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Abstract 

Background Coronary artery calcification (CAC) is associated with poor outcome in critically ill patients. A dete-
rioration in cardiac conduction and loss of myocardial tissue could be an underlying cause. Vectorcardiography 
(VCG) and cardiac biomarkers provide insight into these underlying causes. The aim of this study was to investigate 
whether a high degree of CAC is associated with VCG-derived variables and biomarkers, including high-sensitivity 
troponin-T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP).

Methods Mechanically ventilated coronavirus-19 (COVID-19) patients with an available chest computed tomography 
(CT) and 12-lead electrocardiogram (ECG) were studied. CAC scores were determined using chest CT scans. Patients 
were categorized into 3 sex-specific tertiles: low, intermediate, and high CAC. Daily 12 leads-ECGs were converted 
to VCGs. Daily hs-cTnT and NT-proBNP levels were determined. Linear mixed-effects regression models examined 
the associations between CAC tertiles and VCG variables, and between CAC tertiles and hs-cTnT or NT-proBNP levels.

Results In this study, 205 patients (73.2% men, median age 65 years [IQR 57.0; 71.0]) were included. Compared 
to the lowest CAC tertile, the highest CAC tertile had a larger QRS area at baseline (6.65 µVs larger [1.50; 11.81], 
p = 0.012), which decreased during admission (− 0.27 µVs per day [− 0.43; − 0.11], p = 0.001). Patients with the high-
est CAC tertile also had a longer QRS duration (12.02 ms longer [4.74; 19.30], p = 0.001), higher levels of log hs-cTnT 
(0.79 ng/L higher [0.40; 1.19], p < 0.001) and log NT-proBNP (0.83 pmol/L higher [0.30; 1.37], p = 0.002).

Conclusion Patients with a high degree of CAC had the largest QRS area and higher QRS amplitude, which 
decreased more over time when compared to patients with a low degree of CAC. These results suggest that CAC 
might contribute to loss of myocardial tissue during critical illness. These insights could improve risk stratification 
and prognostication of patients with critical illness.
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Background
Coronavirus 19 (COVID-19) is an infectious disease 
caused by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) that has shown the potential to 
affect various organ systems, including the cardiovas-
cular system [1]. In several studies, it has been shown 
that myocardial injury was associated with increased 
mortality in hospitalized COVID-19 patients [2–4]. 
Biomarkers, including high-sensitivity troponin-T (hs-
cTnT), creatine kinase-MB (CK-MB) fraction, myo-
globin, and N-terminal pro-B-type natriuretic peptide 
(NT-proBNP), have been found to be increased in 
COVID-19 patients with severe disease and are asso-
ciated with adverse outcomes, including mortality [3, 
5–8]. Moreover, a higher degree of coronary artery cal-
cification (CAC), a marker for coronary atherosclerosis, 
is associated with more severe organ failure and worse 
outcomes in COVID-19 patients [9–12].

In several studies, abnormal electrocardiographic 
(ECG) findings were observed in COVID-19 patients, 
including ST segment changes, T wave inversion, and 
PR interval, QRS duration, and QT interval alterations 
[3, 13–15]. Vectorcardiography (VCG) has potential 
value for gaining further insight into cardiac disease. 
VCG provides a three-dimensional representation of 
the electrical activity of the heart, offering informa-
tion about the direction and magnitude of electrical 
forces [16, 17]. Different parameters, including QRS-
area, could be determined using this tool. The QRS area 
consists of QRS amplitude and duration. In previous 
studies, it was shown that VCG is a promising tool to 
improve patient selection for cardiac resynchroniza-
tion therapy [17]. Although current studies do not 
specifically address the relationship between VCG and 
COVID-19, they emphasize the importance of moni-
toring heart health and cardiac injury biomarkers in 
COVID-19 patients [3, 17–19].

Whether patients with more severe coronary athero-
sclerosis face worse outcomes due to impaired cardiac 
conduction (i.e., slower conduction), and/or loss of 
myocardial tissue over time is unknown. Therefore, the 
aim of this study was to examine whether a high degree 
of CAC is associated with VCG-derived variables dur-
ing admission for a critical illness. More specifically, 
we investigated whether patients with a higher degree 
of CAC have a decrease in QRS area, which consist of 
QRS duration and amplitude. Additionally, we inves-
tigated whether patients with a higher degree of CAC 
have elevated hs-cTnT and NT-proBNP. By analyzing 
VCG data, it may be possible to detect subtle changes 
in electrical activity, identify arrhythmogenic sub-
strates, and assess the impact of COVID-19 on myo-
cardial tissue and electrical properties. Such knowledge 

could improve risk stratification, prognostication, 
and management of COVID-19 patients with cardiac 
involvement.

Methods
Study design
The Maastricht Intensive Care COVID (MaastrIC-
Cht) cohort is a prospective observational cohort 
study described extensively elsewhere [20]. In short, 
this study was conducted in the Intensive Care 
Unit (ICU) of the Maastricht University Medical 
Center + (MUMC +), a tertiary hospital in the Neth-
erlands. The study was approved by the medical eth-
ics committee (METC) of MUMC + (2020–1565/3 00 
523), which was based on the Declaration of Helsinki. 
Moreover, this study was registered in the International 
Clinical Trials Registry Platform (NL8613; 12/05/2020). 
This manuscript was written according to the "Strength-
ening the Reporting of Observational Studies in Epide-
miology" (STROBE) guideline [21].

Imaging population and Coronary Calcium Score
All mechanically ventilated patients admitted from 
March 2020 until October 2021 with a chest computed 
tomography (CT) scan highly suggestive of COVID-
19, as indicated by a score of 4 or 5 on the COVID-19 
Reporting and Data System (CO-RADS) and/or a poly-
merase chain reaction (PCR) test positive for COVID-19, 
were included in this study. Imaging was conducted on 4 
different scanners within the cohort, including a mobile 
scan unit (Alliance Medical equipped with Lightspeed 
16, GE Healthcare, Milwaukee, WI) for clinically sta-
ble triage patients. Other available scanners were either 
used for unstable patients in the emergency depart-
ment (SOMATOM Definition Flash, Siemens Health-
ineers, Forchheim, Germany) or for clinical inpatients 
(SOMATOM Force; SOMATOM Definition AS; Siemens 
Healthineers, respectively), with tube voltages between 
90 and Sn150 kV.

CAC was graded on the data available on the PACS 
workstation (IMPAX, version 6.6.1.5003; AGFA Health-
Care N.V., Mortsel, Belgium). The calcifications were 
assessed according to their location in the left main, left 
anterior descending, left circumflex artery, and right 
coronary artery, using a semiquantitative grading system, 
which has been described extensively elsewhere [22–26]. 
Calcifications were scored as absent (0), mild (1), moder-
ate (2), or severe (3) for each coronary artery. The four 
separate scores were summed up to an overall grade var-
ying between 0 and 12, where 0 indicates no CAC, and 12 
indicates extensive coronary artery disease.
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Markers of myocardial injury and wall stress longitudinally 
during admission
Data on various clinical variables and biomarkers were 
collected daily, including hs-cTnT and NT-proBNP 
levels.

ECGs were performed daily, starting at intubation 
until either death or discharge from ICU. Twelve-lead 
ECGs were taken during the morning, at 25  mm/s and 
10  mm/mV, and stored (MUSE Cardiology, GE Medical 
System). Post-processing was done on all ECGs that were 
converted into orthogonal VCG leads (X, Y, Z) using the 
Kors conversion matrix in MATLAB (MathWorks Inc.) 
[27]. After conversion, the start and end of the QRS com-
plex and T-waves were manually determined. The electri-
cal activation sequence of the ventricles was constructed, 
and the VCG variables were automatically calculated 
and extracted using MATLAB. VCG and ECG markers 
include QRS area, amplitude and duration. The QRS area 
was calculated as the integral under the QRS complex in 
the orthogonal leads based on the amplitude and dura-
tion. In addition, QRST area, T area, and QTc interval 
were determined. The QRST area was defined as the sum 
of the QRS area and the T area. The T area was similarly 
calculated as the integral under the T wave in the orthog-
onal leads.

Serum markers, including hs-cTnT (ng/L) and NT-
proBNP (pmol/L), were assessed daily during admission 
using a Cobas 8000 analyzer (Roche Diagnostics, Man-
nheim, Germany). Assay characteristics were all accord-
ing to the package inserts. For hs-cTnT, the limit of 
quantification was 3.0 ng/L at a coefficient of variation of 
10% and an overall 99th percentile upper reference limit 
of 14 ng/L. For NT-proBNP, a concentration < 35 pmol/L 
was considered normal.

Statistical analysis
Patient characteristics were categorized into sex-specific 
CAC tertiles, as previous studies suggest that CAC scores 
were higher in men compared to women and women 
were admitted less often due to COVID-19 [28–30]. This 
methods decreases the risk of bias by sex. Patients were 
categorized into tertile 1 (low CAC; reference), tertile 2 
(intermediate CAC), and tertile 3 (high CAC). Variables 
are described as median and interquartile range (IQR), 
mean and SD, or as numbers and percentages, as appro-
priate. Baseline characteristics were compared using the 
Kruskal–Wallis test, one-way ANOVA, Fisher’s exact 
test, or chi-square test.

First, linear mixed-effects regression with a random 
intercept for time since intubation was used to investi-
gate the longitudinal associations between CAC tertiles 

and the development of VCG variables over time. The 
models were adjusted for potential confounders, includ-
ing age, sex, Acute Physiology And Chronic Health 
Evaluation score (APACHE-II), chronic lung disease, 
and liver conditions [9, 28, 30–35]. The primary models 
investigated whether CAC tertiles had an average dif-
ference over time in the serial variables under investi-
gation. Moreover, the models were adjusted for serum 
markers, including hs-cTnT and NT-proBNP levels, to 
investigate whether the differences between CAC ter-
tiles were affected by serum markers. Additionally, time 
(in days) and the interaction between time and CAC 
tertiles were added to the models to investigate the 
effect modification of the association between CAC and 
the variables under study by time (a statistically sig-
nificant interaction term indicates that the trajectory 
in the VCG variable for the CAC tertile under investi-
gation develops differently over time compared to the 
reference CAC tertile). The data were re-analyzed using 
CAC as a continuous variable to analyze the sensitivity 
of the models.

In addition, using similar models, linear mixed-effects 
regression with a random intercept for time since intu-
bation was used to investigate the longitudinal asso-
ciations between CAC tertiles and the development of 
serum markers, including hs-cTnT and NT-proBNP 
levels. Serum markers were log-transformed in order 
to meet the normality criteria. Statistical analyses were 
conducted using R version 4.1.2 (R Foundation for Sta-
tistical Computing, Vienna, Austria). A p-value < 0.05 
and a p-value for interaction < 0.10 were considered sta-
tistically significant.

Results
Patient population
The MaastrICCht cohort comprised 324 mechani-
cally ventilated COVID-19 patients, of whom 205 
had undergone a chest CT scan with both ECG/VCG 
and serum biomarker data (Fig.  1). The total included 
patient population consisted of these 205 patients, of 
whom 73.2% were men. The median age was 65  years 
(IQR [57.0; 71.0]).

The patients were divided into three sex-specific 
tertiles based on their CAC scores. Compared to the 
lowest tertile (CAC score ranging between 0 and 2), 
patients in the highest tertile (CAC score ranging 
between 7 and 12) were older (median 60.0, IQR [51.0–
66.0] vs. median 69.5, [65.0–74.8]; p < 0.001) (Table 1); 
had a higher prevalence of coronary artery disease 
(1.1% vs. 17.5%, p < 0.001) and diabetes mellitus (7.5% 
vs. 34.5%, p < 0.001), and had a higher ICU mortality 
(32.3% vs. 62.1%, p = 0.001).
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Associations between CAC tertiles and longitudinal 
vectorcardiography
In the highest CAC tertile, the QRS area at baseline 
was 6.65 µVs larger compared to the lowest CAC ter-
tile ([1.50; 11.81], p = 0.012), which decreased during 
admission (-0.27 µVs per day [-0.43;-0.11], p = 0.001) 
(Table  2, model 1; Fig.  2 panel A). After adjustment for 
age, sex, and APACHE-II score (8.50 µVs [2.69; 14.30], 
p = 0.004), chronic comorbidities (8.26 µVs [2.46; 14.05], 
p = 0.006), and additionally for serum markers (7.59 µVs 
[2.41; 12.77], p = 0.004) the difference remained (Table 2, 
model 2 and 3; Additional file 1: Table S1, model 4) [9, 28, 
30–35].

Patients in the highest CAC tertile had the longest 
QRS duration (12.02  ms longer [4.74; 19.30], p = 0.001) 
(Table 2, model 1; Fig. 2 panel B), compared to the low-
est CAC tertile. Moreover, these patients had a 0.07 mV 
higher ([-0.05; 0.19], p = 0.271) QRS amplitude com-
pared to the lowest CAC tertile, although this result 
was not statistically significant (Table  2, model 1; Fig.  2 
panel C). After adjustment for age, sex, and APACHE-II 
score, patients in the highest CAC tertile had a higher 
QRS amplitude (0.16  mV higher [0.02; 0.30], p = 0.023) 

compared to the lowest tertile and the QRS amplitude 
decreased during admission (− 0.01 mV/per day [− 0.01; 
− 0.00], p = 0.038 (Table 2, model 2).

Additional analyses CAC‑scores
When data were re-analyzed using CAC as a continu-
ous variable, QRS area and QRS amplitude showed simi-
lar patterns over time compared to the tertiles analysis 
(Additional file  1: Table  S2, model 1). After adjustment 
for age, sex, and APACHE-II score, the analyses showed 
that per 1 unit increase in CAC-scores, the QRS area 
was 0.840 µVs ([0.138; 1.541], p = 0.019) larger on aver-
age over time and decreased by −  0.026 µVs [−  0.044; 
−  0.007] (p = 0.007) (Additional file  1: Table  S1, model 
2). These results remained similar after additional adjust-
ments for chronic lung disease and liver conditions 
(Additional file 1: Table S3, model 3).

Serum markers
In the highest CAC tertile, log hs-cTnT (0.79 ng/L higher 
[0.40; 1.19], p < 0.001) and log NT-proBNP (0.83 pmol/L 
higher [0.30; 1.37], p = 0.002) were on average higher 
over time compared to the lowest and intermediate 

Fig. 1 Flow diagram of the study population. Patients were enrolled in the Maastricht Intensive Care (MaastrICCht) COVID cohort. Patients 
without vectorcardiography (VCG), chest computed tomography (CT) scan, and biochemical data or with VCG measurements in the prone position 
were excluded from this study. CAC: coronary artery calcification
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tertile (Table  3, model 1). Log hs-cTnT remained high-
est in the highest CAC tertile after adjustment for age, 
sex, APACHE-II score (model 2) (0.37  ng/L higher 
[0.01; 0.74], p = 0.046) and chronic lung disease, and 
liver conditions (model 3) (0.44 ng/L higher [0.04; 0.83], 
p = 0.031). These adjustments attenuated the associations 
between CAC and log NT-proBNP. Log hs-cTnT and 
log NT-proBNP did not show a statistically significant 
increase or decrease during admission in the highest and 
intermediate tertile, compared to the lowest CAC-tertile 
(Table 3, model 1).

Discussion
This study examined whether a high degree of CAC is 
associated with VCG-derived variables in mechanically 
ventilated COVID-19 patients over time. This study has 
four main findings. First, patients with the highest degree 
of CAC had the largest QRS area at baseline, as opposed 
to those with less or no CAC. At baseline, QRS duration 
was longer in patients with the highest degree of CAC. 
The QRS area, consisting of QRS duration and amplitude, 
decreased significantly over time. Second, this associa-
tion was mainly driven by a higher QRS amplitude, which 

decreased during admission and not by QRS duration, 
indicating loss of myocardial tissue. Third, these results 
were independent of serum markers and potential con-
founders, including age, sex, APACHE-II score, chronic 
lung disease, and/or liver conditions. Lastly, patients with 
the highest degree of CAC had higher serum cardiac bio-
markers over time, including hs-cTnT and NT-proBNP, 
indicating myocardial injury.

VCG is a technique that records the electrical forces of 
the heart in three directions and is a more detailed and 
standardized alternative for ECG measurements. This 
is important as daily ECG assessment in mechanically 
ventilated COVID-19 patients showed widespread ECG 
abnormalities reflective of conduction abnormalities, 
including RV strain characteristics, P-wave splitting, QRS 
fragmentations, and changes reflective of myocardial 
ischemia/inflammation, including ST-segment deviations 
and flat T-waves. However, no differences were found 
between survivors and non-survivors based on ECG [3]. 
Although somewhat more complex than the ECG, VCG 
calculates the QRS area and amplitude more objectively 
[36] and has been proven to achieve a higher sensitiv-
ity for detecting ischemic heart disease compared to the 

Table 1 Baseline characteristics of the study population across coronary artery calcification (CAC) tertiles

Data are presented as means (standard deviation: ± SD), median [Q1,Q3], or counts (%). Differences were tested using the Kruskal–Wallis test, one way ANOVA 
or Fisher’s exact test unless indicated otherwise. APACHE-II Acute Physiology And Chronic Health Evaluation score, BMI body mass index, hs-cTnT high-sensitivity 
troponin-T, ICU Intensive Care Unit; NT-proBNP N-terminal pro-B-type natriuretic peptide. *X2 instead of Fisher exact test;**data missing, n = 1;***data missing, n = 2

Tertile 1
(N = 93)

Tertile 2
(N = 54)

Tertile 3
(N = 58)

p‑value

Age (years) 60.0 [51.0; 66.0] 67.0 [61.3; 71.8] 69.5 [65.0; 74.8]  < 0.001

BMI (kg/m2) 27.8 [25.2; 31.2] 27.7 [24.9; 31.1] 27.7 [24.7; 30.7] 0.939

Gender (men, N, %)* 59 (63.4) 43 (79.6) 48 (82.8) 0.015

Smoking (N, %)** 6 (6.5) 6 (11.3) 4 (6.9) 0.561

Arrhythmia (N, %)*** 5 (5.4) 5 (9.4) 11 (19.3) 0.030

Heart failure (N, %)*** 0 (0.0) 2 (3.8) 3 (5.3) 0.068

Coronary artery disease (N, %)*** 1 (1.1) 5 (9.4) 10 (17.5)  < 0.001

Myocardial infarction (N, %)*** 0 (0.0) 3 (5.7) 20 (35.1)  < 0.001

Valvular disease (N, %)*** 1 (1.1) 0 (0.0) 0 (0.0) 1.000

Diabetes mellitus (N, %) 7 (7.5) 11 (20.4) 20 (34.5)  < 0.001

Chronic pulmonary disease (N, %) 9 (9.7) 8 (14.8) 10 (17.2) 0.374

Chronic kidney disease (N, %) 1 (1.1) 0 (0.0) 7 (12.1) 0.001

APACHE-II (points) 15.0 [13.0; 17.0] 14.5 [13.0; 18.0] 16.0 [14.0; 19.0] 0.004

ICU-mortality (N, %)* 30 (32.3) 21 (38.9) 36 (62.1) 0.001

QRST area (µVs) 58.0 [46.1; 79.5] 60.7 [40.1; 80.1] 65.8 [47.5; 82.1] 0.429

QRS area (µVs) 25.9 [19.4; 34.5] 27.5 [19.3; 34.4] 32.2 [26.3; 41.2] 0.006

T area (µVs) 31.0 [23.5; 50.0] 31.6 [16.8; 44.8] 30.5 [18.1; 45.1] 0.529

QRS duration (ms) 99.1 [86.3; 112.7] 101.4 [91.0; 119.4] 110.3 [94.8; 130.4] 0.011

QRS amplitude (mV) 1.0 [0.8; 1.3] 1.1 [0.8; 1.3] 1.1 [0.9; 1.4] 0.296

QTc time (ms) 408.0 (68.2) 415.7 (79.0) 427.7 (82.6) 0.298

Hs-cTnT (ng/L) 11.5 [7.0; 25.3] 14.0 [10.0; 28.0] 20.0 [12.0; 51.8] 0.002

NT-proBNP (pmol/L) (IQR) 47.6 [25.9; 122.8] 67.8 [21.0; 157.0] 92.7 [30.3; 252.8] 0.033
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ECG [37]. Therefore, VCG is likely to be more precise 
when investigating trajectories of cardiac electrical con-
duction and loss of myocardial tissue compared to ECG.

Previously, it was shown that a high degree of CAC 
is associated with more severe organ failure and mor-
tality in mechanically ventilated COVID-19 patients [9, 
11]. Moreover, other studies showed that a high degree 
of CAC was associated with more myocardial stress 
in COVID-19 patients [12]. Regarding the association 
between CAC and ECG patterns, studies showed that 
CAC was associated with ECG-derived QT interval and 
QRS duration[38]. By using VCG-derived variables, the 
present investigation extends previous evidence with 
mixed results. Previous studies have shown that VCG-
derived QRS area is inversely related to focal scarring 
on cardiac magnetic resonance imaging (CMR) [39]. 
The QRS score is composed of different criteria that 
can be used to estimate the degree of myocardial scar 
[40–42]. There is evidence demonstrating that ECG 
derived QRS scores can identify scar tissue in patients 
with ischemic and nonischemic cardiomyopathy [40]. 
The current results suggest that a higher degree of 
CAC, reflecting more atherosclerosis, might contribute 
to a loss of myocardial tissue in critically ill patients. 
However, as myocardial tissue was not visualized in the 

current study, future research utilizing imaging modali-
ties, such as CMR or echocardiography, could provide 
further insights. Moreover, the degree of stenosis due 
to atherosclerosis, using the coronary artery disease-
reporting and data system (CAD-RADS) could provide 
further insights [43].

In addition to VCG, the association between CAC 
and biomarkers including hs-cTnT and NT-proBNP 
was investigated. Hs-cTnT is a highly sensitive cardiac 
injury biomarker that has been associated with myocar-
dial injury [44, 45]. NT-proBNP is a reliable biomarker 
for detecting myocardial wall stress [46]. In previous 
studies, serum markers including hs-cTnT and NT-
proBNP have been found to be associated with coro-
nary artery disease and CAC [47–50]. Furthermore, in 
COVID-19 patients, these serum markers were associ-
ated with mortality [3, 5–8]. The current results show 
that hs-cTnT and NT-proBNP levels were higher in 
patients with the highest degree of CAC. These results 
are in line with those of previous studies, and suggest 
myocardial stress in these patients.

This study has several strengths. First, confounding 
was extensively addressed by using adjusted models in 
all analyses. Next, CAC was assessed by 2 experienced 
readers using a semi quantitative system. Furthermore, 
the serial data design showed that small differences in 

Table 2 Results of linear mixed-effects models: association between coronary artery calcification tertiles and vectorcardiography 
variables

Regression coefficients (β) indicate the average difference of the variable under study between CAC tertiles, with tertile 1, the lowest CAC, as reference. The interaction 
between a tertile with time indicates the average increase or decrease over time. APACHE-II Acute Physiology And Chronic Health Evaluation score.*p-value < 0.05 and 
a p-value for interaction < 0.10

QRS‑Area (µVs) QRS Duration (ms) QRS Amplitude (mV)
β (95%CI); p‑value β (95%CI); p‑value β (95%CI); p‑value

Model 1: Crude

 Tertile 1 (reference) – – –

 Average difference tertile 2  − 0.84 (− 6.13; 4.44); 0.753 4.45 (− 3.02; 11.93); 0.242  − 0.05 (− 0.18; 0.08); 0.447

 Interaction tertile 2 and time (days)  − 0.05 (− 0.20; 0.10); 0.527 0.00 (− 0.24; 0.24); 0.982 0.00 (− 0.00; 0.01); 0.601

 Average difference tertile 3 6.65 (1.50; 11.81); 0.012* 12.02 (4.74; 19.30); 0.001* 0.07 (− 0.05; 0.19); 0.271

 Interaction tertile 3 and time (days)  − 0.27 (− 0.43; − 0.11); 0.001* 0.04 (− 0.21; 0.29); 0.738  − 0.01 (− 0.01; − 0.00); 0.029*

Model 2: Model 1 adjusted for age, sex, and APACHE − II score

 Tertile 1 (reference) – – –

 Average difference tertile 2 0.56 (− 5.03; 6.15); 0.844  − 0.45 (− 7.87; 6.96); 0.904 0.02 (− 0.11; 0.15); 0.777

 Interaction tertile 2 and time (days)  − 0.05 (− 0.20; 0.10); 0.533 0.00 (− 0.23; 0.24); 0.985 0.00 (− 0.00; 0.01); 0.563

 Average difference tertile 3 8.50 (2.69; 14.30); 0.004* 6.07 (− 1.53; 13.67); 0.118 0.16 (0.02; 0.30); 0.023*

 Interaction tertile 3 and time (days)  − 0.27 (− 0.43; − 0.11); 0.001* 0.04 (− 0.21; 0.29); 0.772  − 0.01 (− 0.01; − 0.00); 0.038*

Model 3: Model 2 adjusted for chronic lung disease and liver conditions

 Tertile 1 (reference) – – –

 Average difference tertile 2 0.55 (− 5.10; 6.19); 0.849  − 0.30 (− 7.78; 7.18); 0.937 0.02 (− 0.11; 0.16); 0.717

 Interaction tertile 2 and time (days)  − 0.05 (− 0.20; 0.10); 0.533 0.00 (− 0.24; 0.24); 1.000 0.00 (− 0.00; 0.01); 0.542

 Average difference tertile 3 8.26 (2.46; 14.05); 0.006* 6.31 (− 1.31; 13.93); 0.105 0.16 (− 0.02; 0.29); 0.025*

 Interaction tertile 3 and time (days)  − 0.27 (− 0.43; − 0.11); 0.001* 0.03 (− 0.22; 0.28); 0.804  − 0.01 (− 0.01; 0.00); 0.040*
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trajectories per day could be detected, proving that the 
analysis was precise.

However, the study included only COVID-19 patients 
within one center, limiting the generalizability of the 
results. Other critical care variables might have influ-
enced the ECGs and VCGs, such as pulmonary edema. 
Due to the observational design of our study, residual 
confounding can not be exluded, although we dealt with 
confounding extensively. Furthermore, cut-off points on 
the VCG variables were not investigated and therefore 
not defined in this study. Nevertheless, the association 
of decreasing QRS amplitude over time in patients with 
more CAC could still be a helpful monitoring variable in 
the ICU as an early detector of myocardial function loss, 
aiding the decision to employ clinical imaging modalities 
such as echocardiography.

Conclusions
In conclusion, mechanically ventilated COVID-19 
patients with a high degree of CAC had a larger QRS 
area, which consist of QRS amplitude and duration. QRS 
area and QRS amplitude decreased during admission, 
which suggests that CAC might contribute to a decrease 
in myocardial tissue. This study enhances our under-
standing of CAC and trajectories of VCG-variables and 
suggests different patterns of electrical conduction over 
time during critical illness. These insights could improve 
risk stratification and prognostication of patients with 
critical illness. More research utilizing imaging modali-
ties, such as CMR or echocardiography, could provide 
further insights.

Fig. 2 Crude models of QRS Area (A), QRS Duration (B), QRS Amplitude (C), high-sensitivity troponin-T (hs-cTnT) (D) and N-terminal pro-B-type 
natriuretic peptide (NT-proBNP) E over time for tertiles of coronary artery calcification (CAC), with 95% confidence intervals and average differences 
between tertiles (red and green)
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Log hs‑cTNT (ng/L) Log NT‑proBNP (pmol/L)
β (95%CI); p‑value β (95%CI); p‑value

Model 1: Crude

 Tertile 1 (reference) – –

 Average difference tertile 2 0.43 (0.02; 0.84); 0.042 0.40 (-0.16; 0.95); 0.157

 Interaction tertile 2 and time  − 0.01 (− 0.03; 0.01); 0.392  − 0.01 (− 0.04; 0.02); 0.366

 Average difference tertile 3 0.79 (0.40; 1.19); < 0.001* 0.83 (0.30; 1.37); 0.002*

 Interaction tertile 3 and time  − 0.01 (− 0.03; 0.01); 0.233  − 0.00 (− 0.03; 0.03); 0.917

Model 2: Model 1 adjusted for age, sex, and APACHE-II score

 Tertile 1 (reference) – –

 Average difference tertile 2 0.22 (− 0.14; 0.58); 0.233 0.27 (− 0.30; 0.84); 0.348

 Interaction tertile 2 and time  − 0.01 (− 0.02; 0.01); 0.300  − 0.01 (− 0.03; 0.02); 0.543

 Average difference tertile 3 0.37 (0.01; 0.74); 0.046* 0.39 (− 0.17; 0.95); 0.176

 Interaction tertile 3 and time  − 0.01 (− 0.02; 0.01); 0.389 0.01 (− 0.01; 0.04); 0.376

Model 3: Model 2 adjusted for chronic lung disease and liver conditions

 Tertile 1 (reference) – –

 Average difference tertile 2 0.25 (− 0.14; 0.65); 0.206 0.31 (− 0.26; 0.88); 0.289

 Interaction tertile 2 and time  − 0.01 (− 0.03; 0.01); 0.361  − 0.01 (− 0.04; 0.02); 0.499

 Average difference tertile 3 0.44 (0.04; 0.83); 0.031* 0.43 (− 0.13; 1.00); 0.133

 Interaction tertile 3 and time  − 0.01 (− 0.03; 0.01); 0.270 0.01 (− 0.02; 0.04); 0.437
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