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Abstract 

Background Obtaining a properly fitting non‑invasive ventilation (NIV) mask to treat acute respiratory failure 
is a major challenge, especially in young children and patients with craniofacial abnormalities. Personalization of NIV 
masks holds promise to improve pediatric NIV efficiency. As current customization methods are relatively time con‑
suming, this study aimed to test the air leak and surface pressure performance of personalized oronasal face masks 
using 3D printed soft materials. Personalized masks of three different biocompatible materials (silicone and pho‑
topolymer resin) were developed and tested on three head models of young children with abnormal facial features 
during preclinical bench simulation of pediatric NIV. Air leak percentages and facial surface pressures were measured 
and compared for each mask.

Results Personalized NIV masks could be successfully produced in under 12 h in a semi‑automated 3D production 
process. During NIV simulation, overall air leak performance and applied surface pressures were acceptable, with leak 
percentages under 30% and average surface pressure values mostly remaining under normal capillary pressure. There 
was a small advantage of the masks produced with soft photopolymer resin material.

Conclusion This first, proof‑of‑concept bench study simulating NIV in children with abnormal facial features, showed 
that it is possible to obtain biocompatible, personalized oronasal masks with acceptable air leak and facial surface 
pressure performance using a relatively short, and semi‑automated production process. Further research into the clin‑
ical value and possibilities for application of personalized NIV masks in critically ill children is needed.
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Background
Non-invasive ventilation (NIV) can be a valuable treat-
ment in critically ill children with acute respiratory fail-
ure admitted to the pediatric intensive care unit (PICU) 
[1, 2]. A recent worldwide study reported that almost 
1 out of every 4 children with pediatric acute respira-
tory distress syndrome currently receives this treatment 
[3]. One of the most important challenges in treating 
children with NIV is to obtain a properly fitting mask 
[2, 4–9]. A suboptimal seal of the NIV mask results in 
increased air leak, patient discomfort and the develop-
ment of facial skin pressure injuries [9, 10]. These factors 
are associated with patient–ventilator asynchrony and 
reduced tolerance, contributing to NIV failure [8, 9, 11–
13]. This is relevant as several large studies report NIV 
failure rates in the PICU to range from 25 to 53% [3, 14]. 
Young children are particularly exposed to ill-fitted NIV 
interfaces, as a result of the limited size ranges of com-
mercially available masks. In addition, syndromic crani-
ofacial malformations in children (a common problem 
in patients admitted to the PICU) might further compli-
cate mask fitting [8, 11, 12]. Therefore, personalization of 
NIV masks addressing the specific facial features of the 
patient is believed to be a promising future approach to 
improve pediatric NIV efficiency [4–9].

There have been several previous explorations in the 
field of mask personalization [9, 15–18]. Biocompatible 
soft materials, like silicon, which has a cushioning effect 
to minimize pressure on the face and improve seal com-
pared to hard materials, were investigated using mold-
ing techniques to produce a mask [9, 15, 16]. However, 
such strategies are labor and time consuming, which may 
limit their usefulness in the setting of acute respiratory 
failure. More novel, state-of-the-art techniques, such as 
3D printing of soft materials may be promising to pro-
vide a more rapid, personalized NIV mask production 
method [6, 17, 18]. Yet, medical device research aimed 
at establishing 3D printed personalized masks is still in 
the early stage. For example, Willox et al. [18] tested 3D 
printed polyamide oronasal masks in three healthy adult 
volunteers, and found reduced air leak as compared to 
conventional NIV masks, but also expressed the need to 
test softer materials. Borras-Novell et al. [17] tested a 3D 
printed, softer, silicone nasal mask in a single neonatal 
case, and found reduced air leak percentages. Neverthe-
less, before pilot and further clinical studies in children 
with acute respiratory failure can be attempted, further 
exploration of the production process, and performance 
of designs and materials in a preclinical setting is needed.

The aim of this study was to explore 3D printed per-
sonalized oronasal NIV face masks produced with 
different biocompatible soft materials, and test their 
air leak and facial surface pressure performance in 

preclinical bench simulation of pediatric NIV. For this 
purpose, we developed head models of young children 
with abnormal facial features for a proof-of-concept 
study.

Methods
Development of pediatric head models
Three different head models were developed, based on 
the facial 3D scan of three children (aged 3–4 years) 
with a syndrome with accompanying characteristic facial 
features: Down syndrome (DS, Trisomy 21), cardiofaci-
ocutaneous syndrome (CFCS) and velocardiofacial syn-
drome (VCFS). These children were selected based on 
evident facial abnormalities as part of their syndrome, 
to provide for a proof-of-concept model to test our per-
sonalized mask design and materials. The 3D images 
were obtained with approval of the Joint Research and 
Ethics Committee of the Eastman Dental Institute/East-
man Dental Hospital Ethics Committee (JREC 00/EO42). 
The scans were digitally transformed into solid heads by 
merging the scans with the back of a standard head in 
Autodesk Meshmixer (version 3.5.474, Autodesk, San 
Rafael, CA, USA).

The pediatric head models were developed in Autodesk 
Inventor (Autodesk, USA). An example of a final head 
model as produced is shown in Fig.  1A. All three test 
head models are shown in Additional file  1: Figure S1. 
All head models were composed of four solid, 3D printed 
parts (ASA, Fortus 450mc Industrial FDM printer, 
Stratasys, Israel): the face, middle and back of the head, 
and the facial pressure components. Six capacitive force 
sensors (4.5N, calibrated, Singletact, PSS UK Limited, 
UK) were placed under the pressure components on a flat 
surface following the contours of NIV oronasal masks. 
The measured force was converted to pressure by divid-
ing the output by the surface area of the corresponding 
pressure component. The regions for pressure measure-
ments include the nose bridge, both sides of the nose, 
both cheeks and the chin. They, respectively, enclose the 
nasion, nasal ala left and right, chelion left and right and 
the sulcus inferior facial landmarks. The electronics of 
the sensors were placed in the back part of the head. The 
sensors were coupled and connected to a microcontroller 
(Arduino Uno, Arduino, USA). A 3-mm silicon (Ecoflex 
00-20, Smooth-on, USA) layer was poured around the 
head to create a surface texture mimicking human skin 
as previously described [6]. Finally, silicon tubes were 
inserted through the nose and mouth cavities to create 
an airtight airway to be connected to a mechanical lung 
simulator. A more detailed example of the design and a 
final head model is shown in the Supplemental material, 
Additional file 1: Figure S2 and S3.
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Mask design
Personalized, oronasal masks were designed as a com-
position of three parts: a fully customized cushion, 
a frame and a frame ring. To assemble the mask, the 
cushion is placed in the frame with fixation through 
the frame ring (Fig. 1B and Additional file 1: Figure S4). 
The frame and accompanying frame ring were designed 
in eight different sizes for children up to 7 years old 
(see Additional file  1: Figure S5 and 6), as based on 
the DINED database [19], and on studies of Goto et al. 
[20], and Young [21]. The inner part of the frame was 
designed to minimize unwanted (dead space) volume 
by following the facial landmarks and minimize frame 

height. For the personalized NIV cushion, we devel-
oped a plugin for Rhinoceros (Robert McNeel & Asso-
ciates, USA, available on request). In this software, the 
facial 3D scan can be uploaded, and eight facial land-
marks are then selected manually (see Supplemental 
material, Additional file  1: Figure S7). Based on the 
input, the Rhinoceros software produces a mask curve 
and automatically selects a 3D cushion model accord-
ing to the nasion–pogonion distance. For this explora-
tory study, two different mask sizes (small and large) 
were chosen for each test head model: the size auto-
matically chosen by the software and one size smaller, 
to examine the accuracy of the sizing system. The files, 

Frame

Frame ring

Cushion

Holder

Facial pressure
components

Face

B

A

Fig. 1 A schematic overview of the bench test setup for pediatric non‑invasive ventilation simulation with details on the test head model (A) 
and the personalized mask (B). The personalized mask consist of a frame, frame ring, holder and a personalized cushion. The mask is placed 
on the accompanying test head model, which contains facial pressure components that follow the outline of the ventilation mask. The pressure 
sensors underneath the components are connected to the laptop through a microcontroller (Arduino). The test head model has a 3‑mm silicon 
layer to create an airtight connection to the mechanical lung simulator. The mask is connected to the ventilator, which directly provides information 
on the inspiration (insp) and expiration (exp) volumes, flows and pressures (P) to the laptop for data collection
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which were saved as an STL format, could be sliced and 
exported to a 3D printer.

The masks are stabilized and fixated to the patient’s 
head using a 3D printed holder (PC-ISO, Fortus 450mc, 
Stratasys, Israel) and headgear with five fixation points 
(Respireo SOFT nasal masks from Air Liquide Health-
care, France), as described previously [6].

Mask production
The frames were 3D printed in VeroClear material 
(Objet30, Stratasys, Israel). The frame rings were 3D 
printed in PC-ISO material (Fortus 450mc, Stratasys, 
Israel). The personalized cushions were 3D printed 
in three different biocompatible (a minimum of ISO 
10993-5 and 10993-10) soft materials:

1. Silicone urethane (SU) (Sil30, A-35, Carbon 3D, 
USA) on a DLS printer (M3 Max, Carbon3D, USA), 
resulting in two masks:  SUsmall and  SUlarge,

2. Silicone (Amsil 20501, A-50, Elkem Silicones, Nor-
way) on a FDM printer (3D4Makers, Netherlands 
and Purpose AM Systems, Latvia), resulting in two 
masks:  Sismall and  Silarge

3. Soft photopolymer resin (MED414, A-50, Loctite, 
Henkel, Germany) on a DLP printer (OriginOne, 
Stratasys, Israel), resulting in two masks:  SPRsmall and 
 SPRlarge.

Figure  2 shows examples of masks produced in these 
different soft materials.

NIV simulation
Pediatric NIV was simulated in a bench test to determine 
the performance of the produced personalized masks. 
As a comparison for the personalized masks, the only 
commercial oronasal NIV mask available in our PICU 

(Nivairo, Fisher & Paykel Healthcare, New Zealand, size: 
XS, which is the smallest available) was also tested. The 
setup consisted of a head model connected to a mechani-
cal lung simulator (Michigan Instruments, Grand Rapids, 
USA) (Fig. 1). The test lung simulator was set at 25 ml/
cmH2O compliance and 20  cmH2O parabolic resistance. 
These settings were fixed during all NIV simulation test 
runs. The mask was placed and fixated to the head model, 
and connected to a ventilator (Hamilton C6 ventilator, 
Hamilton Medical, Switzerland) by a standard dual limb 
breathing circuit (Fisher&Paykel Healthcare, New Zea-
land). A standard computer was used to continuously 
collect the flow (31 Hz), volume (31 Hz), airway pressure 
(31 Hz) and air leak (2 Hz) data from the ventilator using 
the Hamilton DataLogger software and to collect the 
facial surface pressure (2 Hz) data using custom-made 
software in Python.

For ventilation, the respiratory rate was set on 20 
breaths per minute, with an inspiration–expiration ratio 
of 1:3 in NIV-ST modus, which delivers time-cycled, 
pressure-supported breaths. The ventilator parameters 
and facial surface pressures were then measured for 90 
s, which thus included analysis of a total of 30 breaths, 
for three consecutive ventilator pressure steps, noted as 
peak-inspiratory pressure/positive end-expiratory pres-
sure: 15/5  cmH2O, 20/5  cmH2O, 25/10  cmH2O. For 
each of these three ventilator pressure steps, we per-
formed three independent measurements (triplicate). 
Between these measurements, the mask was removed 
from the head model, re-fixated and the headbands were 
re-adjusted.

Performance outcomes
To examine the performance of the masks, air leak 
percentage  (Lair, reported by the ventilator as Vleak%, 
which is automatically derived per breath by one minus 

Fig. 2 An overview of the personalized cushion materials. From left to right: silicone urethane (SU) printed on a DLS printer, silicone (Si) printed 
on an FDM printer, and soft photopolymer resin (SPR) printed on a DLP printer
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the calculated exhaled volume divided by inhaled vol-
ume, multiplied by 100%), facial surface pressure (N/
cm2) on the nose bridge  (Pnb), pressure on the chin  (Pc) 
and average pressure  (Pav, calculated as the mean from 
all six pressure sensors) of the masks were compared.

Statistical analysis
Data on the performance outcomes for each mask were 
collected three times in independent measurements 
for 30 breaths, and summarized into mean values per 
measurement. These data are presented as medians 
(IQR) for each mask per ventilator pressure step. No 
sample size calculation regarding the number of head 
models was performed for this exploratory preclini-
cal bench study. Comparisons between multiple mask 
types were analyzed using the Friedman test for non-
parametric repeated measures data due to the small 
sample size and absence of normal distribution upon 
graphical histogram presentation or the Shapiro–Wilk 
test. If this test yielded a significant p-value (< 0.05), 
Wilcoxon signed-rank tests were executed as post hoc 
comparison between the masks. IBM SPSS Statistics 
(version 28) was used for the analysis.

Results
All three soft materials were successfully 3D printed and 
could be assembled into NIV oronasal masks with an 
airtight, biocompatible personalized soft cushion. Total 
production time of these masks was below 15 h: the SU 
masks (small and large) took around 11 h (2 h to print, 1 
h of manual post-processing and 8 h of curing); Si masks 
(small and large) took 15 (11 h of printing, 4 h of curing 
and 15 min of post-processing); SPR masks (small and 
large) took 10 h (9 h to print and 1 h of post-processing 
and curing).

Air leak performance was generally acceptable for all 
personalized masks (Fig.  3), and there were no relevant 
differences between the different head models. Overall, 
 Lair was below 30%, except at the 25/10  cmH2O ventila-
tion pressure step. In comparison, the commercial oro-
nasal mask (Nivairo) showed leak percentages of > 60% in 
two test head models (DS and CFCS) even when strap-
ping the headgear to its limits, and > 95% in the VCFS 
model. In the latter model no sufficient contact of the 
commercial mask with the face was possible. This caused 
disruption of the flow and pressure levels in such a way 
that no reliable NIV could be simulated. At all three ven-
tilator pressure steps (15/5, 20/5 and 25/10  cmH2O) all 
personalized masks had lower  Lair as compared to the 

Fig. 3 Air leak percentages  (Lair) for the commercial mask (CM) and each personalized non‑invasive ventilation (NIV) mask (silicone urethane (SU) 
small and large; silicone (Si) small and large; and soft photopolymer resin (SPR) small and large) during pediatric NIV bench test simulation at three 
different ventilation pressure steps (peak‑inspiratory pressure/positive end‑expiratory pressure: 15/5  cmH2O, 20/5  cmH2O and 25/5  cmH2O). 
The boxplots and error‑bars depict median/IQR and range, respectively. *CM versus  SUsmall,  SUlarge,  Sismall,  Silarge,  SPRsmall and  SPRlarge (p < 0.05); 
**SPRsmall versus  Sismall and  Silarge (p < 0.05); ***SPRsmall versus  Sismall (p < 0.05); ****SPRlarge versus  Sismall and  Silarge (p < 0.05) as analyzed by Friedman 
non‑parametric test with post hoc testing
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commercial mask (Fig.  3). Moreover, there was a small 
benefit in the SPR masks as compared to the Si masks. 
The data on  Lair per test head model are presented in 
Additional file 1: Figure S8 and examples of the ventilator 
waveforms are shown in Additional file 1: Figure S9.

Median facial surface pressure values from the per-
sonalized masks were below 0.50 N/cm2 at 15/5  cmH2O 
ventilator pressure step (Fig.  4). Surface pressure deliv-
ered to the nose bridge was relatively high as compared 
to the chin region. Only  Pnb showed significant differ-
ences between the masks. Herein, the commercial mask 
resulted in significantly lower facial pressure than  SUsmall, 
 SUlarge,  Sismall,  Silarge and  SPRsmall, while values for  SPRlarge 
were lower than  SUsmall and  Sismall. However, as the com-
mercial mask did not make sufficient contact with the 
face in the case of the VCFS model, data for this test head 
were omitted from the analysis. Additional file 1: Figure 
S10 shows  Pnb,  Pchin and  Pav for each ventilator pressure 
step. The data on facial pressure per test head model are 
presented in Additional file 1: Figure S11.

Discussion
The aim of the current study was to test the air leak and 
facial surface pressure performance of personalized oro-
nasal NIV face masks using different 3D printed soft 
materials. In this proof-of-concept bench simulation of 

pediatric NIV using head models of young children with 
abnormal facial characteristics, we show that it is possi-
ble to obtain biocompatible, personalized mask cushions 
with acceptable air leak and surface pressure perfor-
mance using a relatively short and semi-automated pro-
duction process.

To our knowledge this study is the first to examine dif-
ferent 3D printed biocompatible soft materials to develop 
personalized NIV masks for children, aimed at support-
ing critically ill children with acute respiratory failure. 
For application in the acute setting, personalized masks 
should be rapidly and readily available after initial sta-
bilization with commercial NIV masks or alternative 
interfaces. As such, ideally the total production time of 
a personalized mask should be as low as possible, with 
little hands-on time to decrease the need for available 
or specialized personnel. For this purpose, the relatively 
novel technique of 3D printing soft, biocompatible mate-
rials holds much promise [22, 23]. It is believed that this 
method provides a benefit as compared to recent stud-
ies that used molding techniques [9, 24], or that used 3D 
printing of rigid materials [18, 25]. In our current pro-
duction process, we were able to develop personalized 
NIV masks within a 12-h time window (the SPR mask). 
Considering that a facial 3D scan by handheld devices 
can be made within 60 s, and can be uploaded into our 

Fig. 4 Facial surface pressures (N/cm2) (average for all six sensors, nose bridge and chin region) for the commercial mask (CM) and each 
personalized non‑invasive ventilation (NIV) mask (silicone urethane (SU) small and large; silicone (Si) small and large; and soft photopolymer resin 
(SPR) small and large) during pediatric NIV bench test simulation at a peak‑inspiratory pressure of 15  cmH2O and a positive end‑expiratory pressure 
of 5  cmH2O. The boxplots and error‑bars depict median/IQR and range, respectively. *CM versus  SUsmall,  SUlarge,  Sismall,  Silarge and  SPRsmall (p < 0.05); 
**SPRlarge versus  SUsmall and  Sismall (p < 0.05)
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semi-automated software for mask selection, ongoing 
medical device development appears justified. However, 
before implementing personalized NIV masks in criti-
cally ill children, pilot (first-in-human) and subsequent 
clinical testing is warranted. It will, in particular, be 
important to identify pediatric patient subgroups (e.g., 
young age) that will most likely benefit the greatest of 
personalized masks in terms of NIV success. In this light, 
it is important to note that the syndromes associated 
with facial abnormalities included in our study were cho-
sen to facilitate proof-of-concept, but do not necessarily 
represent populations receiving more specific attention.

In terms of air leak, all personalized NIV masks, per-
formed to an acceptable degree (leak percentage gener-
ally below 30%) [26] in our bench test using head models 
with specific facial features. The observed air leak was 
significantly lower in the personalized interfaces versus 
the commercial mask and among the personalized mask 
there appeared to be a small advantage of the masks with 
photopolymer resin material (the SPR mask). In case of 
the  SPRlarge mask, the median (IQR)  Lair was as low as 9 
(8–14)%. Although moderate air leak is usually compen-
sated for by ventilators, in particular with pressure tar-
geted ventilation [10], large unintentional leak can result 
in decreased patient–ventilator synchronization, discom-
fort (e.g., by air flow to the eyes) and reduced alveolar 
ventilation, subsequently contributing to treatment fail-
ure [11, 13, 26, 27]. To reduce air leak from an ill-fitted 
mask, a common maneuver by nurses in daily practice is 
to tighten the mask headgear straps. This has the down-
side to increase pressure applied to the skin, contributing 
to development of painful sores [8]. On the other side, 
too low leak percentages due to a personalized fit may 
carry the increased risk for rebreathing of  CO2 [10, 28].

Impaired facial skin integrity during NIV in children, 
resulting in painful sores and ulcers, is a common com-
plication due to high mask pressure [7]. Overall, in our 
model the personalized oronasal masks resulted in aver-
age surface pressures below the capillary pressure of 
0.44 N/cm2 (33 mmHg) in our head models, which is 
deemed necessary to prevent pressure injury [29]. Here, 
also the SPR masks slightly performed better in com-
parison to the other soft materials. This average pres-
sure was comparable to that exerted by the very thin, soft 
silicone texture of the commercial mask. Nevertheless, in 
the personalized masks, the pressure at the nose bridge 
in some measurements exceeded this threshold. Previ-
ous studies on facial pressures of NIV masks in adults 
reported pressures on the nose bridge of 0.3–1.4 N/cm2 
[30]. Compared to these values, a median of 0.24 N/cm2 
(IQR 0.22–0.42) of the  SPRlarge mask appears fairly low. 
Since the nose bridge is most prone to pressure injury 
[4], future personalized mask designs, including headgear 

modifications, should continue to focus on lowering  Pnb. 
However, it should be taken into account that there is a 
fine balance between air leak and skin pressure: when 
accepting higher leak percentages, the pressures applied 
to the skin could drop. Total face masks, which cover 
the eyes, nose and mouth, may distribute skin pressure 
more evenly over a larger surface excluding the nose 
bridge. However, in children these masks often have large 
air leaks at the top side, and they have the disadvantage 
of risk of claustrophobia and eye irritation [31]. Nasal 
masks, which also avoid the nose bridge region, have the 
clear disadvantage of increased air leak when opening the 
mouth, and in critically ill children with acute respiratory 
failure this type of mask is usually insufficient to provide 
high positive bi-level pressures.

This study has several limitations. First, there are sev-
eral inherent difficulties with bench testing using NIV 
simulation [32]. While our head models were designed 
to evaluate air leak percentage and potential pressure 
applied to skin, no breathing effort or triggering, which 
could affect performance of the masks, was simulated. 
Also, the inner head design was not fully matched to 
normal upper respiratory tract anatomy, and we did not 
incorporate different mechanical properties of the simu-
lated respiratory system in our testing. Second, move-
ments of patients during NIV, causing shifting of masks 
could for obvious reasons not be simulated. For this rea-
son, we performed multiple independent measurements 
with re-adjustment of the masks in between. Third, in 
our head models we applied a skin-like layer from silicon 
that resembles the elasticity of actual skin. While skin 
thickness varies across the face, this setup used an evenly 
distributed layer of 3 mm. This could lead to higher esti-
mated pressures in softer facial areas, such as the cheeks, 
but also in lower estimated pressures at the chin and nose 
bridge. Fourth, the test setup did not include a nasogas-
tric tube, commonly used in these patients, which may 
affect mask fit causing additional air leaks [33].

Conclusion
In this proof-of-concept bench simulation of pediatric 
NIV using head models with abnormal facial features, 
we report the development of 3D printed biocompatible, 
personalized oronasal masks that perform with accepta-
ble air leak and facial surface pressure. Further safety and 
pilot research in children, along with refinement of the 
logistical production process, will be necessary to inform 
future studies that focus on the clinical (cost-)effective-
ness of using personalized NIV masks in the treatment of 
critically ill children.
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PICU  Pediatric intensive care unit
NIV  Non‑invasive ventilation
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SPR  Soft photopolymer resin
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Pchin  Pressure on the chin (N/cm2)
Pav  Average pressure (N/cm2)
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