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Abstract 

Background  In refractory out-of-hospital cardiac arrest, the patient is commonly transported to hospital 
with mechanical continuous chest compressions (CCC). Limited data are available on the optimal ventilation strat-
egy. Accordingly, we compared arterial oxygenation and haemodynamics during manual asynchronous continuous 
ventilation and compressions with a 30:2 compression-to-ventilation ratio together with the use of 10 cmH2O positive 
end-expiratory pressure (PEEP).

Methods  Intubated and anaesthetized landrace pigs with electrically induced ventricular fibrillation were left 
untreated for 5 min (n = 31, weight ca. 55 kg), after which they were randomized to either the CCC group or the 30:2 
group with the the LUCAS® 2 piston device and bag-valve ventilation with 100% oxygen targeting a tidal volume 
of 8 ml/kg with a PEEP of 10 cmH2O for 35 min. Arterial blood samples were analysed every 5 min, vital signs, near-
infrared spectroscopy and electrical impedance tomography (EIT) were measured continuously, and post-mortem CT 
scans of the lungs were obtained.

Results  The arterial blood values (median + interquartile range) at the 30-min time point were as follows: PaO2: 180 
(86–302) mmHg for the 30:2 group; 70 (49–358) mmHg for the CCC group; PaCO2: 41 (29–53) mmHg for the 30:2 
group; 44 (21–67) mmHg for the CCC group; and lactate: 12.8 (10.4–15.5) mmol/l for the 30:2 group; 14.7 (11.8–16.1) 
mmol/l for the CCC group. The differences were not statistically significant. In linear mixed models, there were no sig-
nificant differences between the groups. The mean arterial pressures from the femoral artery, end-tidal CO2, distribu-
tions of ventilation from EIT and mean aeration of lung tissue in post-mortem CTs were similar between the groups. 
Eight pneumothoraces occurred in the CCC group and 2 in the 30:2 group, a statistically significant difference 
(p = 0.04).
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Background
International cardiopulmonary resuscitation (CPR) 
guidelines recommend continuous ventilations with 
an advanced airway at a rate of 10–12 breaths per min-
ute. When using a supraglottic airway device and there 
is a significant leak, a 30:2 ratio of compressions to ven-
tilations is preferred [1, 2]. In cases of out-of-hospital 
cardiac arrest (OHCA), where return of spontaneous cir-
culation (ROSC) is not achieved on scene, the patient is 
commonly transported to hospital with ongoing CPR. In 
these situations, mechanical chest compression devices 
are recommended to ensure rescuer safety and provide 
high-quality compressions [3, 4]. Nonetheless, even with 
a secured airway and the use of an FiO2 of 1.0, many 
patients arriving at hospital have severe hypoxia, hyper-
carbia and acidosis on blood gas analysis [5–8]. This may 
predispose patients to brain injury and life-threatening 
lung and immunological reactions in those who achieve 
ROSC or in whom ECPR is initiated.

Even though mechanical compression devices provide 
superior perfusing pressures in comparison to manual 
compressions [9], their effect on ventilation strategies is 
less known [10, 11]. During patient transport, when pro-
viding manual chest compressions is difficult or impos-
sible, using a mechanical chest compression device has 
been shown to improve compression quality [3, 4]. But 
using a mechanical compression device could impair 
ventilatory performance because of dynamic air trapping 
[12] and atelectasis formation. Previously, we compared 
the 30:2 protocol with continuous chest compressions 
(CCC) in an experimental CPR model of prolonged 
resuscitation [13] and found no statistically significant 
differences between the study groups.

One option to improve gas exchange is the use of posi-
tive end-expiratory pressure (PEEP) in delivering ven-
tilation. Experimental studies have suggested improved 
oxygenation with PEEP [14–16] but it has not been con-
clusively studied in the setting of prolonged CPR using 
mechanical chest compressions. In the current study, we 
compared oxygenation and ventilation between continu-
ous compressions and a 30:2 compression-to-ventilation 
ratio, together with the use of 10 cmH2O of PEEP. We 
hypothesized that a 30:2 compressions to ventilation ratio 
would provide higher better oxygenation than continu-
ous compressions and ventilation. The primary endpoint 

of this study was the levels of oxygen over time between 
the two groups. The secondary endpoints included arte-
rial levels of carbon dioxide and lactate, brain oxygena-
tion analysed with NIRS over time, the distribution of 
ventilation with electrical impedance tomography (EIT) 
recordings and post-mortem computed tomography 
(CT) scans.

Materials and methods
We conducted this experimental animal study on healthy 
landrace pigs (n = 31, both sexes) at the Laboratory Ani-
mal Centre, Large Animals Unit at the Viikki Campus 
of the University of Helsinki between May 2021 and 
December 2022. The study was approved by the Finnish 
National Animal Experiment Board (ESAVI/ 4121/2021). 
The study is reported in adherence to the ARRIVE guide-
lines [17], and a checklist is included in Additional file 1.

Preparation and monitoring
The fasted animals were premedicated with intramuscu-
lar injections of medetomidine (9–10  mg) and racemic 
ketamine (450–500 mg). An IV line was inserted into an 
ear vein, and anaesthesia was induced with IV propo-
fol (dose 1–1.5 mg/kg) and fentanyl (3–4 mcg/kg), after 
which endotracheal intubation was performed (inter-
nal diameter 6.0–7.0  mm). Mechanical ventilation was 
started (Servo Ventilator 900C, Siemens-Elema, Solna, 
Sweden) with 21% oxygen (O2) and an end-tidal carbon 
dioxide (EtCO2) target of 5%. The internal jugular vein 
and femoral artery were cannulated (arrow, size 8.5 Fr. 
16 cm, Teleflex Medical Europe Ltd, Westmeath, Ireland 
and Avanti+, size 6F, length 11  cm, Cordis, Tipperary, 
Ireland, respectively), and baseline blood samples were 
taken. A temporary pacemaker wire was inserted next, 
and the right ventricular location was confirmed with the 
achievement of ventricular pacing (Medtronic 5348 Sin-
gle Chamber Temporary Pacemaker, Soma Tech INTL, 
Bloomfield, CT, USA).

Arterial blood samples were analysed with a point-
of-care device (i-STAT System, Abbott Laboratories, 
Princeton, NJ, USA), and haemodynamic and respiratory 
variables, including spirometry, were monitored using 
a Datex-Ohmeda AS/3 monitor with a M-COVX gas 
module (GE Healthcare, Helsinki, Finland) and recorded 
using data collection software (iCentral® and S/5 

Conclusions  The 30:2 and CCC protocols with a PEEP of 10 cmH2O resulted in similar gas exchange and vital sign 
outcomes in an experimental model of prolonged cardiac arrest with mechanical compressions, but the CCC protocol 
resulted in more post-mortem pneumothoraces.
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Collect®, GE Healthcare, Helsinki, Finland). A rectal tem-
perature probe was inserted, and a normal temperature 
of 38 °C–39 °C was targeted with the use of warm blan-
kets when necessary. Cerebral oximetry was performed 
with NIRS (INVOS TM5100C Cerebral Oximeter, Soma-
netics Inc., Troy, MI, USA) with one sensor in the fore-
head and another on the belly as a control. The EIT belt 
was set around the chest just caudal to the compression 
device piston. The hair under the belt was shaved off, and 
the skin was cleaned with 70% ethanol to ensure the best 
possible conductivity. The EIT data were recorded with a 
Dräger Pulmovista® 500 (Drägerwerk AG & Co., Lübeck, 
Germany) and analysed with a Dräger SW EITdiag V1.6 
(Drägerwerk AG & Co., Lübeck, Germany).

Experimental procedures
Figure 1 presents the experiment timeline. After VF was 
induced with a 9 V direct current, ventilation and anaes-
thesia were ceased and the pacing wire was removed. 
Randomization into the study groups of either CCC or 
the 30:2 protocol was performed with sealed opaque 
envelopes during the 5-min hands-off period. In the 
meantime, a Lucas 2® compression device (Jolife AB, 
part of Stryker, Lund, Sweden) was set up and the posi-
tion of the pig was stabilized with a vacuum mattress 
and a handful of towels within the Lucas 2® arch. Man-
ual bag-valve ventilation (LAERDAL Silicone Resuscita-
tor, Laerdal Medical, Stavanger, Norway) was performed 
with 100% oxygen, either with a frequency of around 
10 min−1 in the CCC group or twice during the compres-
sion pause in the 30:2 group, targeting an approximate 
tidal volume of 500  ml in both groups. The PEEP of 10 
cmH2O was adjusted with an Ambu® PEEP valve (Ambu 
A/S, Ballerup, Denmark). Adrenaline was administered 
as a 1 mg IV dose at 11-, 15- and 19-min time points. A 
20-s recording break from compressions for the EIT was 

held at the 30-min time point with continuous ventilation 
in both groups for the duration. Arterial blood samples 
were collected at 5-min intervals, and a venous sample 
was also taken at the 30-min time point. Monitoring, 
NIRS and EIT were recorded continuously through the 
experiment. The animals were killed with a 40 mmol dose 
of potassium chloride at the 40-min time point. Simul-
taneously, the intubation tube was clamped after insuf-
flating the lungs with one full manual ventilation. The 
post-mortem CT scans were collected in the prone posi-
tion approximately 15 min after the cessation of CPR.

Data processing
An illustration of the EIT analysis is provided in Fig.  2. 
Sections of interest were chosen from the raw recording 
(baseline, cardiac arrest and 5-min intervals throughout 
the CPR). The reconstruction settings are provided in 
Additional file  2. The reconstructed sections were ana-
lysed using automated methods provided by the analysis 
software to create visual slices and quantified data. The 
global tidal impedance change (dzGlo) was referenced to 
the 5-min section, except for the 30-min section, which 
was referenced to the baseline section. The ventral to 
dorsal (V/D) distribution indices were computed, as illus-
trated in Fig. 2. A V/D value of 1 represents an equal dis-
tribution of ventilation, and a value of 0 means that all 
tidal change happens dorsally.

The CT scans were evaluated by a veterinary radiolo-
gist (ML) blinded to the intervention group with Osirix 
MD version 12.5.0 (VetCT, Cambridge, UK). The Houns-
field unit (HU) values were measured from 10 lung slices 
chosen as described by Reske et  al. [18]. The first slice 
was chosen from the most cranial aspect of the lungs, 
where both the left and right cranial lobes are visible on 
the same transverse slice. The most caudal slice was cho-
sen similarly where there was still enough lung on both 

Fig. 1  Timeline of the experimental protocol. Adr adrenaline, FiO2 fraction of inhaled oxygen, VF ventricular fibrillation, CPR cardiopulmonary 
resuscitation, KCl potassium chloride, CT computed tomography
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hemithoraces for segmentation into 2–3 segments, but 
where the accessory lobe was no longer visible. Eight 
evenly spaced slices were chosen from between them.

An illustrative figure of HU measurements is provided 
in Additional file 3. The lung parenchyma was manually 
delineated separately for the hemithoraces and accessory 
lobes. The measured mean HU values for each hemitho-
rax, normalized to the area of the delineation, were used 
to calculate the mean HU of the overall lung. The hemith-
oraces were also divided into 2–3 ventro-dorsal segments 
of equal height, and representative HU values of these 
segments were averaged for the dorsal, middle and ven-
tral HU values without normalization to area. Subjects 
with more than a mild pneumothorax were excluded 
from the analysis because of the dislocated anatomy.

Statistical analysis and sample size
For the sake of clarity, all variables are reported as medi-
ans and interquartile ranges (IQRs), since most variables 
violated the assumptions of parametric testing. Single 
comparisons were tested with the Mann–Whitney U 

test for statistical significance. Comparisons with mul-
tiple time point measurements were tested with a linear 
mixed-effects model and a heterogeneous Toeplitz covar-
iance matrix. The effects of the interventional group, 
time and interaction between time and the intervention 
group were included in the model. The values over time 
were plotted as medians and IQRs.

The sample size was estimated based on arterial blood 
gas data from Kim et al. [19]. According to their data, a 
sample size of 30 divided into two equal groups would be 
sufficient to detect a 20 mmHg difference in PaO2 with a 
statistical power of 0.80 and an alpha of 0.05.

As an exploratory analysis, we also compared the 
results of the PEEP zero pigs from our previous study 
[13] to the PEEP 10 pigs of the current study.

Results
We randomized 31 animals (30:2 group: n = 16; CCC 
group: n = 15). Persisting agonal breathing until the 
30-min time point was witnessed in 2 pigs in the 30:2 
group and in 6 pigs in the CCC group. We encountered 

Fig. 2  Schematic illustration of the EIT analysis work chart. A The raw dzGlo curve. B The reconstructed sections after filtering. C Visual slices created 
with the automated analysis scheme from filtered sections. D Visual explanation of the V/D index. BL baseline, dzGlo global impedance change, TID 
tidal impedance change, CA cardiac arrest, V/D ventral to dorsal
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no cases of spontaneous ROSC. Most animals deterio-
rated to ASY soon after the perfusing pressures withered.

There were no significant differences in the baseline 
characteristics (Table 1). The FiO2, peak airway pressure 
or compliance levels during advanced life support (ALS) 
were similar between the groups (Table 2).

Oxygen, carbon dioxide, lactate, mean arterial pressure, 
end‑tidal carbon dioxide and near‑infrared spectroscopy
The arterial blood oxygen, carbon dioxide, lactate and 
mean arterial pressure (MAP) results are shown in Fig. 3. 
There were no statistically significant differences between 
the groups in PaO2 (p = 0.51), PaCO2 (p = 0.42), lactate 
(p = 0.26) and MAP (p = 0.98) or in the time and group 
interaction terms in the PaO2 (p = 0.80), PaCO2 (p = 0.15), 
lactate (p = 0.80) and MAP levels (p = 0.17).

The EtCO2 levels (Fig.  4) were similar between the 
groups (p = 0.28). The p value for the group and time 
interaction was 0.028.

The cerebral NIRS values are presented in Fig. 5. One 
subject from the 30:2 group was removed from the analy-
sis because of clearly abnormal measurement values, sug-
gesting technical failure in the measurement. There was 

no significant difference between the groups (p = 0.96) or 
between the time and group interaction terms (p = 0.36).

Electrical impedance tomography and computed 
tomography
The main findings from the EIT data are reported in 
Table 3. One subject had missing data from the baseline 
measurement in the CCC group. There were no statisti-
cally significant differences in the recorded tidal imped-
ance changes between the groups, although there was 
a nonsignificant trend of the CCC group having more 
dorsally distributed impedance changes in all the meas-
urements. Figure  2 depicts the analysis method used to 
obtain the reported values.

Regarding the CT data, one pig in the CCC group did 
not have the planned scan due to logistical problems. 
There were no statistically significant differences between 
the groups in the number of rib fractures, mean lung den-
sity of the lungs or regional mean densities (V/D regions 
reported). One pig in the 30:2 group and 5 pigs in the 
CCC group were excluded from the HU analysis because 
of deformed lung anatomy due to pneumothoraces.

Table 3 shows the distribution of the different severity 
classes of pneumothoraces; 8/10 of the pneumothoraces 
accumulated in the CCC group and the finding reached 
statistical significance (p = 0.04 with Fisher’s exact test.)

Exploratory analyses
We analysed the non-randomized comparisons of the 
primary outcomes (PaO2, PaCO2, lactate, EtCO2 and 
MAP) of our prior experiment [13] to our current experi-
ment, creating groups of PEEP = 0 cmH2O and PEEP = 10 
cmH2O (n = 30 and 31, respectively). The results are 
reported in Additional file  4. The PaO2 levels were sig-
nificantly higher and the PaCO2 levels were lower in the 
PEEP 10 cmH20 group compared to the PEEP 0 cmH2O 
group. Lactate, MAP and EtCO2 levels were similar.

We also compared the PaO2 levels between the 30:2 
groups, the CCC groups and the 30:2 PEEP = 10cmH2O 
with CCC PEEP = 0 cmH2O (also in Additional file  4). 
The PaO2 levels were significantly higher in the 30:2 
PEEP 10 cmH2O group compared to the 30:2 PEEP 0 
cmH2O, but not compared to the CCC PEEP 0 cmH2O. 
The CCC PEEP 10 and PEEP 0 cmH2O groups had simi-
lar PaO2 levels. The p values were obtained with a linear 
mixed model.

Discussion
Key findings
Contrary to our primary hypothesis, we found no sig-
nificant differences in arterial blood gases or lactate 
between CCC and a 30:2 CPR ratio when a PEEP of 10 
cmH2O was used. Regarding the secondary outcomes, 

Table 1  Baseline characteristics of the intervention groups

CPR cardiopulmonary resuscitation, IQR interquartile range, bpm beats per 
minute, FiO2 fraction of inspired oxygen

Prearrest 30:2 CPR
Median (IQR)

Continuous CPR
Median (IQR)

p value

Weight 55 (45–59) 57 (50–58) 0.77

Heart rate (bpm) 122 (106–131) 113 (94–137) 0.94

FiO2 (%) 21 (21–21) 21 (21–21) 0.52

Peak airway pressure 
(cmH2O)

27 (25–28) 25 (23–28) 0.74

Tidal volume (ml) 380 (350–410) 420 (370–460) 0.23

Compliance (ml/cmH2O) 30.1 (26.6–39.6) 35.0 (28.1–44.6) 0.60

pH 7.55 (7.53–7.56) 7.54 (7.53–7.56) 0.83

Table 2  Vital signs and physiologic variables during 
cardiopulmonary resuscitation

CPR cardiopulmonary resuscitation, IQR interquartile range, FiO2 fraction of 
inspired oxygen

Cardiac arrest phase 30:2 CPR
Median (IQR)

Continuous CPR
Median (IQR)

p-value

Ventilation rate (min−1) 5 (5–7) 9 (9–10) > 0.001

FiO2 (%) 94 (93–95) 94 (94–95) 0.054

Peak pressure (cmH2O) 35 (31–41) 37 (31–44) 0.18

Compliance (ml/cmH2O) 21.5 (18.5–27.4) 22.6 (17.3–28.6) 0.93

Measured PEEP (cmH2O) 9.3 (6.3 – 10.0) 8.5 (6.6 – 10.9) 0.54
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Fig. 3  Arterial oxygen pressures (PaO2), carbon dioxide pressures (PaCO2), lactate levels and mean arterial pressures during experimental 
cardiopulmonary resuscitation shown as medians and interquartile ranges. The p value is given for a linear mixed model between the groups. CCC​ 
continuous chest compressions
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Fig. 4  EtCO2 levels of the 30:2 and CCC groups during experimental 
cardiopulmonary resuscitation shown as medians and interquartile 
ranges. The p value is given for a linear mixed model 
between the groups. EtCO2 end-tidal carbon dioxide, CCC​ continuous 
chest compressions
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the haemodynamic markers and EtCO2 levels were simi-
lar between the groups, nor were there any significant 
differences in the distribution of ventilation or mean lung 
densities. However, there were significantly more pneu-
mothoraces in the CCC group. These findings suggest 
that when using PEEP, the CCC and 30:2 protocols dur-
ing prolonged CPR result in comparable oxygenation and 
ventilation.

Relationship to previous studies
Limited patient data on intra-arrest ventilation in 
patients receiving mechanical chest compressions are 
available. Mechanical compression devices do not appear 
to improve survival in patients compared to manual 
compressions [10], and according to experimental data, 
their use may be linked to ventilation problems and lung 
injury [12, 20]. Some previous studies have investigated 
the use of PEEP as a means of improving oxygenation. 
One trial on the use of PEEP during CPR with pigs was 
performed in 1980, showing improved ventilation at the 
cost of reduced carotid blood flow [16]. This early study 
was performed with 3:1 and 5:1 compression-to-venti-
lation ratios. Ruemmler et  al. [21] compared guideline-
recommended CCC with asynchronous ventilation with 
and without a PEEP of 5 cmH2O PEEP in a porcine 
model. They found no differences in intra-arrest gas 
exchange or pulmonary shunting, but found less shunting 

immediately post-ROSC with the use of PEEP and less 
immunological mRNA activity in brain tissue samples 
obtained after ROSC. The intra-arrest peak pressures 
remained lower with PEEP.

Renz et al. [15] studied the effect of PEEP 8 mbar and 
16 mbar on both conventional and ultralow tidal volume 
ventilation protocols in a prolonged experimental model 
similar to ours. Within the conventional protocols with 
varying PEEP levels, they found significant improve-
ments in PaO2 levels with 8  mbar of PEEP. In addition, 
they found lower driving pressures and less post-mortem 
lung tissue sample trauma findings with 8 compared to 
0  mbar of PEEP. Interestingly, the PEEP 16  mbar group 
had quite poor PaO2 in their final measurement point 
of 25  min, possibly suggesting deleterious intrathoracic 
pressure development, even though this did not influ-
ence the MAP values. The measured level of shunting 
remained reasonably low in the study with all groups. 
Also, Levenbrown et  al. [14] reported rising PaO2 with 
increasing PEEP (0–5–10–15–20 cmH2O) and dose-
dependent decreases in measured CO (cardiac output) 
with rising PEEP levels. They found optimal DO2 (oxygen 
delivery to tissue) with a PEEP level of 5 cmH2O.

Comparing our primary outcome results to our pre-
vious study in the same setting [13], the findings of 
higher PaCO2 and EtCO2 levels in the 30:2 protocol 
were not reproduced in this experiment. The PaO2 levels 

Table 3  Electrical impedance tomography and computed tomography findings

The values are reported as medians and interquartile ranges. The tidal volume distributions were calculated by dividing the impedance change in the ventral region 
of interest by the impedance change in the dorsal region of interest. The 5-min recording section was used as a reference section for the 25- and 35-min values, 
whereas the baseline section was used for the 30-min values. Impedance changes are reported as a comparison value for the chosen reference section. EIT electrical 
impedance tomography, CCC​ continuous chest compressions, HU Hounsfield unit. *n = 14; #n = general CT findings/HU value findings

EIT findings 30:2 group CCC group p value
Median (IQR)
n = 16

Median (IQR)
n = 15

Tidal volume distribution, baseline 0.89 (0.83–0.96) 0.94 (0.80–1.1)* 0.40

Tidal impedance change, 25 min (%) 97 (81–115) 100 (90–116) 0.65

Tidal volume distribution, 25 min 0.92 (0.74–1.0) 0.80 (0.70–0.87) 0.11

Tidal impedance change, 30 min (%)* 133 (109–163) 155 (129–172) 0.42

Tidal volume distribution, 30 min* 0.73 (0.64–0.87) 0.67 (0.58–0.78)* 0.34

Tidal impedance change, 35 min (%) 92 (84–123) 102 (86–117) 0.83

Tidal volume distribution, 35 min 0.93 (0.74–0.98) 0.78 (0.75–0.89) 0.19

CT findings after death n = 16/15# n = 14/9#

Total lung volume (ml) 1228 (1002–1447) 1336 (836–1643) 0.89

Rib fractures (#) 5 (4–5) 5 (4–6) 0.15

Mean density (HU) − 652 (− 588 to − 695) − 688 (− 589 to − 763) 0.31

Ventral lung density (HU) − 741 (− 678 to − 781) − 744 (− 719 to − 833) 0.57

Middle lung density (HU) − 702 (639 to − 751) − 728 (− 640 to − 799) 0.50

Dorsal lung density (HU) − 654 (− 542 to − 668) − 662 (− 532 to − 755) 0.43

Pneumothoraces (mild/moderate/marked) 2/0/0 6/2/2 0.04

No pneumothorax 14 6
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throughout the experiment were significantly higher in 
the 30:2 group with PEEP than without it (figures and 
statistics reported in Additional file 4). In the CCC group, 
paO2 was similar with and without PEEP. This points to 
the possibility of positive effects of PEEP when added 
to the 30:2 protocol, but not with the CCC protocol, 
contrary to some previous findings by other research 
groups. The possible benefit to ventilatory performance 
in the 30:2 protocol with the added PEEP possibly results 
from the prevention of atelectasis formation during the 
compression phase. In future, it could be worthwhile to 
research the 30:2 protocol with continuous ventilations 
preserving the short compression breaks for uninter-
rupted ventilations.

Mälberg et al. [22] recently published a 20-min experi-
mental CPR model comparing CCC and 30:2 with moni-
toring focussed on airway pressures and tidal volumes 
and found peak airway pressures rising higher in the 
CCC group when the tidal volumes were strictly kept 
similar between the groups. The CO2 levels were lower 
in the arterial samples and expiratory gases and pH were 
higher in the CCC group, reinforcing the trends found in 
our previous work.

Study strengths and limitations
The landrace pig is the most established model animal of 
CPR, and we used fairly large animals resembling more 
mature anatomy and physiology. The current study uti-
lized a model of prolonged CPR. The importance of ven-
tilatory performance in ALS is pronounced when the 
cardiac arrest time exceeds 10  min and rising PaCO2 
levels start to cause acidosis, which makes the heart 
more resistant to defibrillations and possibly results 
in an aggravated insult to brain tissue, derangements 
of cerebral blood flow and more pronounced general 
immunological reactions analogous to a trauma-induced 
DO2 debt [23]. Research on ECPR has demonstrated 
that CPR times with a low-flow state last up to 60  min 
amongst recruited patients [24], and we believe that our 
experimental setup modelled this situation with clinical 
relevance.

We note certain limitations of this experimental study. 
The variance between our subjects remained high, espe-
cially after prolonged CPR (> 15  min). This may relate 
to factors influencing the efficiency of blood flow, such 
as small compression point variations [25, 26]. A clini-
cally more relevant experimental model ideally should 
be extended to as long as 60 min of CPR. In the current 
model we did however often experience loss of systemic 
perfusion pressure within the 20–30  min frame based 
on a drop in EtCO2, deterioration of VF to asystole and 
increasing lactate, hypoxia and hypercarbia contradicting 
the timeframe expansion.

Also, the occurrence of agonal breaths seemed to affect 
oxygenation, but these may occur in humans as well. The 
thoracic anatomy differs markedly from humans and 
some phenomena seen in this study may not be relevant 
to patient work. The pig anatomy may predispose it to 
more trauma from compressions.

We found no significant differences in the peak airway 
pressures. Ventilations were provided by a member of the 
team and it is possible that in case of increased resist-
ance, the rescuer used less force. On the other hand, this 
may correspond to the clinical situation.

In this experiment, we chose the prearrest record-
ing as the reference section in the EIT analysis for the 
30-min compression break recording after realizing that 
the intra-arrest recordings of our study groups differed 
too much to provide a reasonable reference point for this 
more uniform recording point. The distribution of venti-
lation seemed more dorsally distributed, especially in the 
CCC group, compared to our previous study. Part of this 
is probably due to the accumulation of pneumothoraces 
in the CCC group because the formation of a pneumo-
thorax shifts the distribution dorsally.

The capability of the EIT to produce spatial discrimina-
tion was probably reduced due to the untypical tidal ven-
tilatory pattern of two sequential ventilations with a long 
pause during compressions with the 30:2 protocol. We 
explored the effect of insufflating the lungs and clamp-
ing the endotracheal tube at the end of experiment on 
the findings in CT scans by re-insufflating the lungs after 
the first scans and performing a second CT scan round. 
With some subjects, the atelectatic lung regions differed 
significantly between these two rounds, depicting the still 
dynamic state of lung aeration post-mortem and possibly 
reducing the discriminatory power.

Conclusions
Our study suggests no difference in arterial blood levels 
of oxygen, carbon dioxide or lactate, haemodynamics or 
the distribution of ventilation with compression-to-ven-
tilation ratios of 30:2 compared to CCC during prolonged 
CPR with 10 cmH2O PEEP.
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