (Additional file  1: Data 
extraction file). The following information was extracted:

 1. Author(s).
 2. Year of publication.
 3. Country of publication.
 4. Breed, supplier, sex, and age of mice.
 5. Organs evaluated.
 6. Type of diet (composition, percent of kcal).
 7. Method of diet delivery.
 8. Length of time on the diet.
 9. Body weight and fat mass.
 10.  The method by which sepsis was induced, site of 

infection, and dose.
 11.  Endpoint time.
 12.  Antibiotics, fluids, and analgesia.
 13.  Outcomes including glucose and insulin response, 

mortality, biomarkers of organ dysfunction, mye-
loperoxidase, and cytokine changes.

The data abstraction form was tested on three studies, 
and then data extraction was conducted independently 
and in duplicate by two reviewers, with discrepancies 
resolved through discussion or third-party arbitration.

Stage 6: collating, summarizing, and reporting the results
The study presented results summarizing the impact of 
DIO on sepsis outcomes, using tables to organize bib-
liographic, obesogenic, and sepsis model data. The nar-
rative synthesis highlighted DIO model development, 
sepsis induction methods, and outcomes, assessing 
whether DIO offers sepsis protection. Similar outcome 
studies reported in parallel, and conflicting evidence was 
compared.

Results
A total of 393 articles were initially identified through the 
search. After removing duplicates, 348 articles under-
went initial screening, resulting in 88 articles based 
on title and abstract. Following further evaluation, 71 

articles were excluded for not meeting inclusion criteria, 
leading to a final selection of 17 articles that met the cri-
teria (Fig. 1) [20–36].

Study characteristics
Table 1 summarizes the characteristics of the 17 included 
studies, originating from eight different countries, pre-
dominantly the United States (41%). Most studies (88%) 
utilized male C57BL/6 background mice, while excep-
tions included one study (6%) involving male Swiss mice 
[31], another (6%) with 57BL/6JRj mice [23], and one 
study (6%) exclusively using female mice [22]. Mice ages 
ranged from three to 24  weeks, with a notable propor-
tion (53%) initiating diet at 6 weeks [20, 21, 24, 25, 27, 29, 
32, 34, 35]. Most studies obtained mice from commercial 
suppliers, although three (18%) employed in-house bred 
mice [22, 28, 31], and another three (18%) did not specify 
the source [29, 33, 36]. The liver was the most frequently 
evaluated organ (71%), followed by the lungs (29%) and 
kidney (24%).

Models of sepsis
Table  2 provides an overview of the sepsis induction 
methods utilized, with 82% of studies employing cecal 
ligation and puncture (CLP) [20–26, 28–31, 33–36]. The 
prevalent CLP techniques included double-puncture 
with a 22G needle (18%) [20, 25, 35] and single puncture 
using a 23G needle (18%) [30, 33, 36]. A live-bacteria 
model was used in one (6%) study [32], and another (6%) 
[27] induced sepsis with fecal slurry. Post-sepsis evalua-
tions were conducted between 6 h and 28 days, with 76% 
of studies not reporting antibiotic use [21, 22, 24–33, 
36]. However, three (18%) studies [20, 34, 35] adminis-
tered imipenem, one (6%) in combination with cilastatin 
[34]. One study (6%) [23] mentioned antibiotic use with-
out specifying type or dosage. Fluid resuscitation was 
performed in 71% of studies [20, 22–26, 29, 30, 33–36], 
commonly using either 0.6 ml or 1 ml of saline (35%) [20, 
24, 25, 29, 30, 35]. Conversely, analgesics were not used 
throughout the sepsis timeline in 65% of studies [20–22, 
24, 25, 27, 29–32, 35].

Models of obesity
Table 3 summarizes the obesity models employed in the 
studies, with 53% using a high-fat diet comprising 60% 
kilocalories (kcal) of fat [20, 21, 24, 25, 27, 31, 33, 35, 36]. 
Other studies specified diet composition in terms of per-
cent butterfat [26], gram percent fat [32], g/kg of butterfat 
[29], kilojoule % of fat [34], w/w [28], or percent lipids not 
converted to %kcal fat [22]. Control diets ranged from 
10 to 16% kcal of fat, and 24% of studies used normal 
or standard chow [26, 31, 33, 36] as controls. Diet dura-
tion varied from 3 days to 27 weeks, with 6 [25, 26, 35] 
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or 12  weeks [23, 30, 34] being common. Mice on high-
fat diets typically exhibited increased body weight or fat 
mass at the study’s end [20, 22, 24–30, 32–36], although 
65% did not report fat mass [21–24, 26, 28–31, 35, 36], 
and 18% did not report body weight or fat mass [21, 23, 
31]. While high-fat diets were used across all studies, two 
(12%) also employed genetic knock-out models for obe-
sity induction [32, 34], with this review focusing exclu-
sively on high-fat diet-induced obesity models.

Key findings
The key outcomes of each study are summarized in 
Table  4. Six (35%) studies reported glucose intolerance 

before sepsis induction [22, 25–28, 34]. Of those studies, 
five (83%) found that obese mice had significantly higher 
glucose levels than their non-obese counterparts, while 
one (17%) reported no difference [22]. There were incon-
sistent results when reporting the impact of a high-fat 
diet on sepsis mortality. Eleven out of the 17 (65%) stud-
ies [21–25, 27, 28, 30–32, 34] reported mortality. Of these 
studies, seven (64%) reported an increase in mortality in 
their obese septic mice [21, 22, 24, 25, 30–32], one (9%) 
observed a decrease in mortality [27], and three (27%) 
studies did not see any difference [23, 28, 34]. Among 
the investigations that documented elevated mortal-
ity in obese septic, four studies (57%) utilized saline for 

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta‑Analyses (PRISMA) Flow Chart. A chart representation of the process used 
to collect relevant literature from a set of databases and criteria. Beginning with the identification process, this chart displays how 393 collected 
studies were screened to determine which articles should be included in the review. The screening and inclusion process provided a total of 17 
studies that met all the desired criteria
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fluid resuscitation; however, none of them reported the 
administration of antibiotics or analgesics [22, 24, 25, 
30]. The study that observed a reduction in mortality did 
not document the use of fluid resuscitation, antibiotics 
nor analgesics [27]. Of the three studies that reported 
no discernible difference in mortality, two studies (66%) 
disclosed the utilization of fluid resuscitation without 
specifying the type or volume of fluids [23, 34], while the 
final publication failed to mention any use of fluid resus-
citation [28]. Intriguingly, all three papers that did not 
identify a disparity in mortality were the only studies to 
reporting mortality outcomes and analgesic usage [23, 
28, 34]. Finally, the use of antibiotics and mortality were 
only reported in two studies [23, 34] in which both stud-
ies observed no difference in mortality. Vankrunkelsven 
[34] reported the use of imipenem/cilastin and Goossens 
[23] reported the use of antibiotics without disclosing 
further information.

Liver impacts were explored in three (18%) stud-
ies through histology [22, 26, 30]. Two (67%) indicated 
greater liver damage in obese septic mice compared to 
non-obese septic mice [22, 26], but one (33%) found no 
distinctions [30]. Alanine transaminase (ALT) findings 
were inconsistent among four (24%) studies [22, 25, 28, 
35]. Two (50%) reported no differences between obese 
and non-obese septic mice, whether in serum [22] or 
plasma at 18 h [35]. Conversely, one (25%) study showed 
elevated plasma ALT in obese septic mice compared to 
non-obese mice post-sepsis and obese non-septic mice 

at 6 h [25], and another showed increased serum ALT 
in obese septic mice compared to obese and non-obese 
mice 24-h post-sepsis [28]. Myeloperoxidase (MPO), a 
damage surrogate [37], was assessed in three (18%) stud-
ies [24, 25, 35]. Two (67%) saw higher liver MPO levels 
in obese septic mice at 6-h post-sepsis compared to non-
obese septic mice [24, 25], and one showed an increase at 
18 h [24]. One (33%) found no MPO differences at 18 h 
[35]. Among three (18%) studies measuring liver IL-6 lev-
els [22, 26, 32], no distinctions were seen between obese 
and non-obese septic mice at 6  h [26]. Yet, two (67%) 
showed significant differences between obese septic and 
non-septic mice, at 6  h [22] and 7  days [26], while one 
(33%) found no differences among any cohort at 5–7 days 
[32]. Similarly, two (12%) studies detected no differences 
in hepatic TNFɑ between septic groups at 6  h [26] or 
4–7 days [32]. However, two (12%) studies noted higher 
levels in obese septic mice compared to obese non-septic 
mice at 6 h [29] and 7 days [22].

Histological evaluation of lungs occurred in two (12%) 
studies [24, 30]. One study found no inflammation at 
6-h post-sepsis in both obese and non-obese mice, not-
ing interstitial and alveolar edema increase at 24 and 48 
h in non-obese septic mice compared to obese septic 
mice [30]. Conversely, the other study showed higher 
lung injury scores in obese septic mice at 6 h, with alveo-
lar congestion, hemorrhage, neutrophil infiltration, and 
aggregation, and hyaline membrane formation [24]. Lung 
MPO levels were assessed in four studies (24%) [24, 26, 

Table 1 Summary of study characteristics

NR not reported, USA United States of America, HFD high-fat diet, LFD low-fat diet

Author Country Mouse strain Supplier Sex Age at start of diet 
(weeks)

Organs evaluated

DeMartini et al. [20] USA C57BL/6 Charles River M 6 Heart

Frydrych et al. [21] USA C57BL/6 Jackson M 6 Bone marrow, spleen

Gomes et al. [22] Brazil C57BL/6 In‑house F 3–4 Liver

Goossens et al. [23] Belgium 57Bl/6JRj Janvier M 24 Muscle

Kaplan et al. [24] USA C57BL/6 Charles River M 6 Liver, lung, spleen

Kaplan et al. [25] USA C57BL/6 Charles River M 6 Liver

Khan et al. [26] Canada C57BL/6 Taconic M 3–5 Liver, lung

Lewis et al. [27] USA C57BL/6 Jackson M 6 Kidney, liver

Panpetch, et al. [28] Thailand C57BL/6 In‑house M 8 Intestines, kidney, liver

Rivera et al. [29] USA C57BL/6 NR M 4–6 Liver

Siegl et al. [30] Germany C57BL/6 Janvier M 7 Liver, lung

Souza et al. [31] Brazil Swiss In‑house M 8 Hypothalamus, liver, spleen

Strandberg et al. [32] Sweden C57BL/6 Harlan M 6–8 Kidney, liver, spleen

Su et al. [33] Taiwan C57BL/6 NR M 5 Kidney

Vankrunkelsven et al.[34] Belgium C57BL/6 Janvier M 6 Liver, muscle

Williamson et al.[35] USA C57BL/6 Charles River M 6 Liver, lung

Yeh et al. [36] Taiwan C57BL/6 NR M 5 Lung
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35, 36]. One study showed increased MPO in obese mice 
at 1-, 6-, and 18-h post-sepsis compared to non-obese 
mice [24]. Another noted MPO elevation at 12 and 24 h 
in obese septic mice compared to obese non-septic mice 
[36], and a third observed MPO increase at 18 h in obese 
mice compared to non-obese mice post-sepsis and obese 
non-septic mice [35]. The fourth study found higher 
MPO in non-obese septic mice than obese septic mice at 
6-h post-sepsis after 15- or 27-week diets, with no differ-
ence after 6 weeks [26]. No studies reported lung IL-6 or 
TNFɑ levels.

Biomarkers for kidney damage, including creatinine, 
neutrophil gelatinase-associated lipocalin (NGAL), and 

blood urea nitrogen (BUN) were assessed. Creatinine lev-
els were evaluated in three (18%) studies [27, 28, 33]; two 
saw an increase in obese septic mice compared to non-
obese septic controls at 24-h post-sepsis in plasma [27] 
and serum [28], while the third [33] found an increase in 
plasma creatinine levels in obese septic mice at 12-, 24-, 
and 48-h post-sepsis compared to non-obese non-septic 
mice. NGAL, evaluated in two (12%) studies, increased in 
the kidney tissue of obese septic mice compared to non-
obese septic mice at 24 h [27] and in the plasma of obese 
septic mice compared to non-obese non-septic mice at 
12, 24 and 48 h [33]. Plasma BUN levels were measured 
in two studies (12%); one found it increased at 12-, 24-, 

Table 2 Summary of characteristics of sepsis model

NR not reported, MRSA methicillin-resistant Staphylococcus aureus, IV intravenous, SC subcutaneous, CLP cecal ligation and puncture, IP intraperitoneal, CS cecal slurry, 
LR lactated ringers, BW body weight
a No further specifications given
b Given post-surgery

Authors Method of 
sepsis

Route of 
infection

Dose Endpoint (h) Antibiotics Fluids Analgesia

DeMartini [24] CLP IP Double puncture; 
22G

6 Imipenem 
(25 mg/kg)

Sterile saline, SC; 
(0.6 mL)

NR

Frydrych [25] CLP IP Double puncture; 
20G

28 days NR NR NR

Gomes [26] CLP IP Single puncture; 
21G

7 days NR Sterile saline, SC; 
(0.5 mL/10 g)

NR

Goosses [27] CLP IP Needle not speci‑
fied

1, 5 days Yesa Yesa, IV Yesa

Kaplan [28] CLP IP Double puncture; 
21G

1–30 NR Sterile saline, SC; 
(0.6 mL)

NR

Kaplan [29] CLP IP Double puncture; 
22G

6 NR Sterile saline, SC; 
(0.6 mL)

NR

Khan [30] CLP IP Single puncture; 
18G

6 NR LR, SC before sur‑
gery; (2 mL)
LR,  IVb and 4 h 
later

Yesa

Lewis [31] CS IP 500 μL of CS 
in 10% glycerol

14 days NR NR NR

Panpetch [32] CLP IP Double puncture; 
21G

24 NR NR Fentanyl,  SCb 
and 6 h; (0.03 mg/
kg)

Rivera [33] CLP IP Triple puncture; 
20G

6 NR Salineb; (1 mL) NR

Siegl [34] CLP IP Single puncture; 
23G

10 days NR Sterile saline,  SCb; 
(1 mL)

NR

Souza [35] CLP IP NR 24 NR NR NR

Strandberg [36] S. aureus IV 5 ×  107 CFU 24, 5–7 or 17 days NR NR NR

Su [37] CLP IP Single puncture; 
23G

12, 24 NR Sterile saline,  SCb; 
(4 mL/kg)

0.25% bupivacaine; 
(100 µL)

Vankrunkelsven 
[38]

CLP IP 18G 5 days Imipenem/Cilas‑
tatin

IVa Buprenorphine

Williamson [39] CLP IP Double puncture; 
22G

18 Imipenem 
(25 mg/kg)

Normal saline, SC; 
(1 mL)

NR

Yeh [40] CLP IP Single puncture; 
23G

12, 24 NR Sterile saline,  SCb; 
(4 mL/kg BW)

0.25% bupivacaine; 
(100 µL)
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and 48-h post-sepsis in obese septic mice compared to 
non-obese non-septic mice [33] but decreased in another 
[34]. One (6%) study also showed increased IL-6 levels 
in obese septic mice compared to non-obese non-septic 
mice at 12-, 14- and 48-h post-sepsis [33]. TNFɑ levels in 
the kidney were not reported in any study.

Risk of bias results
The risk of bias in the studies was assessed using a modi-
fied version of the SYRCLE tool, consisting of 21 sub-
items as signaling questions (Fig.  2). Responses of "yes" 
indicated low risk, "no" indicated high risk and "unclear" 
indicated unclear risk. Across all studies, two sub-items 
were deemed high risk (9.5%), six were unclear risk 
(29%), while four (19%) were categorized as low risk. 

High-risk sub-items included "caregiver blinding" due to 
visual differentiation between obese and non-obese mice 
and "presence of study protocol," as no study had a reg-
istered protocol. For the "random sequence generation" 
sub-item, eight studies were marked as low risk as they 
mentioned animal randomization but lacked a method 
description. In almost all cases of unclear risk sub-items, 
it was impossible to evaluate due to insufficient reporting 
in the methods sections. However, for the “distribution 
of baseline characteristics” sub-item, two studies [24, 28] 
were evaluated as unclear risk as baseline weight data was 
shown graphically but not described explicitly. Sub-items 
that were considered low risk in all studies pertained 
to “adequate timing of disease induction,” as outcome 
assessment methods were the same for both obese and 

Table 3 Summary of characteristics of the obesity model

NR not reported, NC normal chow, SC standard chow, ob/ob leptin-deficient mice, HFD high-fat diet, LFD low-fat diet, WD western diet
a Reported as mean unless otherwise stated
b HFD vs. LFD
c 30% diet restriction at 12 weeks in LFD group only
d Calorie restriction at 10 weeks

Authors HFD (%kcal fat) LFD (%kcal fat) Time 
on diet 
(weeks)

Method of 
feeding

Body  weighta 
(g; SD)

Fat  massa (g; SD) Model of obesity

DeMartini [24] 60 16 5 Ad libitum HFD:36.3(34.2–
38.1 IQR)
LFD:27.8(27.0–
28.4 IQR)

HFD: 8.0 ± 2.6
LFD: 0.6 ± 0.5

HFD

Frydrych [25] 60 13 22–26 Ad libitum NR NR HFD

Gomes [26] 19.55% lipids 4.45% lipids 14 Ad libitum HFD 25.69 ± 3.12
LFD 21.93 ± 1.57

NR HFD

Goossens [27] 45 10 12 Ad libitum NR NR HFD

Kaplan [28] 60 16 3 Ad libitum HFD: 25.2 g ± 0.4
LFD:23.4 g ± 0.4

NR HFD

Kaplan. [29] 60 16 6–7 Ad libitum Increasedb Increasedb HFD

Khan [30] 21% butterfat NC 6, 15, 27 Ad libitum HFD: 50.8 g ± 1.05
LFDa: 39.6 ± 1.18

NR WD

Lewis [31] 60 10 20–21 Ad libitum HFD: 46.6 ± 4.53
LFD: 32.3 ± 2.08

HFD: 16.0 ± 5.21
LFD: 4.1 ± 1.30

HFD

Panpetch [32] 60%w/w 4.5% w/w 20 Ad libitum Increasedb NR HFD

Rivera [33] 50 g/kg butterfat 15 g/kg butterfat 3 Ad libitum Twofold  higherb NR WD

Siegl [34] 50 11 12 Ad libitum HFD: 34.4 ± 0.5
LFD: 27.7 ± 0.2

NR HFD

Souza [35] 60 SC 3 days Ad libitum NR NR HFD

Strandberg [36] 34.9/35.9 g% fat 4.0/4.3 g% fat 8 Ad libitum HFD: 39.3 ± 1.1
LFD 28.8 ± 0.5

HFD: 17.0 ± 0.6
LFD: 5.5 ± 0.2

HFD, ob/ob

Su [37] 60 SC 10 Ad libitum HFD: 36.5 ± 1.1
LFD: 26.4 ± 0.7

HFD: 2.54 ± 0.09
LFD: 0.63 ± 0.02

HFD

Vankrunkelsven 
[38]

60 kJ% 9 kJ% 11–12 Ad libitum HFD: 43.9 ± 4.7
LFD: 30.2 ± 1.9

Increasedb HFD, ob/ob

Williamson [39] 60 16 6–7 Ad libitum Increasedb NR HFD

Yeh [40] 60 SC 10 Ad libitum HFD: 41.5 ± 1.3
LFD: 27.7 ± 1.5

NR HFD
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Table 4 Outcomes of the impact of obesity on sepsis

Author Blood glucose 
(mmol/L; IQR)i

Mortality (n = %)a Biomarkers of 
organ dysfunction 
(SD)

MPO (U/100 mg 
tissue; SD)

IL-6 TNFα

DeMartini [24] NR NR ND cTNI 6 h 
(plasma)

↑ (heart)a,b NR NR

Frydrych [25] NR ↑
LFD‑S: 20%
HFD‑S: 60%

NR NR ↑ 6 h (blood)a ↓ 18 h (blood)a

Gomes [26] NDh

LFD: 20.18 
(15.35–23.15)
HFD:29.08 
(22.77–32.74)
LFD‑S: 17.03 
(14.95–18.03)
HFD‑S:21.24 
(14.24–25.64)

↑
LFD‑S: 23.8%
HFD‑S: 41.7%

ND ALT (serum; 
U/L):
LFD: 22.01 (22.01–
88.05 IQR)
HFD: 200.3 
(123.3–277.4 IQR)
LFD‑S: 202.5 
(168.4–231.1 IQR)
HFD‑S: 224.5 
(154.1–306 IQR)
↑ Liver histology 
 scoreb

NR ↑ (serum)a

↑ (liver)b
↑ (serum)a,b

↑ (liver)b

Goossens [27] NR ND
LFD‑S: 17%
HFD‑S: 17%

↑ atrophy(muscle)b NR NR NR

Kaplan [28] NR ↑ ↑ lung injury  scorea

HFD: 3.5 ± 0.5 AU
HFD‑S: 8.6 ± 0.9 AU

↑  3hb, 6  hab, 18  ha,b 
(liver)
↑ 1  ha,b, 3  hb, 6  ha,b, 
18  ha (lung)

↓ 3  ha,b (plasma)
↑ 1  hb, 3  hb, 6  hb, 
18  hb (plasma)

↓ 3  ha (plasma)
↑ 6  hb 18  hb (plasma)

Kaplan [29] ↑e ↑ ↑ ALT (U/L; 
plasma)a,b

LFD: 88 ± 21
HFD: 63 ± 4
LFD‑S: 154 ± 10
HFD‑S: 227 ± 32

↑6 h (liver)a,b

LFD‑S: 7 ± 0.3
HFD‑S: 11.4 ± 1.4

↑ (plasma; U/L)a,b

LFD: 88 ± 21
HFD: 63 ± 4
LFD‑S: 154 ± 10
HFD‑S: 227 ± 32

↓ (plasma)a

↑ (plasma)b

Khan [30] ↑e,f NR ↑ liver histology 
 scorea,b

ND 6 weeks of diet 
(lung; U/mg tissue)
LFD: 51.2 ± 3.38
HFD‑S: 46.9 ± 2.20
↓ 15 weeks of diet 
(lung; U/mg 
tissue)a,d

LFD: 44.1 ± 2.86
LFD‑DR: 63.2 ± 5.60
HFD‑S: 26.3 ± 3.80
↓ 27 weeks of diet 
(lung; U/mg 
tissue)a,d

LFD: 47.5 ± 2.70
LFD‑DR: 43.9 ± 3.29
HFD‑S: 28.3 ± 5.08

↑ 6 h (liver)b

ND 6 h (liver)a
ND 6 h (liver)

Lewis [31] ↑e  6hb,  24hb ↓
LFD‑S: 75%
HFD‑S: 33%

↑creatinine 24  ha,b 
(plasma)
↑ NGAL 24  ha,b 
(kidney)
↑ ketones
6  hb, 12  hb, 36  hb, 
 48hb (blood)

NR ↓ 6 h (plasma)a

ND 24 h (plasma)a

↑ 24 h (plasma)b

ND 24  ha (plasma)
↑ 24  hb (plasma)

Panpetch [32] ↑e ND ↑ ALT (serum) 24  hb,c

↑ creatinine 24  ha,b,c 
(serum)

NR ↑ (serum) 24  ha,b,c ↑ (serum)a,b,c

Rivera [33] NR NR NR NR NR ↑ (liver) 6  ha,b
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HFD-S high-fat diet septic, LFD-S low-fat diet septic, LFD-DR low-fat diet, diet restricted, ND no difference between HFD-S group and any other group, AU arbitrary 
units, ALT alanine transaminase, BUN blood urea nitrogen, NGAL neutrophil gelatinase-associated lipocalin, cTnI cardiac troponin, NR not reported

↑ = increase

↓ = decrease
a HFD-S vs LFD-S
b HFD-S vs HFD
c HFD-S vs LFD
d HFD-S vs LFD-DR
e HFD vs LFD
f HFD vs LFD-DR
g U/mg tissue
h Measured in serum
i Prior to sepsis induction

Table 4 (continued)

Author Blood glucose 
(mmol/L; IQR)i

Mortality (n = %)a Biomarkers of 
organ dysfunction 
(SD)

MPO (U/100 mg 
tissue; SD)

IL-6 TNFα

Siegl [34] NR ↑ ↓interstitial 
and alveolar edema 
24  ha, 48  ha

ND: liver histology

NR ↑ (serum; ng/ml)
6  hb:
LFD‑S: 20.8 ± 2.2
HFD‑S: 18.2 ± 2.6

↓ (serum; ng/ml)a

24 h: LFD‑S: 4.2 ± 1.0
HFD‑S: 1.3 ± 0.1
48 h: LFD‑S: 5.7 ± 0.9
HFD‑S: 3.0 ± 0.7

Souza [35] NR ↑ NR NR ↑  hypothalamusa,b ↑  hypothalamusa

Strandberg [36] NR ↑ NR NR ND 5–7 days 
(serum, liver, 
spleen)

↑
ND 5–7 days (liver, 
spleen, serum)

Su [37] NR NR ↑BUN (mg/
dL; plasma)c: 
LFD:18.9 ± 0.90
12 h: HFD‑S: 
67.4 ± 8.40
24 h: HFD‑S: 
97.1 ± 6.10
48: HFD‑S: 
139.9 ± 14.40
↑ Creatinine (mg/
dL; plasma)c: LFD: 
0.09 ± 0.01
12 h: HFD‑S: 
0.14 ± 0.03
24 h: HFD‑S: 
0.70 ± 0.09
48 h: HFD‑S: 
1.10 ± 0.28
↑ NGAL (ug/dL; 
plasma)c: LFD: 
0.08 ± 0.01
12 h: HFD‑S: 
3.52 ± 1.84
24 h: HFD‑S: 
52.3 ± 5.40
48 h: HFD‑S: 
39.5 ± 32.70

↑ 12  hc, 14  hc, 48  hc 
(kidney)

↑12  hc,  24c, 48  hc ( 
kidney)

↑12  hc,  24c, 48  hc 
(kidney)

Vankrunkelsven 
[38]

↑  glucosee

 ~ 85  hc, ~ 125  hc
ND ↑ketones (blood)c

↓ liver edema 125  hc

↓ BUN (plasma)c

NR ↑ (plasma)b ↑ (plasma)b

Williamson [39] NR NR ND ALT 18 h 
(plasma; U/L)
LFD‑S:118 ± 33
HFD‑S:102 ± 45

↑ 18 h (lung)a,b

HFD: 53 ± 22
HFD‑S: 124 ± 31
LFD‑S: 84 ± 29
ND 18 h (liver)

NR NR

Yeh [40] NR NR NR ↑ 12 h, 24 h (lung)b NR NR
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non-obese mice; “missing outcome data,” as this was 
not assumed unless explicitly stated; “outcome assessor 
blinding,” as all animals were evaluated for all outcomes; 
and “inappropriate influence of funders,” as determined 
by examining funding and disclosure statements. The 
“matched methods and results” sub-item was low risk in 
all studies except Gomes et al. [22] which did not report 
results associated with chemokine ligand 2, despite being 
mentioned in the methods. The “design-specific risk of 
bias” sub-item was low risk in all studies except Su et al. 
[33], as it did not induce sepsis in non-obese mice.

Discussion
Sepsis, a life-threatening condition, is influenced by obe-
sity, but its impact remains inconclusive, possibly show-
ing a survival benefit within a specific weight range [38]. 
A prior review [39] assessed obesity’s effect on murine 
sepsis survival and organ injury using diverse animal 
models, complicating the synthesis and interpretation 
of its translational relevance. This scoping review aimed 
to clarify outcomes in murine models involving DIO 
and pathogen-induced sepsis. The primary aim was to 
identify the reported variables in current sepsis and 
obesity literature. Within included studies, disparities 

in observed outcomes, divergent evaluated outcomes, 
methodological variations, and limitations in sepsis and 
obesity models were identified. Few studies reported 
mortality, lacking consensus on whether murine models 
support or contradict the clinically observed obesity par-
adox. Inconsistent results extended to parameters, such 
as histological lung and liver damage evaluations, with 
reported outcomes varying from organ dysfunction to 
inflammatory cytokines. Diverse outcome investigation 
compounded result synthesis difficulties. Methodologi-
cal disparities, including sepsis induction methods and 
specific high-fat and control diets, hindered compari-
sons even among studies evaluating similar outcomes. 
The sepsis and obesity models suffered limitations: sepsis 
standard misalignment, improper control diets, unstand-
ardized murine obesity criteria, and lack of considera-
tion of experiment timing and season. These limitations 
contributed to result variability. Furthermore, the lack of 
inclusion of both sexes limits generalizability. For these 
reasons, the secondary objective to determine whether 
DIO offers protection against sepsis-induced organ dys-
function could not be achieved, due to a lack of con-
sensus on the effects of obesity and sepsis. Given the 
significant variability in various aspects of pre-clinical 

Fig. 2 Risk of bias results for each individual study evaluated using a modified SYRCLE tool. Red squares indicate high risk, green squares indicate 
low risk, and yellow squares represent unclear risk, and grey squares indicate not applicable
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models related to sepsis and obesity, summarized in 
Table 5, this scoping review pinpointed crucial elements 
that need consensus within the broader field to improve 
outcome comprehension.

A 2017 global study found higher age-standardized 
sepsis incidence in females than males [1], but all studies 
reviewed used only male mice except one, limiting trans-
lational value. Differences in myocardial and immune 
responses between male and female mice emphasize 
the need for both sexes in sepsis research [40]. Biologi-
cal sex impacts obesity, with distinct adipose patterns 
and metabolic traits; in particular, women generally have 
more subcutaneous adipose tissue (SAT); while men have 
greater visceral adipose tissue (VAT) [41]. Increased VAT 
in men has been associated with worse glucose, lipid, and 
inflammatory outcomes than women [42, 43]. In addi-
tion, a high VAT/SAT ratio has been shown to influence 
sepsis survival negatively [44]. Additional mechanisms 
that are known to be impacted by both obesity and sepsis 
in a sex-dependent manner including the impact of nitric 
oxide on vasomotor tone and function should also be 
considered. Estrogen has been shown to enhance nitric 
oxide production, which is impaired by both obesity [45] 
and sepsis [46]. The nitric oxide pathway is a crucial fac-
tor that, to date, has been examined independently. How-
ever, the existing literature strongly supports further 
investigation within a co-morbidity model encompass-
ing both sepsis and obesity. Investigating sex’s role in 
the interplay between sepsis and obesity is crucial due to 
their sex-dependent variations.

The translational applicability of the studied murine 
sepsis models was diminished due to a lack of alignment 
with current clinical standards. The Surviving Sepsis 
Campaign, a set of international guidelines for sepsis clin-
ical care, recommends antibiotic administration within 
1  h for patients with septic shock or suspected sepsis 
with shock and within 3  h for suspected septic patients 
without shock [47]. The Minimum Quality Threshold in 
Pre-Clinical Sepsis Studies (MQTiPSS), recommenda-
tions developed by an expert group to improve animal 
models of sepsis, considers fluid administration essential 
[48, 49]. In contrast, many evaluated studies did not pro-
vide antibiotics or fluid resuscitation throughout the sep-
sis course. Accounting for the six studies published after 
MQTiPSS fluid administration guidelines were published 
in 2019, only four studies reported fluid administration 
[22, 33, 34, 36], while only one reported the use of antibi-
otics [34]. Clinical sepsis treatment, based on physiologi-
cal parameters, differs from immediate administration 
in murine models [27]. Among the reviewed studies, the 
timing of antibiotic administration differed, possibly due 
to a lack of characterization of the difference in tempo-
ral kinetics between clinical and murine sepsis, as the 

condition progresses much faster in mice than in humans 
[50]. Antibiotic timing variations can impact outcomes, 
influenced by differences in sepsis progression between 
mice and humans. Administering antibiotics too early 
in murine models may hinder proper illness induction, 
affecting host response. Delayed antibiotic administra-
tion post-sepsis induction has shown different mortality 
rates and pathology outcomes. It has been shown in a 
cecal slurry model that providing antibiotics at 1- or 6-h 
post-sepsis induction showed low mortality and did not 
lead to sepsis-associated pathology while delaying anti-
biotic administration to either 12- or 16-h post-sepsis 
induction led to higher mortality [51].

The variability in diets used across studies presents 
challenges in determining the exclusive impact of a 
high-fat diet versus ingredient-related effects. Control 
diets are often vaguely labeled as "normal" or "stand-
ard" chow, with differing compositions of refined and 
unrefined plant ingredients [52]. This leads to variations 
in dietary fiber, with refined diets lacking soluble fiber 
that promotes beneficial bacterial growth, potentially 
leading to disruptions in colonic microbiota and obeso-
genic effects [53]. One option in DIO studies is to use 
control diets matched in the types of nutritional ingre-
dients to the high-fat diet [54]. A high-fat and low-fat 
diet, matched in composition, both showed an increased 
Fimircutes:Bacteriodetes ratio and reduced diversity in 
the intestinal microbiota compared to the chow diet, but 
still maintained differences in body weight and fat mass 
between diet cohorts [52]. However, caution is needed if 
a matched control diet uses sugar as a fat-derived calo-
rie source, as this could impact observations. The intri-
cate interplay between the gut microbiota and immune 
responses adds complexity to studying conditions, such 
as sepsis and obesity [55], emphasizing the need for care-
ful diet selection.

All but three studies used CLP for sepsis induction. 
Although this is the current gold standard in murine 
sepsis studies, this method has issues, such as high inter-
operator variability and challenges in standardizing 
between individual mice [56]. In DIO research, CLP’s 
reliance on cecal contents exacerbates variability. CLP 
often lacks characterization of cecal matter composition, 
potentially overlooking confounding effects [57]. Fecal-
induced peritonitis (FIP) a newer model, offers better 
reproducibility without CLP’s technical challenges, but 
lacks a continuous polymicrobial focus as seen in appen-
dicitis/diverticulitis, leading to an intense initial immune 
response that does not reflect sepsis-associated hemo-
dynamic and metabolic changes [58]. Nonetheless, FIP 
worsens outcomes dose-dependently, upregulating pro-
inflammatory gene expression such as chemokine ligand 
2 and interleukin-6 [56]. FIP and CLP display similar 
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physiological, histopathological, and immunological 
alterations similar to observed clinical sepsis alterations 
with FIP showing less variation [59]. This review high-
lights the prevalent focus on abdominal sepsis in pre-
clinical models. It is crucial to broaden investigations to 
include other clinically relevant sepsis models, especially 
those in the obese population from respiratory and uri-
nary origins [60]. The selection of models that mimic 
clinical features while ensuring benchmarks for repro-
ducibility is essential for inter-laboratory comparisons.

The characterization of obesity in numerous studies 
varied significantly, assessed through body weight, body 
composition, glucose tolerance, and insulin tolerance. 
Weight measurement alone overlooks body composition 
differences. For example, a low-carbohydrate, high-fat 
diet, compared to standard chow, elicited similar weight 
gain, but showed a decrease in lean mass and organ dete-
rioration [61]. In addition, as observed in our review, 
glucose tolerance tests (GTTs) differed in glucose admin-
istration route and fasting duration, convoluting compar-
isons. Intraperitoneal (IPGTT) and oral gavage (OGTT) 
tests show differing insulin levels and glucose release pat-
terns [62]. Obesity in humans is categorized primarily 
according to body mass index (BMI); however, there are 
no corresponding criteria for mice [12]. Proposed murine 
obesity characterization combines weight, composition, 
inflammation, glucose, liver health, hormones, and lipids 
[63]. The absence of standardized obesity criteria hinders 
accurate sepsis–obesity effect investigations.

Seasonal and daily times of sepsis induction can also 
determine sepsis outcomes, but the time of day in which 
sepsis was induced was only reported in one study [30]. 
Among clinical cases of sepsis, winter has been associ-
ated with higher incidence and mortality than summer 
[64]. Even in consistently maintained conditions of ani-
mal facilities, mice subjected to CLP have been shown 
to exhibit season-dependent outcomes [65, 66]. Both 
male and female C57BL/6  J mice that underwent CLP 
show circadian rhythm-dependent severity—mortality is 
higher when sepsis is induced at night compared to the 
day [67, 68]. Due to this, future studies should evaluate 
seasonality as an experimental factor in murine models 
of sepsis and obesity.

This study is subject to several important limitations. 
Firstly, the exclusion of studies without measures of organ 
dysfunction restricts the inclusion of mechanistic inves-
tigations. Secondly, the generalizability of our findings is 
limited by focusing solely on murine models. Omitting 
diverse preclinical models, such as rats and pigs, may 
constrain translational relevance and study generalizabil-
ity. Thirdly, the inclusion criterion of English-language 
studies may have excluded relevant non-English publi-
cations. Despite these limitations, the review adheres to 

standardized PRISMA–ScR guidelines [16], and its inclu-
sion of risk of bias assessments highlights methodological 
considerations essential for addressing translational chal-
lenges in animal models of sepsis. The review effectively 
underscores methodological inconsistencies and knowl-
edge gaps in murine sepsis–obesity models that require 
resolution for advancing research. Moreover, the review’s 
identification of reported outcomes in these models 
offers valuable insights for developing a standardized set 
of reportable outcomes for future studies advancing com-
parability to synthesize outcomes.

Conclusion
The absence of co-morbidity representation, particularly 
obesity, in pre-clinical sepsis studies has impeded their 
translation into effective treatments, resulting in conflict-
ing data and methodological inconsistencies that hinder 
consensus and applicability. To address the complexity 
of sepsis, utilizing various animal models that replicate 
clinically observed sepsis is crucial. Despite inherent 
limitations, this review underscores the importance of 
standardized protocols to synthesize the impact of obe-
sity on sepsis outcomes. Collaborative initiatives such as 
the National Pre-clinical Sepsis Platform are striving to 
establish uniform practices and comparability across lab-
oratories [69, 70]. Standardization in murine sepsis–obe-
sity models will enhance insights into pathophysiology 
and improve pre-clinical therapeutic translation.
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