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Abstract 

Background  Treatment and prevention of intracranial hypertension (IH) to minimize secondary brain injury are cen-
tral to the neurocritical care management of traumatic brain injury (TBI). Predicting the onset of IH in advance allows 
for a more aggressive prophylactic treatment. This study aimed to develop random forest (RF) models for predicting 
IH events in TBI patients.

Methods  We analyzed prospectively collected data from patients admitted to the intensive care unit with invasive 
intracranial pressure (ICP) monitoring. Patients with persistent ICP > 22 mmHg in the early postoperative period 
(first 6 h) were excluded to focus on IH events that had not yet occurred. ICP-related data from the initial 6 h were 
used to extract linear (ICP, cerebral perfusion pressure, pressure reactivity index, and cerebrospinal fluid compen-
satory reserve index) and nonlinear features (complexity of ICP and cerebral perfusion pressure). IH was defined 
as ICP > 22 mmHg for > 5 min, and severe IH (SIH) as ICP > 22 mmHg for > 1 h during the subsequent ICP monitoring 
period. RF models were then developed using baseline characteristics (age, sex, and initial Glasgow Coma Scale score) 
along with linear and nonlinear features. Fivefold cross-validation was performed to avoid overfitting.

Results  The study included 69 patients. Forty-three patients (62.3%) experienced an IH event, of whom 30 (43%) 
progressed to SIH. The median time to IH events was 9.83 h, and to SIH events, it was 11.22 h. The RF model showed 
acceptable performance in predicting IH with an area under the curve (AUC) of 0.76 and excellent performance 
in predicting SIH (AUC = 0.84). Cross-validation analysis confirmed the stability of the results.

Conclusions  The presented RF model can forecast subsequent IH events, particularly severe ones, in TBI patients 
using ICP data from the early postoperative period. It provides researchers and clinicians with a potentially predictive 
pathway and framework that could help triage patients requiring more intensive neurological treatment at an early 
stage.
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Background
Traumatic brain injury (TBI) is the leading cause of 
injury-related disability and death worldwide [1]. Since 
primary brain injury after TBI is inevitable, second-
ary brain injury has been the focus of most studies to 
identify potential therapeutic targets [2, 3]. Neurocriti-
cal care is central to minimizing secondary brain injury 
[4], of which elevated intracranial pressure (ICP) is a 
critical mediator [5]. Elevated ICP is a common com-
plication of moderate-to-severe TBI and is strongly 
associated with poor prognosis [6–8]. Therefore, the 
cornerstone of neuroprotective management is moni-
toring ICP and treating intracranial hypertension (IH) 
with strategies that escalate in intensity based on ele-
vated ICP [8–10].

Currently, IH clinical management relies on invasive 
measurement of ICP through external ventricular drain-
age or intraparenchymal probes [9, 11]. Prolonged and 
sustained intracranial hypertension should be avoided to 
protect brain tissue from secondary deterioration [12]. 
Due to the pathophysiology of the intracranial pressure–
volume curve [13], ICP rises rapidly when intracranial 
contents approach intracranial volume. Consequently, 
current treatment for IH is reactive universally, making it 
challenging for clinicians to identify patients whose ICP 
will rapidly progress to dangerous levels [14]. Therefore, 
there is an urgent need for early clinical prediction mod-
els to anticipate the onset of IH and empower clinicians 
to intervene before subsequent adverse events. Recent 
clinical IH prediction models have achieved promis-
ing results by applying advanced signal processing and 
machine learning techniques [14–18]. However, a read-
ily deployed bedside software solution is currently in 
need of improvement, and early warning of upcoming IH 
remains a significant and feasible research objective.

Due to multiple linear and nonlinear correlation deter-
minants, ICP is a highly complex parameter influenced 
by various intracranial and extracranial factors [19–21]. 
Complexity-related nonlinear signal features, such as 
approximate entropy, are now recognized as potential 
summaries of homeostatic integrity [22, 23]. ICP com-
plexity has been shown to decrease at the onset of IH [24, 
25], and it has become a valuable prognostic predictor of 
TBI outcomes [26, 27]. Therefore, in this study, we incor-
porated complexity features based on ICP and cerebral 
perfusion pressure (CPP) into the IH prediction model 
to provide a comprehensive assessment of the intracra-
nial condition in TBI patients. In addition, we included 
the pressure reactivity index (PRx), which contributes 
to individualized therapy, and the cerebrospinal fluid 
compensatory reserve index (RAP) as “linear” signal fea-
tures together with ICP and CPP due to their established 
derivations.

Random forest (RF), a tree-based nonlinear algorithm, 
has shown superiority in machine learning algorithms, 
such as solving the overfitting problem of decision trees 
[28]. RF was identified as the best classifier in a study 
evaluated against 179 classifiers available today [29]. 
In the realm of TBI, RF has demonstrated its predictive 
capabilities for the prognosis of intracranial injury [30, 
31].

In this study, we sought to develop prediction models 
for IH using RF classifiers by incorporating demographic 
characteristics (age, sex, and Glasgow Coma Scale score) 
with linear and nonlinear features. Specifically, we uti-
lized ICP-related data from the initial 6-h period and 
extracted target features for predicting upcoming IH 
events during the postoperative monitoring period, aim-
ing to support the prophylactic management of acute IH.

Methods
Patient selection and data acquisition
This study analyzed a prospective dataset of TBI patients 
admitted to the Department of Neurosurgery at Shanghai 
General Hospital between January 2021 and December 
2021. The study protocol complied with the ethical guide-
lines of the Declaration of Helsinki and was approved by 
the institutional review. Informed consent of participants 
or proxies was adequately assured in the prospective 
data collection. As part of the intensive care unit (ICU) 
prospective cohort recruitment, demographics, injuries, 
and high-frequency digital signals from ICU monitor-
ing were recorded for all patients. For this study, age, 
sex, and Glasgow Coma Scale (GCS) score at admission 
were extracted from the database. Patients underwent 
emergency surgery, including borehole drainage, cranial 
hematoma removal, or even decompressive craniectomy. 
ICP was monitored using a ventricular probe (Integra 
LifeSciences, Princeton, NJ) which was placed as the 
departmental clinical protocol. Invasive arterial blood 
pressure (ABP) was recorded via a bedside radial artery 
catheter with the transducer at the heart level. All signals 
were continuously collected using the data processing 
tool (Neuro Critical Care Data Processing System, Hunan 
Haotongxiangju Medical Technology) with data trans-
mitted to an online server (https://​www.​neuma​tic.​cn).

There were 102 patient recordings available. The total 
length of data recording varied between patients from 6 
to 370 h. To observe the occurrence of IH, we focused on 
patients who had time for the disease process to evolve. 
As such, 93 patients with at least 18 h of recording of ICP, 
mean arterial pressure (MAP), and CPP were selected. 
Also, patients (n = 8) with numerous missing data and 
signal artifacts due to technical problems during record-
ing, re-recording, or interruption were excluded. In addi-
tion, patients with severe TBI with mean ICP values 
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consistently exceeding 22 mmHg in the first 6 h (n = 16) 
were excluded. As a result, 69 patients entered our analy-
sis. All patients received analgesia, sedation, and mechan-
ical ventilation during their stay in the intensive care unit 
and were managed according to a CPP-oriented proto-
col. Treatment options include head elevation, sedation, 
hyperosmolar therapy, hyperventilation, cerebrospinal 
fluid drainage, and even decompressive craniectomy to 
keep CPP above 60–70 mmHg.

Data from the first 6 h after the start of ICP stabiliza-
tion monitoring were extracted for analysis. To suppress 
the pulse and respiratory waves and to focus entirely on 
the slow fluctuations of ICP, the data were resampled by 
averaging over 12-s epochs. Subsequently, a moving aver-
age filter, with the span set to 4, was used to remove sharp 
noise and smooth the data. The pressure amplitude cor-
relation index (RAP) was calculated as the moving Pear-
son correlation coefficient between ICP pulse amplitude 
and ICP, representing the cerebrospinal compensatory 
reserve. In addition, the pressure reactivity index (PRx), a 
moving Pearson correlation between ICP and MAP, was 
calculated as a measure of cerebral autoregulation.

Nonlinear signal information‑based features
Sample entropy (SampEn) and Lempel–Ziv complexity 
(Lzc) were used as indicators of the nonlinear complex-
ity of ICP (ICP_SampEn and ICP_Lzc) and CPP (CPP_
SampEn and CPP_Lzc) sequences. SampEn, an improved 
version of approximate entropy, was computed according 
to Delgado-Bonal using R code [23]. For the two input 
parameters, m (embedding dimension) and r (noise fil-
ter), we adopted the traditional m = 2 and r = 0.2 standard 
deviation [32]. Lzc describes the rate at which new pat-
terns emerge in the time series [33]. The Lzc algorithm 
is applied to symbolic sequences [34], so we binarized 
the time series before analysis. A detailed description of 
the Lzc algorithm is available in the original article [33]. 
Briefly, The Lzc uses a stepwise strategy to quantify the 
number of non-redundant patterns in a signal. At each 
time point of the signal, the complexity counter increases 
if the next symbol of the signal introduces a pattern that 
has never been observed before or cannot be replicated 
from previous segments [34].

Prediction task
Intracranial hypertension (IH) prediction was defined as 
a binary classification task. The Brain Trauma Founda-
tion (BTF) recommends treatment of ICP > 22  mmHg, 
which is an accepted threshold for IH [9, 35], due to val-
ues beyond this threshold are associated with increased 
mortality [35]. Although guidelines have not established 
a minimum duration of IH associated with harm to the 
brain, there is evidence of worse outcomes after 5  min 

of elevated ICP [36]. In this study, the primary outcome 
measure was IH, defined as ICP > 22 mmHg for > 5 min, 
and the secondary outcome measure was severe IH 
(SIH), defined as ICP > 22 mmHg for > 1 h, representing a 
more malignant intracranial condition.

Model development
The dataset was randomly divided into 70% for training 
and 30% for testing using the “createDataPartition” func-
tion in the “caret” package while ensuring a balanced 
ratio of outcome metrics. Baseline characteristics (age, 
sex, and GCS score), linear features (ICP, CPP, PRx, and 
RAP), and nonlinear features of ICP and CPP (SampEn 
and Lzc) were included for analysis.

Random forest (RF) is a supervised machine-learning 
algorithm that generates multiple decision trees on a 
bootstrap basis and merges them to obtain more accu-
rate and stable predictions. To select the most relevant 
features, Recursive Feature Elimination (RFE) based on 
the RF was applied to the training sets. Briefly, RFE is the 
iterative construction of a model by removing the least 
relevant features from the current feature set and repeat-
ing this step [37]. Cross-validation is combined to find 
the optimal number of features to avoid overfitting. The 
hyperparameters of the RF classifier were then optimally 
tuned using a grid search. To evaluate the presence or 
absence of multicollinearity between features, the vari-
ance inflation factor (VIF) for the selected features was 
calculated. Multicollinearity is usually considered to exist 
when the VIF exceeds the threshold of 5–10 [38]. Test 
sets were used to evaluate the performance of the model.

The optimal unbiased cutoff point of the model was 
determined using Youden’s index (Youden’s index = sen-
sitivity + specificity − 1). The performance of the classifier 
was evaluated using metrics such as accuracy, sensitivity, 
specificity, recall, and F1 score (F1 score is a combination 
of the model’s precision and recall). The discriminative 
power of the classifier was assessed using the area under 
the receiver operating characteristic curve (AUC).

Cross-validation is widely used to reduce bias and over-
come overfitting in machine learning when the dataset 
sample size is small [39]. In this study, we employed the 
k-fold (k = 5) cross-validation method to ensure the gen-
eralizability of the results. K-fold cross-validation divides 
the dataset into k partitions, retains one partition, and 
uses the remaining k − 1 partitions to train/construct the 
model. The retained partition is then used to evaluate the 
quality of the trained model. This process is performed 
k times, with each partition being retained in turn and 
used to evaluate the model trained using the remaining 
k − 1 partitions.

In addition to the goal of building robust IH predic-
tion models, methods were employed to calculate the 
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importance of individual features to reflect underlying 
algorithmic decisions, thereby improving clinical accept-
ability and translation. “Mean Decrease Accuracy” and 
“Mean Decrease Gini” were used to measure the impor-
tance of a feature in RF in discriminating groups. Mean 
Decrease Accuracy uses permuting “out-of-bag” samples 
to calculate the importance of a variable to the predic-
tion accuracy of the RF model [40]. Mean Decrease Gini 
measures the importance of a variable in contributing to 
the homogeneity of nodes and leaves across all decision 

trees [40]. The greater the two values, the greater the 
importance of the features.

The workflow of the study is shown in Fig. 1.

Statistical analysis
Data were processed and analyzed using R (version 4.3.0) 
with R Studio (version 2023.03.1 + 446) for Windows as 
an integrated development environment. Continuous 
variables that conformed to normal distribution were 
expressed as the mean (standard deviation), and the t test 

Fig. 1  Overview of the study design. TBI traumatic brain injury, ICP intracranial pressure
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was applied for statistical comparison. Continuous vari-
ables that did not conform to normal distribution were 
expressed as the median and interquartile range (IQR), 
and the Mann–Whitney U test was applied. Categorical 
variables were expressed as frequencies and percentages, 
and the Chi-square test was applied. The results were 
considered significant when p < 0.05.

Results
Baseline characteristics and features
Sixty-nine patients were included in our analysis, of 
whom the median age was 54  years (IQR, 45–61years) 
and 46 patients (66.7%) were male. The median GCS 
score at admission was 7 (IQR, 6 to 10). The total moni-
toring time for all patients was 8226.14 h, with a median 
time of 116.17 h (IQR, 69.65 to 158.87 h) per case. Dur-
ing the monitoring period, 43 patients (62.3%) experi-
enced an IH event, of whom 30 (43%) progressed to SIH. 
The median time difference between observed IH events 
and the time of data extraction was 9.83 h (3.35–22.65 h), 
and for SIH events, it was 11.22 h (4.60–30.24 h).

We confirmed a significant difference in the initial GCS 
score (7.0 vs. 9.0, p = 0.021) between the IH and non-IH 
groups. Patients who progressed to SIH were significantly 
older (59.0 vs. 51.0, p = 0.042), in addition to having a sig-
nificantly worse initial GCS score. Regarding ICP-related 
data, the differences between groups in terms of ICP and 
PRx were significant, both when IH was distinguished 
from all patients and when patients who progressed to 
SIH were distinguished. No significant differences were 
observed between groups for CPP and RAP. The analysis 

of nonlinear features indicated that SampEn and Lzc for 
CPP showed significant differences in distinguishing IH 
and SIH from all patients. Patient characteristics as well 
as linear and nonlinear features between groups are 
shown in Table 1 and the subgroup analysis are shown in 
Supplementary Tables.

Forecasting IH and SIH events via random forest
After performing the FRE-CV feature selection process 
based on the training set, the following features were 
incorporated into RF-IH and RF-SIH models: SampEn of 
CPP, Lzc of CPP, initial GCS, Lzc of ICP, sex, SampEn of 
ICP, ICP, and CPP for IH model, and ICP, SampEn of CPP, 
initial GCS, age, PRx, SampEn of ICP, RAP, Lzc of ICP, 
sex, and Lzc of CPP for SIH model (Table 2, Fig. 2A, C). 
The optimal features selected by the RFE cross-validation 
(RFE-CV) and multicollinearity test results are shown in 
Table 2. The VIF of each feature is less than 5, indicating 
no multicollinearity between features. In the testing set, 
the RF-IH model achieved an accuracy of 0.68, sensitivity 
of 0.43, specificity of 0.83, recall of 0.43, F1 of 0.50, and 
AUC of 0.76 for predicting IH events (Fig. 2B), while the 
RF-SIH model had an accuracy of 0.75, sensitivity of 0.91, 
specificity of 0.56, recall of 0.91, F1 of 0.80, and AUC of 
0.84 (Fig. 2D).

The features sorted by importance are shown in Fig. 3 
to provide an overview of all features contributing to the 
predicted performance. For distinguishing IH events, the 
nonlinear features SampEn for CPP and Lzc for ICP dem-
onstrated excellent ability in both importance measures 
(Fig. 3A). While in predicting SIH events, the ICP mean 

Table 1  Patient characteristics as well as linear and nonlinear features between groups

Categorical variables are expressed as frequencies and percentages; Continuous variables are expressed as the mean (standard deviation) or median and interquartile 
range (IQR). IH = ICP > 22 mmHg & min > 5; SIH = ICP > 22 mmHg & h > 1

ICP intracranial pressure, CPP cerebral perfusion pressure, PRx pressure reactivity index, RAP pressure amplitude correlation index, SampEn Sample entropy, Lzc 
Lempel–Ziv complexity

IH (n = 43) Non-IH (n = 26) p value SIH (n = 30) Non-SIH (n = 39) p value

Baseline characteristics

 Age (years) 55.0 [46.0, 61.0] 52.0 [42.0, 59.8] 0.484 59.0 [48.3, 62.0] 51.0 [40.5, 58.5] 0.042

 Male (%) 29 (67.4) 17 (65.4) 1 21 (70.0) 25 (64.1) 0.797

 Initial GCS 7.0 [6.0, 9.5] 9.0 [7.0, 11.0] 0.021 7.0 [5.3, 9.0] 8.0 [7.0, 11.0] 0.029

Linear features

 ICP (mmHg) 12.7 (5.1) 9.3 (4.3) 0.006 14.1 (4.4) 9.3 (4.6) < 0.001

 CPP (mmHg) 74.3 (9.3) 77.4 (14.1) 0.268 73.4 (9.6) 77.0 (12.4) 0.198

 PRx (a.u.) 0.24 (0.18) 0.15 (0.14) 0.027 0.26 (0.19) 0.16 (0.14) 0.022

 RAP (a.u.) 0.18 (0.20) 0.20 (0.20) 0.765 0.18 (0.22) 0.20 (0.19) 0.645

Non-linear features

 ICP_SampEn 0.06 [0.05, 0.09] 0.07 [0.04, 0.11] 0.892 0.06 [0.05, 0.09] 0.07 [0.04, 0.10] 0.681

 CPP_SampEn 0.37 [0.25, 0.45] 0.25 [0.14, 0.41] 0.009 0.39 [0.31, 0.51] 0.26 [0.17, 0.40] 0.005

 ICP_Lzc 0.08 [0.05, 0.10] 0.11 [0.06, 0.14] 0.046 0.08 [0.05, 0.10] 0.09 [0.05, 0.14] 0.185

 CPP_Lzc 0.24 (0.11) 0.18 (0.09) 0.024 0.25 (0.12) 0.20 (0.09) 0.049
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ranked first in both importance measures, with SampEn 
for CPP continuing to perform well and ranking second 
(Fig. 3B).

The cross-validation results of the RF-IH and RF-SIH 
models are shown in Table 3. The AUCs of the two mod-
els were 0.81 (0.07) and 0.79 (0.14), respectively, indicat-
ing excellent and stable discriminative abilities. For other 
evaluation metrics, the RF-SIH model exhibited more 
excellent performance in terms of accuracy, specificity, 
and recall.

Discussion
The present study demonstrates that summarizing lin-
ear and nonlinear features and developing random forest 
models using ICP-related data from the early postop-
erative period (6  h) can effectively predict subsequent 
intracranial hypertension events. Two prediction tasks, 
IH and SIH, were defined, and overall, the developed RF-
SIH model performed more excellently. The SampEn of 
CPP performed well in predicting both IH and SIH, the 
mean ICP was the strongest predictor of SIH events, and 
the GCS score showed the highest significance in the 
demographics. Another advantage of the model devel-
oped is the ability to make future IH predictions based 
on the early phases of ICP monitoring data in the ICU, 
which is critical for guiding treatment decisions when 
prognostication is most difficult.

The ICP waveform is generated by the complex inter-
action between fluids (cerebrospinal fluid and blood) 
and brain tissue encompassed by a rigid skull [41, 42]. As 
widely confirmed in the literature, the ICP signal wave-
form contains much more information than simply the 
mean ICP value [43]. For example, PRx extracted from 
the ICP and ABP waveform reflects the autoregulation 

state of the brain. In this study, we found that individuals 
who developed future IH or even SIH already showed the 
deterioration of PRx (consistently > 0.2 or 0.25) during 
the first 6 h, indicating impaired cerebral autoregulation. 
RAP did not show a significant difference, which may be 
attributed to the benefit of early postoperative treatment 
and surgery that increased the intracranial compensatory 
space in all patients. In contrast, the PRx was limitedly 
affected. For instance, studies have shown that PRx does 
not appear to be substantially affected by decompressive 
craniectomy [44, 45]. ICP values differed significantly 
in both group comparisons, suggesting that the ICP of 
patients with potential IH and SIH already deviated from 
that of normal patients and approached the upper limit 
of the normal range. This finding implies a potential ben-
efit of controlling low levels of ICP postoperatively. The 
difference in CPP was not significant, which may be due 
to the CPP-oriented regimen at the center, which helped 
to achieve adequate perfusion pressure in all patients at 
an early stage.

The complex cerebrospinal fluid–blood–brain tissue 
system is controlled by interrelated positive and negative 
feedback systems that dynamically regulate ICP. Sam-
ple entropy is a measure of regularity and disorder [23, 
46] and Lempel–Ziv complexity characterizes the rate at 
which new patterns emerge in a time series [33]. These 
two classical complexity metrics provide comprehen-
sive insights into time series from different perspectives. 
When the regulatory system of ICP is impaired after TBI, 
the complexity of ICP may decrease. Previous research 
has mostly focused on the onset of IH or its relation-
ship to long-term prognosis [47–50]. This study is the 
first to investigate whether indicators of the complexity 
of intracranial signals can predict potential IH events. 
The complexity of ICP did not reveal a generalized dif-
ference in the early stages, and only the Lzc of ICP was 
found to be significantly lower in the IH group and did 
not further differentiate the SIH subset, suggesting that 
ICP_Lzc can only differentiate between the occurrence 
or nonoccurrence of IH. Interestingly, the complexity of 
the CPP shows generally significant differences, regard-
less of distinguishing between IH or SIH events. Patients 
with potential IH showed higher CPP complexity, indi-
cating unstable CPP and impaired brain autoregulation 
compared to normal patients. This is consistent with 
impaired PRx but needs to be interpreted with caution.

The development of an IH early warning system has 
been introduced previously. Various research groups are 
working on developing technologies to enable preven-
tive management of IH to improve patient outcomes [16, 
51–55]. Current mainstream ICP waveform-based algo-
rithms are still plagued by the prediction window that 
is too short to provide clinicians with enough time to 

Table 2  Optimal features selected by the RFE cross-validation 
(RFE-CV) and multicollinearity test results

m mean value of the variables, VIF variance inflation factor, ICP intracranial 
pressure, CPP cerebral perfusion pressure, PRx pressure reactivity index, RAP 
pressure amplitude correlation index, SampEn Sample entropy, Lzc Lempel–Ziv 
complexity

RF-IH model VIF RF-SIH model VIF

sex 1.05 sex 1.06

GCSad 1.11 age 1.08

ICP_m 1.39 GCSad 1.24

CPP_m 1.42 ICP_m 1.33

ICP_SampEn 3.04 PRx_m 1.23

CPP_SampEn 2.63 RAP_m 1.53

ICP_Lzc 3.12 ICP_SampEn 2.95

CPP_Lzc 2.87 CPP_SampEn 2.70

– – ICP_Lzc 2.84

– – CPP_Lzc 2.93
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intervene ahead of time [14]. This study is based on data 
from patients in the early postoperative period, aiming to 
obtain an overview of the patient’s early intracranial con-
dition and predict the occurrence of IH in the following 
days. This gives clinicians enough time to respond, for 
example, by implementing more aggressive therapeutic 
measures for certain patients, rather than waiting for the 
onset of IH and intervening reactively. The developed 
model considers the baseline clinical characteristics, the 
linear features, and the complexity of the signal nonlinear 
features as compensation. The performance is excellent, 
and a stable performance is obtained in the cross-valida-
tion. Overall, the model performs better in predicting the 
SIH population in the center with higher accuracy and 
recall values.

Performance and interpretability in clinical systems are 
critical to support clinical decision-making [56]. There-
fore, visualizing the features that influence the RF mod-
el’s prediction is essential. The SampEn of CPP performs 
well in predicting IH or SIH, indicating that patients with 
potential IH tend to have greater CPP fluctuations in the 
early phases. As with the previous statistical tests, this 
was an unexpected finding. This suggests that focusing 
on fluctuations in a patient’s CPP might be more valuable 
than ICP. Focusing on the fluctuations or complexity of 
physiologic indicators is equally important as examin-
ing their values. Another noteworthy finding is that the 
average ICP value was the strongest predictor of SIH 
events, consistent with the results of previous statistical 
analyses. This suggests that personalized ICP thresholds 

Fig. 2  Variable selection process of RFE-CV based on the training set and the receiver operating characteristic (ROC) curve of the RF model 
for predicting IH and SIH based on the testing set. A and B are for IH prediction; C and D are for SIH prediction. AUC​ area under the receiver 
operating characteristic curve, RFE Recursive Feature Elimination, CV cross-validation
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are essential for identifying high-risk populations, a chal-
lenge that has plagued researchers. For the clinical char-
acteristics, due to the small sample size of a single center, 
the inclusion of too many characteristics would lead to 

overfitting of the model. Therefore, the study focused on 
essential demographics including age, sex, and GCS score 
representing the severity of TBI. Overall, the GCS score 
showed the highest importance in demographics, while 
gender showed the least importance.

Several limitations of the study must be noted. First, 
this is an exploratory study based on a single center with 
a limited sample size, which reduces the generalizability 
of the findings, and further validation is needed despite 
the use of cross-validation. Second, this was an obser-
vational study that could not control for the effects of 
clinical interventions (e.g., medication and/or ventila-
tor weaning). Even though all patients were monitored 
in a single neuro-intensive care unit and therapeutic 
interventions were standardized, variations were inevi-
table. Third, patients with persistent ICP greater than 
22  mmHg were excluded from this study in advance, 
which might impact the representativeness of the patient 
population. Nevertheless, the focus of this study was on 
predicting IH events that have not yet occurred, and it is 
believed that guidance for clinical intervention is a more 
important consideration.

Conclusions
In this study, we extracted linear and nonlinear features 
based on ICP-related data in the early postoperative 
period following traumatic brain injury and combined 
them with baseline features to effectively predict subse-
quent IH, especially SIH events, using an interpretable 
random forest technique. Although this result is prior to 
external validation, we believe that it provides a poten-
tially practical predictive pathway for researchers and 
clinicians. In the future, this framework may assist in tri-
aging patients requiring more intensive neurologic treat-
ment at an early stage.
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AUC​ 0.81 (0.07) 0.79 (0.14)
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