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Abstract 

Background Risk stratification and outcome prediction are crucial for intensive care resource planning. In addressing 
the large data sets of intensive care unit (ICU) patients, we employed the Explainable Boosting Machine (EBM), a novel 
machine learning model, to identify determinants of acute kidney injury (AKI) in these patients. AKI significantly 
impacts outcomes in the critically ill.

Methods An analysis of 3572 ICU patients was conducted. Variables such as average central venous pressure (CVP), 
mean arterial pressure (MAP), age, gender, and comorbidities were examined. This analysis combined traditional sta‑
tistical methods with the EBM to gain a detailed understanding of AKI risk factors.

Results Our analysis revealed chronic kidney disease, heart failure, arrhythmias, liver disease, and anemia as signifi‑
cant comorbidities influencing AKI risk, with liver disease and anemia being particularly impactful. Surgical factors 
were also key; lower GI surgery heightened AKI risk, while neurosurgery was associated with a reduced risk. EBM 
identified four crucial variables affecting AKI prediction: anemia, liver disease, and average CVP increased AKI risk, 
whereas neurosurgery decreased it. Age was a progressive risk factor, with risk escalating after the age of 50 years. 
Hemodynamic instability, marked by a MAP below 65 mmHg, was strongly linked to AKI, showcasing a threshold 
effect at 60 mmHg. Intriguingly, average CVP was a significant predictor, with a critical threshold at 10.7 mmHg.

Conclusion Using an Explainable Boosting Machine enhance the precision in AKI risk factors in ICU patients, provid‑
ing a more nuanced understanding of known AKI risks. This approach allows for refined predictive modeling of AKI, 
effectively overcoming the limitations of traditional statistical models.

Background
Acute kidney injury (AKI) is a prevalent and critical 
organ dysfunction among ICU patients, with incidences 
reported between 16.7 and 57.9% in various studies [1, 2]. 
This condition not only prolongs ICU stays, but also sig-
nificantly increases mortality rates, highlighting the need 
for a thorough understanding and management of AKI 

[3]. AKI signifies immediate physiological distress and 
predisposes patients to long-term complications, serv-
ing as a crucial indicator of overall health in critical care 
settings [4, 5]. In a comprehensive multinational study, 
approximately one in five patients develop AKI postoper-
atively after major surgery, indicating a significant health 
care burden [6]. Therefore, several different AKI predic-
tion scores have been developed.

Recent advancements in machine learning (ML) have 
revolutionized the predictive modeling of AKI outcomes, 
offering a new paradigm in ICU management strategies. 
The integration of ML models and explainable algo-
rithms, such as Explainable Boosting Machines (EBM), 
has the potential to enhance predictive accuracy. These 
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models, including those based on ensemble methodolo-
gies and explainable frameworks [7–9], excel in analyzing 
complex, multidimensional data sets to unearth hidden 
patterns and risk factors in complex clinical conditions 
that lead to AKI. By leveraging a vast array of patient 
data, from basic demographics to intricate hemodynamic 
profiles, ML algorithms provide a depth of analysis unat-
tainable with traditional statistical approaches [10]. The 
challenge, however, lies in demystifying the complexity 
of these models to ensure their findings are interpretable 
and actionable for clinicians, thereby bridging the gap 
between advanced data analytics and practical clinical 
application.

Our study employs an ML algorithm designed for 
interpretability to analyze a comprehensive cohort of 
ICU patients. We focus on a broad spectrum of variables, 
encompassing demographic information, hemodynamic 
parameters, and treatment-related factors, to investigate 
AKI risks. Utilizing an Explainable Boosting Machine 
[11, 12], our approach aims to identify nuanced interac-
tions among risk factors. This method not only bolsters 
the predictive accuracy, but also elucidates the complex 
dynamics influencing AKI, offering clinicians a trans-
parent and understandable model that can be directly 
applied to improve patient management and outcomes.

Material and methods
Study population and ethical considerations
Data for this study were systematically gathered from 
the medical records at the University Hospital of 
Tübingen. The Ethics Committee of the hospital (IRB# 
512/2023BO1) sanctioned the study, granting an exemp-
tion from the need for informed consent due to the pres-
ervation of patient anonymity.

Inclusion criteria and data extraction
Our study, spanning from 2018 to 2022, focused on 
patients from the Department of Anesthesiology and 
Intensive Care Medicine admitted to the ICU, excluding 
those who underwent cardiac surgery. Priority was given 
to patients with recorded central venous pressure (CVP) 
and mean arterial pressure (MAP) measurements. From 
an initial pool of 3,672 patients, 3,556 were selected for 
analysis, excluding 116 patients due to incomplete hemo-
dynamic data. The selection process involved extracting 
relevant ICD-10 and OPS-codes based on the German 
Disease Related Group (DRG) system, emphasizing the 
identification of patients with acute kidney injury (AKI) 
based on ICD-10 codes (Code: N17). This facilitated the 
compilation of a detailed database comprising demo-
graphic data, ICU variables, and clinically verified AKI 
diagnoses. In the subgroup of patients with septic shock, 
we extracted the most likely source of primary infection 

based on the primary patient records in our patient data 
management system, categorizing the sources of infec-
tion into: respiratory, abdominal, urinary tract, blood-
stream, soft tissue, central nervous system, device-related 
infections, or other.

Data collection and hemodynamic variable assessment
Hemodynamic data were automatically recorded in the 
ICU’s patient data management system. Based on SQL 
database query the CVP values were extracted. Then for 
each patient, the average MAP and CVP during their ICU 
stay were extracted and exported into a new database 
based on the case-ID number. The database containing 
the hemodynamic parameters was merged with ICD-10 
and OPS-codes and exported to JMP for further analysis.

Machine learning process using Explainable Boosting 
Machine
In this study, variables were consistently referred to as 
such for clarity, though they are often termed ’features’ 
within ML literature. We trained an Explainable Boost-
ing Machine (EBM), along with Gradient Boosting (GB) 
and Random Forest Classifier (RF). The dataset was 
split into 80% for training and 20% for testing purposes. 
Patients with missing data were excluded from the analy-
sis. Boolean variables were converted to numerical values 
of zero and one.

A hyper-parameter optimization was conducted across 
all ML algorithms utilizing tenfold stratified cross-val-
idation (CV) framework. The models’ performance was 
gauged by the mean of balanced accuracy, the area under 
the receiver operating characteristic curve (ROC-AUC) 
and the F1-score for each CV fold. The models were opti-
mized for the ROC-AUC score. The variable importance 
rankings and shape functions were consistent across 
both the training and test datasets, confirming the stabil-
ity of our findings. Further validation was performed by 
training other ML models (GB and RF) and evaluating 
the variable importance rankings using SHAP. SHAP is 
a game theoretic approach to explain the output of ML 
models and finding the contributions of each variable to 
the model output.

The EBM’s rationale is grounded in its construction 
from a generalized additive model (GAM) framework 
g y = β0 + fi(xi) , where g represents the link func-
tion and fi denotes the shape function for variable Xi . In 
classification contexts, the link function f  is typically a 
logistic function. The additive nature of the model allows 
each variable to contribute independently, facilitating 
straightforward interpretation of its influence on the 
prediction outcome. The incorporation of shape func-
tions for each variable permits the modeling of complex, 
potentially non-linear associations with the predicted 
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outcome. GAMs thus can achieve greater accuracy than 
simpler linear models. EBMs further integrate advanced 
ML techniques like bagging and boosting, yielding per-
formance on par with leading ML methods such as GB 
and RF.

ML was performed in Python 3.8.10, using pandas 
1.1.4, sklearn 1.2.0 (RF, GB, CV) [13] and interpret 0.3.0 
(EBM) [14]. Variable importance rankings were evalu-
ated using both interpret and shap 0.41.0 [15]. Visualiza-
tion was done in RStudio 1.3.1093 using R 4.3.1, tidyverse 
1.3.1 [16], ggpubr 0.6.0 [17], and patchwork 1.1.1 [18].

Statistical analysis, and model assessment
The primary outcome was the diagnosis of acute kidney 
injury (AKI) during the ICU stay. Continuous variables 
were tested for normal distribution using the Shapiro‒
Wilk goodness-of-fit test. Variables are reported as the 
mean ± standard deviation or the median (interquartile 
range), as appropriate. To complement our ML approach, 
we conducted univariate and multivariate logistic regres-
sion analyses to identify risk factors for AKI. Variables 
with a p value of less than 0.1 in the univariate analysis 
were included in the multivariate analysis. The Hosmer‒
Lemeshow test assessed the model’s goodness-of-fit, 
and the area under the receiver operating characteristic 
(ROC) curve was calculated. For normally distributed 
variables, Student’s t-test was employed, while the Mann‒
Whitney U test was used for non-parametric compari-
sons. The Chi-square independence test or Fisher’s exact 
test was used for categorical variables. P values less than 
0.05 were considered statistically significant. All statis-
tical analyses were performed using Python for the ML 
components and JMP 16 (SAS Institute Inc., Cary, USA), 
Prism 9 (GraphPad Software Inc.) for other statistical 
evaluations.

Results
Analysis of demographic characteristics
Our comprehensive study analyzed demographic charac-
teristics, clinical parameters, and risk factors in a cohort 
of 3572 critically ill patients to elucidate the determi-
nants of acute kidney injury (AKI). Within this cohort, 
848 patients developed AKI while 2724 did not. We 
observed a statistically significant higher mean age in 
the AKI group (64 ± 15 years) compared to those without 
AKI (59 ± 17  years, p < 0.0001). A gender disparity was 
also noted, with males presenting a greater likelihood 
of AKI, as supported by a lower proportion of females 
in the AKI group (8% vs. 35%, p < 0.0001). Additionally, 
renal replacement therapy (RRT) was required in 45.05% 
of patients with AKI compared to 2.24% of those with-
out AKI (p < 0.0001), highlighting the severity of renal 
impairment in the AKI population (Table 1).

Analysis of infection sources in septic shock
Among 311 patients with septic shock, abdominal infec-
tions were most common (57.6%), followed by respiratory 
(17.7%) and urinary tract infections (5.8%). In patients 
with AKI, 58.6% had abdominal infections compared to 
54.6% without AKI (p = 0.5954). Respiratory infections 
were observed in 16.7% with AKI versus 20.8% with-
out AKI (p = 0.3957). Other infection sources, including 
bloodstream, soft tissue, CNS, and device-related infec-
tions, showed no significant differences between groups 
(Table 2).

Risk factor assessment
Our multivariate logistic regression analysis highlighted 
central venous pressure (CVP) as a pivotal factor, with 
a marked increase in the odds of AKI corresponding to 
each mmHg rise in average CVP (adjusted OR = 1.07, 95% 
CI: 1.05, 1.08, p < 0.0001). Age increment per year was 
associated with a slight but significant increase in AKI 
risk (adjusted OR = 1.01, 95% CI: 1.00, 1.02, p = 0.00512) 
(Table  3). Males had a higher risk compared to females 
(adjusted OR = 1.31, 95% CI: 1.07, 1.60, p = 0.0086), align-
ing with the demographic distribution (Table 1).

Comorbidities such as hypertension, chronic kidney 
disease, heart failure, and arrhythmias were identified 
as significant risk factors for AKI (Table  3). The impact 
of surgical subspecialties revealed that lower gastroin-
testinal (GI) surgery and vascular surgery were notably 
linked with an increased risk of AKI (adjusted OR = 1.72 
and 1.52, respectively, p < 0.0001 for both) (Table 3). Con-
versely, liver/biliary/pancreatic surgery and intracranial 
surgery were not associated with a significant adjusted 
risk (Fig. 1).

Risk factor assessment
Our multivariate logistic regression analysis highlighted 
central venous pressure (CVP) as a pivotal factor, with 
a marked increase in the odds of AKI corresponding to 
each mmHg rise in average CVP (adjusted OR = 1.07, 95% 
CI: 1.05, 1.08, p < 0.0001). Age increment per year was 
associated with a slight but significant increase in AKI 
risk (adjusted OR = 1.01, 95% CI: 1.00, 1.02, p = 0.00512) 
(Table  3). Males had a higher risk compared to females 
(adjusted OR = 1.31, 95% CI: 1.07, 1.60, p = 0.0086), align-
ing with the demographic distribution (Table 1).

Comorbidities such as hypertension, chronic kidney 
disease, heart failure, and arrhythmias were identi-
fied as significant risk factors for AKI (Table  3). The 
impact of surgical subspecialties revealed that lower 
gastrointestinal (GI) surgery and vascular surgery were 
notably linked with an increased risk of AKI (adjusted 
OR = 1.72 and 1.52, respectively, p < 0.0001 for both) 
(Table  3). Conversely, liver/biliary/pancreatic surgery 
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Table 1 Correlation between average central venous pressure and acute kidney injury in critically ill patients

CVP  central venous pressure, AKI  acute renal failure, SD  standard deviation, IQR  interquartile range, SOFA  Sequential Organ Failure Assessment, ICU  Intensive Care 
Unit. The cohort is divided based on the presence of acute renal failure as determined by ICD codes. P-values indicate the level of statistical significance for differences 
between patients with and without AKI
* Patients may be represented in more than one surgical category if they underwent multiple procedures
# Compared by Fisher’s exact test

Total cohort (n = 3572) With AKI
(n = 848)

Without AKI
(n = 2724)

P-value

Demographics

Age (years; mean ± SD) 60 ± 16 64 ± 15 59 ± 17  < 0.0001

Female (no.; %) 1547 (43) 284 (8) 1263 (35)  < 0.0001

Clinical parameters

Average CVP
(mmHg; median [IQR])

9 (6–13) 12 (8–15) 8 (5–12)  < 0.0001

Average MAP
(mmHg; median [IQR])

81 (77–85) 80 (76–85) 81(77–85) 0.1119

ICU length of stay
(days; median [IQR])

14 (8–24) 23 (7–12) 12 (7–20)  < 0.0001

Maximal SOFA score (median [IQR]) 6 (3–9) 9 (7–12) 5 (3–7)  < 0.0001

Treatment variables

Blood transfusions (no.; %) 1796 (49) 689 (81) 1076 (40)  < 0.0001

ECLS (no.; %) 3 (0) 2 (.2) 1 (.4) 0.1422

Organ dysfunction/shock

Cardiogenic shock (no.; %) 72 (2) 46 (5) 26 (1)  < 0.0001

Hypovolemic shock
(no.; %)

188 (5) 108 (13) 80 (3)  < 0.0001

Septic shock (no.; %) 311 (9) 234 (27) 77 (3)  < 0.0001

Liver failure (no.; %) 184 (7) 219 (26) 41 (1.6)  < 0.0001

RV failure (no.; %) 64 (2) 37 (4) 27 (1)  < 0.0001

LV failure (no.; %) 184 (5) 89 (10) 95 (4)  < 0.0001

Coagulopathy (no.; %) 125 (3) 93 (11) 32 (1)  < 0.0001

Neurologic dysfunction
(no.; %)

510 (14) 223 (27) 287 (11)  < 0.0001

Surgical subspecialties*

Patients with upper GI Surgery (no.; %) 442 (12) 138 (16) 311 (11)  < 0.0001

Patients with Lower GI Surgery (no.; %) 547 (15) 137 (16) 305 (12) 0.0001

Patients with liver/biliary/pancreatic surgery (no.; %) 956 (26) 313 (37) 643 (24)  < 0.0001

Patients with intracranial surgery (no.; %) 1259 (35) 65 (8) 1194 (44)  < 0.0001

Patients with spinal surgery (no.; %) 186 (5) 43 (5) 143 (5) 0.8373

Patients with thoracic surgery (no.; %) 221 (6) 70 (8) 151 (6) 0.0054#

Patients with kidney/ureter surgery (no.; %) 239 (7) 69 (8) 170 (6) 0.0588#

Patients with vascular surgery (no.; %) 565 (16) 230 (27) 344 (12)  < 0.0001

Patients other surgeries (no.; %) 273 (8) 198 (12) 175 (7)  < 0.0001

Comorbidities

Hypertension (no.; %) 1675 (47) 456 (54) 1219 (45)  < 0.0001

Diabetes mellitus (no.; %) 656 (18) 211 (25) 455 (16)  < 0.0001

Chronic kidney disease (no.; %) 280 (8) 133 (16) 147 (5)  < 0.0001

Ischemic heart diseases (no.; %) 419 (12) 147 (17) 272 (10)  < 0.0001

Neoplasms (no.; %) 1082 (30) 261 (31) 821 (30) 0.6412

Outcomes

Stage 1 AKI (no.; %) 228 (27)

Stage 2 AKI (no.; %) 217 (26)

Stage 3 AKI (no.; %) 444 (52)

Renal replacement therapy

Yes (no.; %) 443 (12) 382 (45) 61 (2)  < 0.0001#

No (no.; %) 3129 (88) 466(55) 2663 (98)
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Table 2 Subgroup with septic shock—sources of infection

# Compared by Fisher’s exact test

Source of infection Total (n = 311) With AKI
(n = 234)

Without AKI
(n = 77)

P-value

Respiratory infections no (%) 55 (17.7) 39 (16.7) 16 (20.8) 0.3957#

Abdominal infections no (%) 179 (57.6) 137 (58.6) 42 (54.6) 0.5954#

Urinary tract infections no (%) 18 (5.8) 11 (4.7) 7 (9.1) 0.1641#

Bloodstream infections no (%) 14 (4.5) 11 (4.7) 3 (3.9) 1.0000#

Soft tissue infections no (%) 15 (4.8) 11 (4.7) 4 (5.2) 0.7688#

Central nervous system infections no (%) 5 (1.6) 3 (1.3) 2 (2.6) 0.6006#

Device‑related infections no (%) 6 (1.9) 6 (2.6) 0 (0) 0.3422#

Other no (%) 19 (6.1) 15 (6.4) 4 (5.2) 0.5780#

Table 3 Univariate and multivariate logistic regression analysis of factors associated with acute kidney injury

Variable Univariate OR (95% CI) P-value Adjusted OR (95% CI) P-value

Average CVP
[mmHg]

1.11
(1.09, 1.13)

 < 0.0001 1.07
(1.05, 1.08)

 < 0.0001

Average MAP
[mmHg]

0.99
(0.98, 1.00)

0.0131 1.00
(0.99, 1.01)

0.68831

Age [years] 1.02
(1.02, 1.03)

 < 0.0001 1.01
(1.00, 1.02)

0.00512

Gender
Female 1 (Reference) – 1 (Reference) –

Male 1.72
(1.46, 2.01)

 < 0.0001 1.31
(1.07, 1.60)

0.0086

Comorbidities
Hypertension 1.44

(1.23–1.68)
 < 0.0001 1.26

(1.10, 2.02)
0.0103

Diabetes mellitus 1.69
(1.40, 2.04)

 < 0.0001 1.25
(0.98,1.59)

0.7558

Chronic kidney disease 3.26
(2.54, 4.18)

 < 0.0001 1.49
(1.10, 2.02)

 < 0.0001

Heart failure 3.53
(2.67, 4.67)

 < 0.0001 1.65
(1.15, 2.38)

0.0072

Ischemic heart disease 3.26
(2.54, 4.18)

 < 0.0001 0.75
(1.57, 0.99)

0.0463

Arrhythmias 3.02
(2.53, 3.60)

 < 0.0001 1.60
(1.27, 2.01)

 < 0.0001

Cerebrovascular disease 2.24
(1.72, 2.92)

 < 0.0001 1.30
(0.89, 1.89)

0.1679

COPD 1.81
(1.24, 2.64)

 < 0.0001 1.04
(0.66, 1.62)

0.8738

Asthma 1.00
(0.49, 2.05)

0.9915

Pulmonary hypertension 3.03
(1.75, 5.25)

 < 0.0001 1.06
(0.53, 2.08)

0.8720

Thyroid disorders 1.34
(1.11, 1.63)

0.0031 1.04
(0.82, 1.32)

0.7232

Liver disease 6.45
(5.33, 7.80)

 < 0.0001 4.50
(3.54, 5.73)

 < 0.0001

Anemia 8.06
(6.62, 9.82)

 < 0.0001 3.80
(3.03, 4.74)

 < 0.0001

Dementia 1.98
(0.93, 4.20)

0.0873
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and intracranial surgery were not associated with a 
significant adjusted risk (Fig. 1).

Explaining acute renal failure risk with advanced machine 
learning
To supplement conventional statistical methods, we 
employed an advanced ML model, which identified 
anemia, neurosurgical intervention, liver disease, 
and mean CVP as key variables influencing AKI risk 
(Fig. 2). Age emerged as a variable of interest, with the 
likelihood of AKI rising substantially after the age of 
50 and sharply escalating beyond 80  years. In terms 
of hemodynamic parameters, a mean arterial pres-
sure (MAP) below 60  mmHg was strongly associated 
with AKI, whereas a MAP above 65  mmHg was not, 
suggesting a threshold effect (Fig.  3B). A noteworthy 
CVP threshold was identified at 10.7  mmHg, beyond 
which the risk of AKI significantly increased (Fig. 3C). 

These findings were in line with our regression analy-
sis, emphasizing the significance of elevated CVP in 
the context of AKI risk.

Focusing on the performance metrics of the Explain-
able Boosting Machine (EBM), we observed a balanced 
accuracy score of 0.72 and a ROC-AUC score of 0.88 
(confidence interval: 0.86 to 0.89). Additionally, the 
EBM exhibited a specificity of 0.95, indicating its capa-
bility to accurately identify patients without AKI. This 
level of precision supports the insights generated by 
the model and aligns well with our regression analysis 
findings.

Discussion
In this study, we investigated the determinants of acute 
kidney injury (AKI) in a diverse cohort of 3572 critically 
ill patients. Our initial statistical analysis highlighted 
age and gender as significant factors influencing AKI 
onset. Furthermore, we observed a strong link between 

Table 3 (continued)

Variable Univariate OR (95% CI) P-value Adjusted OR (95% CI) P-value

Parkinson’s disease 1.88
(0.74, 4.79)

0.2006

Rheumatoid arthritis 0.60
(0.17, 2.06)

0.3928

Neoplasm

Surgical subspecialties

Upper GI surgery 1.53
(1.22, 1.90)

0.0002 1.23
(0.94, 1.60)

0.1251

Lower GI surgery 2.94
(2.42, 3.55)

 < 0.0001 1.72
(1.36, 2.16)

 < 0.0001

Liver/biliary/pancreatic surgery 1.89
(1.61, 2.23)

 < 0.0001 0.90
(0.71, 1.14)

0.3701

Intracranial surgery 0.11
(0.08, 0.14)

 < 0.0001 0.35
(0.24, 0.51)

 < 0.0001

Spinal surgery 0.96
(0.68, 1.37)

0.8373 0.99
(0.64, 1.53)

0.9767

Thoracic surgery 1.53
(1.14, 2.05)

0.3928

Kidney/ureter surgery 1.33
(0.99, 1.78)

0.0588

Vascular surgery 2.60
(2.15, 3.15)

 < 0.0001 1.52
(1.20, 1.92)

0.0005

Fig. 1 Forrest plot depicting odds ratios (OR) and 95% Wald confidence intervals (CI) derived from multivariate logistic regression analysis (Table 3). 
The OR estimates illustrate the association between various covariates and the likelihood of acute kidney injury in critically ill patients. Each point 
estimate on the plot corresponds to an individual covariate, while the horizontal lines represent the 95% CI. Notable findings include a significant 
association between average CVP, age, male gender, comorbidities (hypertension, chronic kidney disease, heart failure, ischemic heart disease, 
arrhythmias, pulmonary hypertension, thyroid disorders, liver disease, anemia), and certain surgical subspecialties (lower GI surgery, intracranial 
surgery, spinal surgery, vascular surgery) with acute kidney injury risk

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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hemodynamic parameters, particularly mean central 
venous pressure (CVP), and increased AKI risk. Lever-
aging insights from our initial analysis, we employed an 
Explainable Boosting Machine (EBM), a sophisticated 
ML model, to delve deeper into the associations and pre-
dictive variables related to AKI risk. This approach pro-
vided additional insights into the dynamics involved in 
AKI development among critically ill patients.

The impact of hemodynamic changes on kidney vul-
nerability is well-established in the literature. Prior stud-
ies have demonstrated a significant relationship between 
AKI and sustained low mean arterial pressures (MAP) 
[19, 20]. In alignment with these findings, our analysis 
showed that a MAP below 60 mmHg markedly increased 
the risk of AKI. Additionally, our study brought to light 
a less commonly explored correlation: the association 

between high CVP values and kidney injury. Specifi-
cally, we found that a CVP exceeding 10.7  mmHg was 
significantly associated with AKI, consistent with recent 
observations in cardiothoracic and critically ill patient 
populations [21–23]. The identification of a critical CVP 
threshold of 10.7  mmHg by our ML analysis further 
refined our understanding of the hemodynamic influ-
ences on AKI. Interestingly, our analysis indicated that an 
increase in mean arterial pressure (MAP) towards hyper-
tensive values appears to be protective or at least not 
harmful in the context of AKI. This observation suggests 
that maintaining a higher MAP may mitigate the risk of 
AKI in critically ill patients.

Our analysis also identified neurosurgical interventions 
as being associated with a lower risk of AKI compared to 
other surgeries. This finding contrasts with some studies 
that suggest emergency neurosurgical procedures might 
carry a significant risk of AKI [24, 25]. The lower risk 
observed in our cohort could be due to several factors, 
including differences in patient management and surgical 
techniques. This finding highlights the need to consider 
risk factors within specific patient populations and clini-
cal settings.

Our analysis utilized the SHAPE functions. They pro-
vide a visual representation of the influence of con-
tinuous variables on AKI risk. This tool allowed us to 
identify critical threshold values, such as the CVP, and 
offers practical insights for clinical decision-making. The 
SHAPE function’s ability to illustrate variable impact in 
an interpretable manner is a useful tool in the analysis of 
continuous data in retrospective studies.

Our analysis also reaffirmed the role of gender and age 
as significant predictors of AKI, with males showing a 
higher risk compared to females, a finding supported by 
previous research [26, 27]. Moreover, an experimental 
study suggested that testosterone might increase suscep-
tibility to ischemic renal injury [28]. These insights, along 
with our hemodynamic observations, align with existing 
literature, thereby independently confirming previous 
studies that identified these factors as major risks for AKI 
development [29, 30].

Fig. 2 Variable importance in predicting AKI as determined 
by Explainable Boosting Machine. This figure illustrates the weighted 
mean absolute scores of various clinical and demographic factors 
in predicting the development of acute kidney injury (AKI) using 
an Explainable Boosting Machine model. Each bar represents 
a variable’s weighted contribution to the model, with longer 
bars indicating a greater importance. Factors include patient 
demographics, pre‑existing conditions, and surgical history, such 
as anemia, liver diseases, and different types of surgeries (e.g., 
intracranial surgery). Combination of two parameters are linked 
by an ‘x’. The score reflects the strength of association with AKI risk 
after adjustment for covariates within the model

Fig. 3 Impact of age, mean arterial pressure (MAP), and central venous pressure (CVP) on the development of acute kidney injury (AKI). Each step 
in the score lines represents a change in the predictive importance of the respective variable, with positive values indicating higher predictive 
importance for AKI development (0 is indicated by the red line in each shape function), histograms indicate the distribution of each variable 
within the study population. Analysis conducted using an Explainable Boosting Machine, with the score reflecting the strength of association 
with AKI risk after adjusting for covariates. A Panel displays the relationship between patient age and the score assigned by the Explainable 
Boosting Machine, indicating the relative importance of age in predicting AKI development. B The middle panel represents the association 
between the average mean arterial pressure and the predictive score, with the corresponding density distribution of MAP values. C Illustrates 
the correlation between average central venous pressure and the predictive score, alongside the density distribution of CVP measurements

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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The application of ML algorithms for AKI prediction 
has evolved significantly over recent years. Various meth-
ods, including Extreme Gradient Boosting (XGBoost), 
Gradient Boosting Machine, Support Vector Machine 
(SVM), Decision Tree, and Artificial Neural Network, 
have been explored, all demonstrating robust AKI pre-
diction capabilities, often surpassing traditional linear 
models [7, 31–33]. Unlike these studies that utilize pub-
licly available ICU patient databases such as MIMIC-
IV for training and testing, our study uses a proprietary 
cohort, making it a distinctive contribution by providing 
a real-world analysis. Furthermore, our study addresses 
the issue of ML complexity, which often limits interpret-
ability for clinicians. To this end, we have adopted the 
Explainable Boosting Machine (EBM), which uniquely 
combines high predictive accuracy with transparent, 
interpretable insights into the model’s decision-making 
processes [34]. This level of clarity is especially valuable 
in clinical settings, where understanding the rationale 
behind predictions is as crucial as the predictions them-
selves. Consequently, our model not only predicts AKI 
with high accuracy, but also enables a detailed, step-wise 
analysis as depicted in our Fig. 3.

Despite these novel insights, our study has limita-
tions. We did not fully explore the mechanisms linking 
high CVP to kidney injury, although prevailing theories 
suggest that venous congestion may impair renal blood 
flow by reducing arterial–venous pressure gradients, 
potentially leading to congestive renal injury [21]. This 
hypothesis is supported by the observed correlation 
between conditions characterized by impaired venous 
drainage, such as liver disease, and AKI in our study 
[35, 36]. Moreover, our reliance on retrospective data to 
train our ML model introduces the inherent limitations 
of such studies, including the inability to establish causa-
tion. Another limitation of our study is the granularity of 
comorbidities captured in our dataset. Due to the retro-
spective nature of our data collection, the level of detail 
for comorbid conditions is restricted to billing codes 
within the German Diseases Related Group system. This 
limitation prevented us from analyzing different sub-
groups of comorbidities, such as various grades of hyper-
tension, which could provide more nuanced insights 
into AKI risk factors. Future clinical trials are needed to 
explore whether the variables identified as potential ther-
apeutic targets, like elevated CVP, can effectively reduce 
AKI risk.

In conclusion, our comprehensive investigation 
enriches the understanding of AKI in critically ill patients 
by integrating conventional risk factor analysis with 
advanced ML techniques. By identifying key determi-
nants of AKI and employing the EBM for in-depth analy-
sis, our study highlights the importance of a multifaceted 

approach to AKI risk assessment. Interpretable ML mod-
els have the potential to improve clinical decision-mak-
ing in ICU settings, contributing to targeted and effective 
AKI management strategies aimed at enhancing patient 
outcomes in critical care.

Acknowledgements
We also appreciate the Open Access Publishing Fund of the University of 
Tübingen for enabling the open access of this work.

Author contributions
A.K. and M.K. conceptualized, designed the study and performed the data 
analysis. M.K. and B.S. conducted the statistical analysis. B.S. developed the 
machine learning algorithm. S.S.‑Y. drafted the initial manuscript. P.R., V.M., 
S.S.‑Y., H.A.H., and A.B. contributed significantly to manuscript revision, critique, 
and approval. All authors have read and agreed to the published version of 
the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work 
was supported by the Deutsche Forschungsgemeinschaft grants DFG RO 
3671/14‑1 to P.R., DFG MI 1506‑4‑2 to V.M, DFG‑KO 6563/1‑1 to A.K., and by 
the Bundesministerium für Bildung und Forschung grant 01ZZ1804D to B.S. 
Additional support was provided by the Open Access Publishing Fund of the 
University of Tübingen.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The study was conducted in accordance with the Declaration of Helsinki and 
approved by the local Institutional Review Board and Ethics Committee of the 
University Hospital Tübingen (512/2023BO1). Given the nature of this research, 
formal consent is not applicable.

Consent for publication
Not applicable, as this manuscript does not contain any individual person’s 
data.

Competing interests
The authors declare no competing interests related to this study.

Received: 15 March 2024   Accepted: 2 June 2024

References
 1. Sadan O, Singbartl K, Kandiah PA, Martin KS, Samuels OB (2017) 

Hyperchloremia is associated with acute kidney injury in patients with 
subarachnoid hemorrhage. Crit Care Med 45(8):1382–1388

 2. Neyra JA, Li X, Canepa‑Escaro F, Adams‑Huet B, Toto RD, Yee J, Hedayati 
SS, Acute Kidney Injury in Critical Illness Study Group (2016) Cumulative 
fluid balance and mortality in septic patients with or without acute kid‑
ney injury and chronic kidney disease. Crit Care Med 44(10):1891–1900

 3. Joannidis M, Metnitz B, Bauer P, Schusterschitz N, Moreno R, Druml W, 
Metnitz PG (2009) Acute kidney injury in critically ill patients classified 
by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med 
35(10):1692–1702

 4. Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE (2011) The sever‑
ity of acute kidney injury predicts progression to chronic kidney disease. 
Kidney Int 79(12):1361–1369

 5. Turan A, Cohen B, Adegboye J, Makarova N, Liu L, Mascha EJ, Qiu Y, Irefin 
SA, Wakefield BJ, Ruetzler K, Sessler DI (2020) Mild acute kidney injury 



Page 11 of 11Körner et al. Intensive Care Medicine Experimental           (2024) 12:55  

after noncardiac surgery is associated with long‑term renal dysfunction. 
Anesthesiology 132:1053–1061

 6. Zarbock A, Weiss R, Albert F, Rutledge K, Kellum JA, Bellomo R, Grigoryev 
E, Candela‑Toha AM, Demir ZA, Legros V et al (2023) Epidemiology of 
surgery associated acute kidney injury (EPIS‑AKI): a prospective inter‑
national observational multi‑center clinical study. Intensive Care Med 
49(12):1441–1455

 7. Jiang M, Pan CQ, Li J, Xu LG, Li CL (2023) Explainable machine learning 
model for predicting furosemide responsiveness in patients with oliguric 
acute kidney injury. Ren Fail 45(1):2151468

 8. Ma M, Wan X, Chen Y, Lu Z, Guo D, Kong H, Pan B, Zhang H, Chen D, Xu D 
et al (2023) A novel explainable online calculator for contrast‑induced AKI 
in diabetics: a multi‑centre validation and prospective evaluation study. J 
Transl Med 21(1):517

 9. Yang J, Lu C, Yan L, Tang X, Li W, Yang Y, Hu D (2013) The association 
between atherosclerotic renal artery stenosis and acute kidney injury in 
patients undergoing cardiac surgery. PLoS ONE 8(5):e64104

 10. Beam AL, Kohane IS (2018) Big data and machine learning in health care. 
JAMA 319(13):1317–1318

 11. Fan Z, Jiang J, Xiao C, Chen Y, Xia Q, Wang J, Fang M, Wu Z, Chen F‑X 
(2023) Construction and validation of prognostic models in critically 
ill patients with sepsis‑associated acute kidney injury: interpretable 
machine learning approach. J Transl Med 21(1):406

 12. Gao Y, Wang C, Dong W, Li B, Wang J, Li J, Tian Y, Liu J, Wang Y (2023) 
An explainable machine learning model to predict acute kidney injury 
after cardiac surgery: a retrospective cohort study. Clin Epidemiol 
15:1145–1157

 13. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit‑learn: 
machine learning in Python. J Mach Learn Res 12:2825–2830

 14. Nori H, Jenkins S, Koch P, Caruana R: Interpret ML (2019) A Unified Frame‑
work for Machine Learning Interpretability. ArXiv 2019, abs/1909.09223.

 15. Lundberg SM, Lee S‑I (2017) A unified approach to interpreting model 
predictions. In: Neural information processing systems (NIPS’17), pp 
4768–4777

 16. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, 
Grolemund G, Hayes A, Henry L, Hester J et al (2019) Welcome to the 
Tidyverse. J Open Source Softw 4:1686

 17. Kassambara A (2023) ggpubr: ’ggplot2’ Based Publication Ready Plots. 
https:// cran.r‑ proje ct. org/ web/ packa ges/ ggpubr/ ggpubr. pdf

 18. Pedersen TL (2024) patchwork: The composer of plots. https:// patch work. 
data‑ imagi nist. com/ refer ence/ patch work‑ packa ge. html

 19. Maheshwari K, Nathanson BH, Munson SH, Khangulov V, Stevens M, 
Badani H, Khanna AK, Sessler DI (2018) The relationship between ICU 
hypotension and in‑hospital mortality and morbidity in septic patients. 
Intensive Care Med 44(6):857–867

 20. Khanna AK, Maheshwari K, Mao G, Liu L, Perez‑Protto SE, Chodavarapu 
P, Schacham YN, Sessler DI (2019) Association between mean arterial 
pressure and acute kidney injury and a composite of myocardial injury 
and mortality in postoperative critically ill patients: a retrospective cohort 
analysis. Crit Care Med 47(7):910–917

 21. Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz A‑C, Payen 
D (2013) Association between systemic hemodynamics and septic acute 
kidney injury in critically ill patients: a retrospective observational study. 
Crit Care 17:R278–R278

 22. Damman K, van Deursen VM, Navis GJ, Voors AA, van Veldhuisen DJ, 
Hillege HL (2009) Increased central venous pressure is associated with 
impaired renal function and mortality in a broad spectrum of patients 
with cardiovascular disease. J Am Coll Cardiol 53(7):582–588

 23. Chen C‑Y, Zhou Y, Wang P, Qi E‑Y, Gu W‑J (2020) Elevated central venous 
pressure is associated with increased mortality and acute kidney injury in 
critically ill patients: a meta‑analysis. Crit Care 24(1):80

 24. Deng Y, Yuan J, Chi R, Ye H, Zhou D, Wang S, Mai C, Nie Z, Wang L, Zhai 
Y et al (2017) The incidence, risk factors and outcomes of postoperative 
acute kidney injury in neurosurgical critically ill patients. Sci Rep 7(1):4245

 25. Hu L, Gao L, Zhang D, Hou Y, He LL, Zhang H, Liang Y, Xu J, Chen C 
(2022) The incidence, risk factors and outcomes of acute kidney injury 
in critically ill patients undergoing emergency surgery: a prospective 
observational study. BMC Nephrol 23(1):42

 26. Neugarten J, Golestaneh L (2018) Female sex reduces the risk of hospital‑
associated acute kidney injury: a meta‑analysis. BMC Nephrol 19(1):314

 27. Grams ME, Sang Y, Ballew SH, Gansevoort RT, Kimm H, Kovesdy CP, 
Naimark DMJ, Oien C, Smith DH, Coresh J et al (2015) A meta‑analysis of 
the association of estimated GFR, albuminuria, age, race, and sex with 
acute kidney injury. Am J Kidney Dis 66(4):591–601

 28. Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV (2004) Testosterone is 
responsible for enhanced susceptibility of males to ischemic renal injury*. 
J Biol Chem 279:52282–52292

 29. Mou Z, Guan T, Chen L (2022) Risk factors of acute kidney injury in ECMO 
patients: a systematic review and meta‑analysis. J Intensive Care Med 
37(2):267–277

 30. Fisher M, Neugarten J, Bellin E, Yunes M, Stahl L, Johns TS, Abramowitz 
MK, Levy R, Kumar N, Mokrzycki MH et al (2020) AKI in hospitalized 
patients with and without COVID‑19: a comparison study. J Am Soc 
Nephrol 31(9):2145–2157

 31. Zhang X, Chen S, Lai K, Chen Z, Wan J, Xu Y (2022) Machine learning for 
the prediction of acute kidney injury in critical care patients with acute 
cerebrovascular disease. Ren Fail 44:43–53

 32. Zhang Y, Yang D, Liu Z, Chen C, Ge M, Li X, Luo T, Wu Z, Shi C, Wang B‑H 
et al (2021) An explainable supervised machine learning predictor of 
acute kidney injury after adult deceased donor liver transplantation. J 
Transl Med 19

 33. Thongprayoon C, Pattharanitima P, Kattah AG, Mao MA, Keddis MT, Dillon 
JJ, Kaewput W, Tangpanithandee S, Krisanapan P, Qureshi F, Cheungpa‑
sitporn W (2022) Explainable preoperative automated machine learning 
prediction model for cardiac surgery‑associated acute kidney injury. J Clin 
Med 11(21):6264

 34. Magunia H, Lederer S, Verbuecheln R, Gilot BJ, Koeppen M, Haeberle HA, 
Mirakaj V, Hofmann P, Marx G, Bickenbach J et al (2021) Machine learning 
identifies ICU outcome predictors in a multicenter COVID‑19 cohort. Crit 
Care 25(1):295

 35. Mueller S (2016) Does pressure cause liver cirrhosis? The sinusoidal pres‑
sure hypothesis. World J Gastroenterol 22:10482–10501

 36. Millonig G, Friedrich S, Adolf S, Fonouni H, Golriz M, Mehrabi A, Stiefel P, 
Pöschl G, Büchler MW, Seitz HK, Mueller S (2010) Liver stiffness is directly 
influenced by central venous pressure. J Hepatol 52(2):206–210

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://cran.r-project.org/web/packages/ggpubr/ggpubr.pdf
https://patchwork.data-imaginist.com/reference/patchwork-package.html
https://patchwork.data-imaginist.com/reference/patchwork-package.html

	Explainable Boosting Machine approach identifies risk factors for acute renal failure
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Background
	Material and methods
	Study population and ethical considerations
	Inclusion criteria and data extraction
	Data collection and hemodynamic variable assessment
	Machine learning process using Explainable Boosting Machine
	Statistical analysis, and model assessment

	Results
	Analysis of demographic characteristics
	Analysis of infection sources in septic shock
	Risk factor assessment
	Risk factor assessment
	Explaining acute renal failure risk with advanced machine learning

	Discussion
	Acknowledgements
	References


