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Abstract 

Introduction Administration of oxygen therapy is common, yet there is a lack of knowledge on its ability to prevent 
cellular hypoxia as well as on its potential toxicity. Consequently, the optimal oxygenation targets in clinical practice 
remain unresolved. The novel PpIX technique measures the mitochondrial oxygen tension in the skin  (mitoPO2) which 
allows for non-invasive investigation on the effect of hypoxemia and hyperoxemia on cellular oxygen availability.

Results During hypoxemia,  SpO2 was 80 (77–83)% and  PaO2 45(38–50) mmHg for 15 min.  MitoPO2 decreased 
from 42(35–51) at baseline to 6(4.3–9)mmHg (p < 0.001), despite 16(12–16)% increase in cardiac output which main-
tained global oxygen delivery  (DO2). During hyperoxic breathing, an  FiO2 of 40% decreased mitoPO2 to 20 (9–27) 
mmHg. Cardiac output was unaltered during hyperoxia, but perfused De Backer density was reduced by one-third 
(p < 0.01). A  PaO2 < 100 mmHg and > 200 mmHg were both associated with a reduction in  mitoPO2.

Conclusions Hypoxemia decreases  mitoPO2 profoundly, despite complete compensation of global oxygen delivery. 
In addition, hyperoxemia also decreases  mitoPO2, accompanied by a reduction in microcirculatory perfusion. These 
results suggest that  mitoPO2 can be used to titrate oxygen support.

Keywords MitoPO2, Hypoxia, Oxygen therapy, Hypoxemia, Hyperoxia, Hyperoxemia, Mitochondria, Cellular 
oxygenation

Background
Hypoxemia increases the risk of death in ICU patients 
by 50% [1, 2]. However, in 10% of all ICU patients, ther-
apy with supplemental oxygen leads to supraphysiologi-
cal arterial oxygen tensions [3]. As hyperoxemia is also 
associated with increased mortality [1–4], careful titra-
tion of oxygen therapy is imperative. Clinical trials have 
attempted to establish optimal oxygen targets but results 
are contradictory, partly due to the absence of a direct 

biomarker of oxygen toxicity and oxygen debt. Most 
likely, determining oxygen dose is complicated by the 
lack of knowledge of the effects on a cellular level [5–8].

The rationale for supplemental oxygen therapy is to 
prevent cellular hypoxia [6]. The effects on a cellular level 
are unclear due to the variable effects of oxygen on organ 
perfusion. Hypoxemia increases cardiac output, recruits 
previously closed capillaries and decreases mitochon-
drial oxygen consumption, which improve global oxygen 
delivery and lower oxygen demand [9–12]. On the other 
end, hyperoxemia reduces cardiac output and increases 
ROS production, leading to impairments in microcir-
culatory perfusion [13, 14]. This could potentially offset 
the increase in arterial oxygen content and limit oxygen 
extraction by tissues [1, 2]. Potentially supporting this, 
multiple analyses have shown an association between 
hyperoxemia and mortality in critically ill patients [1–
3]. However, this relationship is not always present in 
severity-adjusted models [4]. As such, the causality of 
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hyperoxemia-associated harm remains doubtful, also 
partly due to an incomplete understanding of the cellular 
and physiological effects of supplemental oxygen [6, 15].

The development of the protoporphyrin IX delayed 
lifetime technique enables the measurement of mito-
chondrial oxygen tension non-invasively in the skin 
(mitoPO2). Mitochondria are the utilizers of oxygen and 
therefore mitoPO2 reflects the balance between oxy-
gen supply and demand at the most downstream level 
[16, 17]. Cutaneous  mitoPO2 correlates well with organ 
 mitoPO2 and responds accurately to changes in  FiO2 or 
in tissue perfusion [16, 18–21]. Moreover, it also allows 
measurement of mitochondrial respiration  (mitoVO2) 
non-invasively [22, 23].

The aim of this study was to investigate the effect of 
hypoxemia and hyperoxemia on mitoPO2 as marker of 
cellular oxygen availability in healthy human volunteers.

Methods
Study design and participants
This physiological cross-over intervention study in 
healthy human volunteers was conducted in the ICU of 
a teaching hospital (OLVG hospital, Amsterdam, The 
Netherlands). The study was approved by the institu-
tional review board (MEC-u). Healthy human volun-
teers > 18 years and with BMI < 25 kg/m2, were screened 
for eligibility. Participants were excluded if they had an 
allergy for plaster adhesives, mitochondrial disease, 
skin lesions, anemia or had a history of smoking or alti-
tude exposure (> 1000  m) in the 3  months previous to 
inclusion.

Study procedures
Participants had an ALAcare patch placed on the ster-
num 4  h before start of the experiment and were mon-
itored using ECG and pulse oximetry. An arterial 
catheter was placed for blood pressure monitoring and 
blood sampling. In the cross-over design, predetermined 
hypoxic and hyperoxic gas mixtures were delivered in a 
fixed order in all participants using high flow nasal can-
nula. After 30  min of accustoming to the setup, hypox-
emia was titrated to an  SpO2 of 75–85% for 15  min. 
The target  SpO2 was achieved by titrating the FiO2 of 
the high-flow nasal cannula between an  FiO2 of 9% and 
12%. The flow-rate remained equal for all participants 
at 40L/h to ensure no rebreathing. When participants 
remained between an  SpO2 of 75% and 85% during a 
complete minute, the  FiO2 was set for the remainder 
of the hypoxic phase. After completion of 15  min, par-
ticipants had a wash-out period of 45  min of breathing 
atmospheric air before commencement of hyperoxic gas 
breathing. Hyperoxic gas mixture was delivered for peri-
ods of 15  min with incremental FiO2 of 40%, 60%, 80% 

and 100%. After each step, clinical data was collected and 
measurements were done. MitoPO2 was measured using 
the COMET (Photonics Healthcare, Utrecht, The Neth-
erlands). The non-invasive cardiac output was recorded 
continuously using pulse wave contour analysis with the 
volume clamp method. The sublingual microcirculation 
was imaged using sidestream darkfield imaging (SDF) at 
baseline, after hypoxemia and after hyperoxemia to pre-
vent the mixing of hyperoxic gas mixture with atmos-
pheric air during the hyperoxic phases [24–26].

Measurements
COMET
MitoPO2 was computed from the mean  mitoPO2 during 
the first 30 s of a dynamic measurement (1 Hz).  MitoVO2 
is defined as the rate of mitochondrial deoxygenation 
after local occlusion of circulation by applying pressure 
on the probe. It is calculated by automatic linear fitting 
of the slope using MATLAB (The Mathworks Inc). The 
method of performing a dynamic measurement and cal-
culating mitoVO2 is described in detail elsewhere [27].

Non‑invasive cardiac output
Cardiac index and systemic vascular resistance index 
were measured continuously throughout the experi-
ment using the volume clamp method in the Nexfin 
device (BMEYE, Amsterdam, The Netherlands) as inva-
sive arterial wave-form estimation of cardiac-output was 
not available in our ICU. The change between two meas-
urements of Nexfin-CO has been shown to have very 
good agreement with invasive cardiac output and has 
been used previously to monitor hyperoxemia induced 
changes in cardiac output [25, 28, 29, 30].

A finger cuff was placed on the index or middle finger 
according to the manufacturer’s instructions. The mean 
of the last 2 min of each step was used for analysis. The 
cardiac index was used to calculate global oxygen deliv-
ery  (DO2) was calculated using the following formula: 
 DO2 = CO*(10*Hb/dl*SaO2 +  PaO2*0.03). Hb,  SaO2 and 
 PaO2 were obtained from arterial blood gas analysis.

Sublingual microcirculation
The sublingual microcirculation was recorded using 
a handheld video microscope with sidestream dark-
field imaging (SDF) with the MicroScan (MicroVision 
Medical, The Netherlands, Amsterdam). Sublingual 
measurements were done by one researcher trained in 
microcirculatory image recording. Directly after removal 
of the high-flow nasal cannula, SDF measurements 
were performed. Three anatomical sites were recorded: 
the medial and both lateral parts of the sublingual area. 
The validated AVA 4.3C software (Microvision Medi-
cal, Amsterdam, The Netherlands) was used for quality 
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control and analysis of images [31]. AVA 4.3C automati-
cally assesses the focus, contrast and stability of the 
images. Additionally, good quality captures required the 
presence of flow in large vessels, to exclude possible pres-
sure artefacts. Images were only evaluated in case the 
quality was sufficient. The proportion of perfused ves-
sels (PPV), proportion of perfused small vessels (PPV 
small), density, and the perfused DeBacker density were 
determined automatically by the software. The perfused 
DeBacker Density are all vessels with visible microcircu-
latory flow. The Percentage of Perfused Vessels (PPV) is 
calculated as the percentage of perfused vessels in rela-
tion to the total number of all vessels and for small ves-
sels in particular (PPV small). Small vessels (capillaries) 
have a diameter less than 20 µm The mean values of three 
recordings of each parameter were used for final analysis.

Statistical analysis
Sample size calculation is based on the expected drop in 
mitoPO2 during hypoxemia as predicted by a mathemat-
ical model as there are no previous data available for the 
expected effect size [32]. Modified Krogh equations pre-
dict that a saturation decrease from 98% to 85% results 
in a mitoPO2 decreases of 40 mmHg. Since we expected 
that homeostatic mechanisms (cardiac output increase 
and microcirculatory recruitment) would attenuate this 
mitoPO2 decrease, we set the minimum detectable dif-
ference at 20 mmHg. The standard deviation is expected 
to be 15  mmHg, corresponding to the sample standard 
deviation in healthy human volunteers [20]. The calcu-
lated sample size for a paired t test with a power of 90%, a 
significance level of 0.05, an effect size of 1.33 (minimum 
difference of 20 mmHg divided by the standard deviation 
of 15  mmHg) is 9 subjects. We also expected to see an 
increase of 20 mmHg in mitoPO2 in response to hyper-
oxia, based on previous studies in rats [33, 34].

Data is presented in mean ± SD or median (IQR) if 
non-normally distributed. Within-group differences 
over time were analyzed using repeated measures one-
way ANOVA. Hypoxemia was compared with baseline. 
In case of significance, post-hoc tests were done with 
Mann–Whitney U test and Bonferroni correction for 
hyperoxia to determine at which FiO2 the changes in 
variables occurred. For hyperoxemia and hypoxemia, 
a separate linear regression model was performed for 
mitoPO2 and mitoVO2. Parameters which differed sig-
nificantly (p < 0.05) during hyperoxic/hypoxic phases 
in the ANOVA analysis were entered into the model as 
independent variables. Statistical analysis was done using 
Rstudio (Posit, Vienna, Austria).

Results
We enrolled 9 healthy volunteers, of which 6 were female. 
The median age was 25 (22–25) years and BMI was 21.7 
(21.3–23.2)kg/m2. Inhalation of 10% FiO2 resulted in a 
decrease in PaO2 from 107 (99–113) mmHg to 45(38–
50) mmHg and SaO2 from 98 (98–98)% to 80 (77–83)%, 
(p < 0.0001). Some participants noted feeling drowsy dur-
ing hypoxic gas breathing, which resolved rapidly dur-
ing the wash-out step. No other discomfort was noted. 
Hyperoxic gas breathing increased the  PaO2 stepwise, 
with a plateau from 80% to 100%  FiO2, as shown in 
Fig. 1A.

Macro‑hemodynamic and respiratory response
Hypoxic gas mixture breathing resulted in an increase 
in heart rate from 70 (60–79) bpm to 84 (71–88) bpm 
(Fig.  2). This paralleled an increase in cardiac output of 
16 (12–16)% from baseline and a decrease in systemic 
vascular resistance index of 21 (17–28)%. Whereas arte-
rial oxygen content (CaO2) decreased with 20 (15–25)% 
during hypoxemia,  DO2 was maintained when compared 
to baseline (p = 0.62). The wash-out period restored all 
hemodynamic indices to baseline. Hyperoxia did not 
induce significant changes in macro hemodynamic 
parameters compared to baseline.  PaCO2 decreased sig-
nificantly at 100%  FiO2. Hypoxic gas breathing did not 
result in hypocapnia (Table  1). Other arterial blood gas 
parameters were not significantly altered during hyper-
oxic or hypoxic breathing.

MitoPO2 and mitoVO2
Hypoxic mixture breathing induced a profound decline 
in mitoPO2 from 42 (35–51)mmHg to 6 (4.3–9)mmHg 
(Fig.  3). Concurrently, MitoVO2 decreased from 3.7 
(2.9–5.0)mmHg/s to 0.80 (0.50–1.0)mmHg/s (p < 0.01). 
Wash-out recovered  mitoPO2 to 39 (13–52) mmHg and 
mitoVO2 to 3.2 (0.92–4.8)mmHg/s.

Hyperoxic gas breathing also resulted in a median 
decrease in  mitoPO2 when compared to washout 
(p = 0.03). In all participants, mitoPO2 decreased to 20 
(9.0–27) mmHg when breathing 40%  FiO2 (p < 0.05), 
which remained significantly lower compared to wash-
out until 80%  FiO2 (p = 0.038) (Fig.  3). Hyperoxia did 
not result in a significant decrease in mitoVO2 when 
compared to wash-out (RM ANOVA p = 0.2). However, 
 mitoVO2 was strongly correlated with mitoPO2 ( r = 0.84, 
p < 0.001) during all experimental phases (Fig. 4). In lin-
ear mixed model analysis, mitoPO2 remained the only 
predictor of mitoVO2 with coefficient of − 0.10 (− 0.8 to 
− 0.12).
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Fig. 1 A PaO2 for individual experimental steps, individual datapoints and median and IQR presented. B boxplot of  SpO2 for baseline, hypoxemia 
and wash-out steps, with individual datapoints and median and IQR

Fig. 2 Hemodynamic variables for all experimental steps. A Heart-rate, B Mean arterial pressure, C % change in cardiac output compared 
to baseline, D % change in systemic vascular resistance index compared to baseline, E % change in arterial oxygen content compared to baseline, 
F % change in global oxygen delivery compared to baseline. Pairwise paired Wilcoxon sign-rank test compared to baseline and wash-out: *p < 0.05, 
**p < 0.01, ***p < 0.001,: non significance
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Microcirculation
During hypoxemia, no significant recruitment of the 
microcirculation was observed (Fig. 5 and Table 1). Dur-
ing hyperoxic gas breathing, parameters of sublingual 
microcirculation worsened (Fig.  5). Proportion of per-
fused vessels (PPV) decreased from 96 (95–98)% to 80 
(80–89)% at the end of the hyperoxia period. The abso-
lute number of perfused vessels decreased in parallel, 
from 3.6 (3.2–4.1) to 2.4 (1.4–2.7).

Determinants of  mitoPO2
A linear regression model was performed to determine 
the influencing factors on  mitoPO2.  PaO2 and Perfused 
DeBacker density were identified as significant predic-
tors of  mitoPO2 during hyperoxia and baseline/wash-out 
(p < 0.05). During the hyperoxic phase, mitoPO2 was lin-
early correlated with  PaO2 (r = −  0.44, p < 0.01) and the 
perfused DeBacker Density (r = 0.6, p = 0.023). Figure  6 
shows the fitted general model with  PaO2 and perfused 
DeBacker Density as explanatory variables. Inclusion of 
the hypoxic phase results in a non-significant correlation 
between perfused DeBacker density and  mitoPO2, due to 
an inability of perfused DeBacker density recruitment to 
restore mitoPO2 to baseline values (Fig. 5C).

Discussion
We assessed the effect of acute hypoxemia and hyperox-
emia on  mitoPO2 as a marker of oxygen debt and toxicity. 
Despite complete compensation of global oxygen delivery 
during hypoxemia,  mitoPO2 decreased in all participants. 
Also, we demonstrated that hyperoxemia is detrimental 
to  mitoPO2, through reduced microcirculatory perfusion.

Table 1 Parameters of oxygenation and microcirculation

PPV, proportion of perfused vessels

*p < 0.05 compared to wash-out
# p < 0.05 compared to baseline

Baseline Hypoxia Washout 40% 60% 80% 100%

SpO2 (%) 100 (100–100) 80 (77–82)# 100 (100–100) 100 (100–100) 100 (100–100) 100 (100–100) 100 (100–100)

PaO2 (mmHg) 110 (99–110) 45 (38–50) 110 (110–130) 200 (200–210)* 300 (290–310)* 390 (360–390)* 390 ( 380–450)*

SaO2 (%) 99 (98–99) 83 (77–89) 99 (99–99) 100 (100–100) 100 (100–100) 100 (100–100) 100 (100–100)

Hb (g/dL) 12 (12–13) 13 (13–14) 13 (12–14) 13 (12–13) 13 (12–13) 13 (13–13) 13 (12–13)

Lactate (mmol/L) 0.60 (0.58–0.80) 0.80 (0.70–1.0) 0.55 (0.50–0.68) 0.60 (0.48–0.78) 0.50 (0.48–0.60) 0.50 (0.50–0.50) 0.50 (0.48–0.53)

pH 7.41 (7.38–7.59) 7.46 (7.41–7.59) 7.42 (7.39–7.47) 7.44 (7.41–7.52) 7.45 (7.42–7.57) 7.46 (7.42–7.52) 7.46 (7.42–7.47)

PaCO2 (mmHg) 36 (33–40) 33 (31–35) 38 (36–39) 35 (32–38) 33 (32–35) 34 (28–36) 34 (32–35)*

PPV (%) 96 (95–98) 95 (86–97) – – – – 83 (80–89)

Perfused DeBacker Density 3.6 (3.2–4.1) 3.8 (3.7–3.8) – – – – 2.4 (1.4–2.7)#

PPV small vessels (%) 100 (70–100) 100 (55–100) – – – – 75 (37–100)

Total vessel density 3.9 (3.3–4.3) 3.9 (3.7–4.2) – – – – 2.7 (1.7–3.3)

MitoPO2 (mmHg) 42 (35–51) 5.9 (4.3–9.0)# 39 (13–52) 20 (9.0–27)* 15 (13–32)* 18 (12–21)* 20 (15–25)

MitoVO2 (mmHg/s) 3.7 (2.9–5.0) 0.80 (0.50–1.0)# 3.2 (0.92–4.8) 2.0 (0.73–4.7)* 2.8 (1.7–4.4) 1.6 (0.77–3.2)* 2.4 (1.3–3.8)*

Fig. 3 Pfaired mitoPO2 data for all participants. Kruskal–Wallis 
p < 0.001. Pairwise paired Wilcoxon sign-rank test compared 
to baseline and wash-out: *p < 0.05, **p < 0.01, ***p < 0.001, ns: non 
significance

Fig. 4 Correlation of  mitoPO2 with  mitoVO2 for all experimental 
steps. Pearson’s Rho and significance level displayed
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MitoPO2 at baseline was 40 mmHg, corresponding to 
previous studies in healthy volunteers [19, 27].  MitoPO2 
decreased sharply in acute hypoxemia. This corrobo-
rates predictions from mathematical experimental mod-
els which showed significant reductions in mitoPO2 in 
response to hypoxemia [32, 35]. Although intuitive, this 
finding is in contrast with some studies in healthy vol-
unteers which show that indirect markers of tissue oxy-
genation are largely unchanged during acute hypoxemia 
[11, 15, 36–38]. Accordingly, it was proposed that adap-
tive mechanisms, such as an increase in CO and recruit-
ment of the microcirculation could maintain oxygen 
delivery to cells and has led to the speculation that lower 
SpO2 targets could be beneficial in critically ill patients 
[15]. Indeed, we found an increase in CO through an 
increase in heart rate, causing a maintained global  DO2 
during hypoxemia. Nevertheless, the sharp decrease in 
 mitoPO2 shows that hypoxemia decreases oxygen deliv-
ery into the parenchyma. The probable explanation is 
that in the microcirculation, the augmented blood flow 
above physiological levels is not beneficial during acute 
hypoxemia because the time for red blood cells to unload 

their (limited) oxygen content decreases, thus causing 
hypoxemic tissue hypoxia [12, 32, 39]. Although sys-
temic  DO2 reflects the total oxygen content carried per 
unit time, it does not reflect the ability of the microcir-
culation to unload oxygen into the parenchyma. Mathe-
matical models and experimental studies corroborate this 
disconnection showing a decrease in  ScvO2 and increase 
in oxygen extraction ratio during hypoxemia [32, 40]. 
An alternative explanation is that despite an increase in 
CO, the observed decrease in  mitoPO2 is mediated by 
redistribution of blood flow away from the skin, kidneys, 
GI and liver to the heart and brain during hypoxemia 
[41–44]. In shock and critical illness, skin blood flow 
closely resembles visceral organ blood flow. However, it 
remains unknown whether this close relation remains 
during a combination of hypoxemia and shock. The det-
rimental effects of hypoxemia on internal organs is fur-
ther supported by significant cognitive decline in healthy 
human volunteers during acute hypoxemia, likely repre-
senting slight cerebral oxygen debt [32, 45]. Commonly 
used markers of tissue oxygenation/perfusion such as 
NIRS and lactate, may not be suitable to ensure adequate 

Fig. 5 Boxplots of microcirculatory parameters at baseline, hypoxemia and hyperoxia (100%  FiO2) with individual data points A Proportion 
of perfused vessels, B Proportion of small perfused vessels, C Perfused vessel (DeBacker) density, D Total vessel density. P values of paired-Wilcoxon 
sign rank test displayed
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cellular oxygenation in the context of acute hypoxemia 
[15].

Hyperoxemia also causes a profound decrease in 
 mitoPO2, occurring at a  PaO2 level of 200  mmHg. This 
occurred in parallel with a decrease in sublingual per-
fused vessel density. Although previous studies have 
shown a decrease in microcirculatory perfusion [30, 40, 
46, 47], it was also shown that oxygen delivery increased 
with increased  PaO2 [48–50]. This combination has led 
to the accepted hypothesis that an increased tissue oxy-
gen tension induces radical oxygen species mediated 
damage. However, tissue  pO2 measurements were per-
formed using devices that disturb the integrity of the tis-
sue. Also, the SDF technique has been unable to elucidate 
the downstream effect of hyperoxemia on oxygen toxicity 
and debt as it is not able to evaluate the oxygen content of 
capillaries [46, 49, 51, 52]. This study is the first to directly 
measure cellular oxygen availability in response to hyper-
oxemia and indeed demonstrates that a  PaO2 above 
200 mmHg has a detrimental effect on cellular oxygena-
tion, at least in healthy volunteers. Of note, this cutoff 
value (200 mgHg) corresponds well with  PaO2-associated 
mortality in critically ill patients [1, 2]. Our results 
show no dose-dependency of decreasing  mitoPO2 while 
increasing  PaO2, with the effect plateauing at an  FiO2 of 

40%. This corresponds to meta-analyses showing that 
 PaO2 has no dose-dependent effect on mortality [1, 5]. 
Taken together, our findings suggest that a reduction in 
tissue oxygenation, through reduction in microcircula-
tory perfusion might account for the observed harm of 
hyperoxemia in hospitalized patients.

Our study has potential implications for future clinical 
investigations into hyperoxemia and hypoxemia. Inten-
sivists frequently assess markers of tissue oxygenation 
(lactate, microcirculation) when hypoxemia is refractory. 
However, whereas no evidence exists that lactate reflects 
tissue hypoxia during hypoxemia, we demonstrate that 
 mitoPO2 may be an alternative [11, 15, 37, 53]. Increasing 
 PaO2 during normoxemia to attempt to increase oxygen 
delivery is done frequently [54]. However, this has never 
been empirically demonstrated to be effective and guide-
lines provide contradictory recommendations for sup-
plemental oxygen therapy during normoxemia [55–60]. 
We show that from a  PaO2 of 200  mmHg and above, 
median  mitoPO2 is lower than the 25  mmHg threshold 
associated with organ failure in critically ill patients. As 
such, our results suggest that  O2-supplementation should 
probably not exceed an upper  PaO2 limit of 200 mmHg, 
as it is associated with a decrease in tissue oxygenation. 
However, it remains to be investigated whether a low 

Fig. 6 A Correlation of mitoPO2 and PaO2 for all experimental steps, regression line (blue) with confidence interval fitted by generalized 
additive model. B Correlation of  mitoPO2 and perfused vessel density for all experimental steps, in red data points during hypoxemia, in blue 
during baseline. Linear regression fit and its Pearson’s Rho and significance level displayed for hyperoxia and baseline steps only
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 mitoPO2 reflects adverse effects on cellular integrity and 
organ function in patients [61]. In addition, the heteroge-
neous effect of  PaO2 on hemodynamics warrants further 
investigation of  mitoPO2 as a biomarker of oxygen toxic-
ity and debt for personalized titration of  PaO2 in critically 
ill patients.

Limitations
Our study has several limitations. As this was a study in 
healthy volunteers, results might not apply to the criti-
cally ill patient. Patients in the ICU often have disturbed 
Hb-O2 dissociation curves and impaired vascular reac-
tivity, meaning high/low  PaO2 and ROS could have a dif-
ferent effect on the visceral and skin microcirculation in 
patients with systemic inflammation compared to healthy 
volunteers. Furthermore, the coupling between skin and 
visceral  mitoPO2, blood flow and microcirculation that 
is seen in experimental hypoxemia could potentially be 
absent in critically ill patients with shock.

Also, we did not control for normocapnic hypoxemia. 
Alkalosis was observed in most participants throughout 
the experiment. However, we found that decreases in 
 mitoPO2 were not explained by hypocapnia as continu-
ous variable in the mixed model but this may have been 
due to the limited sample size. Furthermore, gas mix-
ture breathing was not randomized as we used a cross 
over study setting. It is known that both hyperoxemia 
and hypoxemia have long lasting effects on the micro-
vasculature and arteriolar tone due to increased sym-
pathetic activity, even after cessation of hypoxic and 
hyperoxic stimuli [62–64]. As such, we cannot exclude 
the possibility that exposure to hypoxia may have altered 
the response during hyperoxemia. However, SVR was 
restored during wash-out and no significant microcir-
culatory hypoperfusion was noted during hypoxemia. 
Finally, it is unknown whether a low mitoPO2 during 
hypoxemia and hyperoxemia reflects cellular damage 
and organ function. We call for clinical investigations 
for  mitoPO2 as a marker of organ function during 
resuscitation.

Conclusion
Acute hypoxemia decreases skin  mitoPO2 profoundly, 
despite complete compensation of global oxygen delivery. 
Hyperoxemia decreases skin  mitoPO2 dose-dependently 
through decreased microcirculatory perfusion. We iden-
tified a maximum  PaO2 of 200 mmHg for optimal tissue 
oxygenation in healthy volunteers. These results suggest 
that  mitoPO2 could be used as a marker of oxygen debt 
during oxygen therapy.
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