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Abstract

Background Circulatory shock, defined as decreased tissue perfusion, leading to inadequate oxygen delivery

to meet cellular metabolic demands, remains a common condition with high morbidity and mortality. Rapid restitu-
tion and restoration of adequate tissue perfusion are the main treatment goals. To achieve this, current hemodynamic
strategies focus on adjusting global physiological variables such as cardiac output (CO), hemoglobin (Hb) concentra-
tion, and arterial hemoglobin oxygen saturation (Sa0,). However, it remains a challenge to identify optimal targets

for these global variables that best support microcirculatory function. Weighting up the risks and benefits is especially
difficult for choosing the amount of oxygen supplementation in critically ill patients. This review assesses the physi-
ological basis for oxygen delivery to the tissue and provides an overview of the relevant literature to emphasize

the importance of considering risks and benefits and support decision making at the bedside.

Physiological premises Oxygen must reach the tissue to enable oxidative phosphorylation. The human body timely
detects hypoxia via different mechanisms aiming to maintain adequate tissue oxygenation. In contrast to the pul-
monary circulation, where the main response to hypoxia is arteriolar vasoconstriction, the regulatory mechanisms

of the systemic circulation aim to optimize oxygen availability in the tissues. This is achieved by increasing the capil-
lary density in the microcirculation and the capillary hematocrit thereby increasing the capacity of oxygen diffusion
from the red blood cells to the tissue. Hyperoxia, on the other hand, is associated with oxygen radical production,
promoting cell death.

Current state of research Clinical trials in critically ill patients have primarily focused on comparing macrocircula-
tory endpoints and outcomes based on stroke volume and oxygenation targets. Some earlier studies have indicated
potential benefits of conservative oxygenation. Recent trials show contradictory results regarding mortality, organ
dysfunction, and ventilatory-free days. Empirical studies comparing various targets for SaO, or partial pressure of oxy-
gen indicate a U-shaped curve balancing positive and negative effects of oxygen supplementation.

Conclusion and future directions To optimize risk-benefit ratio of resuscitation measures in critically ill patients
with circulatory shock in addition to individual targets for CO and Hb concentration, a primary aim should be

to restore tissue perfusion and avoid hyperoxia. In the future, an individualized approach with microcirculatory targets
will become increasingly relevant. Further studies are needed to define optimal targets.
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Introduction

Circulatory shock, which is defined as a life-threaten-
ing state of circulatory system failure associated with
decreased tissue perfusion, leading to inadequate oxy-
gen delivery (DO,) to meet cellular metabolic demands,
remains a common condition with high morbidity and
mortality in the intensive care unit (ICU) [1, 2]. Rapid
restitution and maintenance of adequate tissue perfu-
sion and oxygenation is the main treatment goal in
critically ill patients in shock [3]. The determinants
of global DO, are the cardiac output (CO), the hemo-
globin (Hb) concentration and the oxygen saturation in
the arterial blood (Sa0O,). Hemodynamic management
in the ICU thus aims to optimize these three physi-
ological variables (Fig. 1A). However, defining targets
for each of these variables to rapidly restore tissue
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perfusion while avoiding adverse effects associated
with over-resuscitation (Fig. 1D), remains a challenge.
Current resuscitation protocols often emphasize an
increase in CO. Interventions are guided by volume or
inotrope responsiveness of the stroke volume (SV), a
concept based on the Frank-Starling relationship [4, 5]
and contractility. They are implemented in various ways
in clinical practice [6-8]. The focus of the resuscitation
is primarily the macrocirculation (Fig. 1A) although in
circulatory shock the coherence between the macro- and
the microcirculation is often uncoupled. This is shown by
an absence of increase in tissue perfusion even though SV
might still be responsive to a hemodynamic intervention.
Thus, even in presence of persistent fluid responsiveness
continued volume resuscitation may be associated with
a negative effect on tissue perfusion [9] and with worse
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Fig. 1 Overview of tissue oxygenation. Physiological homeostasis of oxygen delivery to the tissue depends on macrocirculatory (A)

and microcirculatory (B) parameters. The macrocirculatory parameters, such as Hb concentration, SaO,, CO and intravascular volume rely
on the microcirculatory function. Circulatory shock (D) with insufficient oxygen availability in the tissue is due to reactive oxygen species,

inflammation and microcirculatory heterogeneity leading to cell death. The review aims to focus on oxygenation targets, representing a delicate

balance between risks and benefits (C). Interventions to influence the different parameters are shown in grey. The measurements options are
shown in blue. PICCO Pulse Contour Cardiac Output, Echo Echocardiography, BGA Blood Gas Analysis, PAC Pulmonary Artery Catheter, HVM
Hand-held Vital Microscopy, mitPO, mitochondrial PO,, NIRS Near-Infrared Spectroscopy
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outcome [10, 11]. In the case of volume resuscitation, this
can be partly explained by a reduction in tissue perfu-
sion with red blood cells through hemodilution related
decrease in capillary hematocrit. Without knowledge of
the determinants of tissue perfusion and oxygenation, the
optimal target for CO remains unknown and may vary
from person to person [12]. Additionally, the relationship
between DO, and consumption in sepsis and septic shock
has been found to depend on the presence of microcircu-
latory shunting in addition to mitochondrial dysfunction
[13]. Recent technological developments that allow direct
bedside assessment of microcirculatory function could
open up the possibility of targeting microcirculation [14—
16] and put individualized, tissue red blood cell perfusion
focused therapy within reach [17, 18].

The second determinant of global DO,, Hb concen-
tration, directly facilitates oxygen transport in the blood
as oxygen is very poorly soluble in blood plasma (<3%).
Anemia due to various causes is common in critically ill
patients. However the transfusion thresholds for these
patients are mainly based on two trials, the TRICC [19]
and TRISS [20] trial. The trials showed a similar 90-day
mortality comparing a Hb of 7 g per deciliter (g/dl) and
of 9 g/dl. In patients with septic shock, mortality at
90 days, rates of ischemic events and use of life support
were similar in those with a higher Hb target and those
assigned to blood transfusion at a lower threshold; the
latter group received fewer transfusions [20]. Following
these trials Hb targets between 7 and 8 g/dl were defined
for most patients, depending on some general additional
factors, such as hemodynamic instability, acute bleed-
ing, or risk factors such as previous surgery or coronary
artery conditions [21-23]. However, these studies do not
fully represent the heterogeneous population of critically
ill patients suffering from different types of circulatory
shock. Nevertheless, the commonly used Hb concentra-
tion targets provide little individualization and often do
not consider its role in the restoration of tissue perfusion
and organ function (e.g., kidney) in patients with circula-
tory shock [24].

In terms of optimizing the risk—benefit ratio of hemo-
dynamic stabilization of patients with circulatory shock,
oxygen supplementation to increase oxygen content per
blood volume, in absence of lung disease, may be the
most important to consider (Fig. 1C). A stronger focus
on the risks associated with the intervention is desirable,
because on the one hand, changes in blood oxygena-
tion within the physiological range of oxygen saturation,
according to the dissociation curve, only marginally influ-
ence global oxygen supply. On the other hand, supramax-
imal pulmonary and blood oxygenation can be associated
with an increased potential for negative effects. How-
ever, increasing acidosis due to tissue hypoperfusion may
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result in increased DO, due to the Bohr effect on the
dissociation curve. Previous studies have demonstrated
that critically ill patients often show high SaO, values
even though there are indications that the relationship
between SaO, and mortality likely is U-shaped [25]. The
difficulty in defining SaO, targets may thus represent a
risk for hyperoxia based on fear of hypoxia and avoid-
ing hyperoxia could represent a promising strategy to
improve patient management.

This narrative review aims to explore the factors influ-
encing decision-making regarding oxygenation targets
in critically ill patients with circulatory shock. It exam-
ines the risks and benefits of oxygen supplementation by
assessing the physiological basis for DO2 and the regula-
tory mechanisms designed to counteract deficiencies. By
providing an overview of the relevant literature, we aim
to support decision making at the bedside and provide an
outlook on future trends.

Oxygen delivery to the tissues is the basis for all processes
of life

To reach the current understanding of the role of oxygen
in sustaining life has taken many centuries of research.
Oxygen is essential for modern metazoan organisms,
which emerged around 300 million years ago, coincid-
ing with the significant rise of oxygen levels in Earth’s
atmosphere [26]. Oxygen was independently discovered
by the English chemist Joseph Priestley and Carl Wilhelm
Scheel around 1774 [27], and was named by Antoine
Lavoisier in 1778. The “Pneumatic Institution’, founded
1798 in Bristol, was one of the first places where the
effects of oxygen on the human organism were examined
in the setting of different illnesses. In collaboration with
James Watt and Humphry Davy many new methods to
deliver oxygen to patients were developed. The research
was accelerated at the beginning of the twentieth century
with the discovery of oxygen tensions as partial pressure
by Adolf Fick and Paul Bert. But it was not until 1917
that John Scott Haldane, following a coal mine explo-
sion, developed the first face mask with a possibility to
adjust the administration of oxygen [28]. However, the
administration of supplemental oxygen is only the first
step, as the oxygen must find its way to the tissue, where
oxidative phosphorylation takes place. Oxygen rich blood
travels through a network of branching vasculature and
is distributed in the tissue by the microcirculation, con-
sisting of arterioles, capillaries, and post-capillary venules
with a diameter below 20 pm. The red blood cells, which
measure between 3 and 6 pm, travel through the capillar-
ies in a single file fashion and provide oxygen via convec-
tion and diffusion [15]. The former occurs through the
movement of Hb-bound oxygen molecules from the red
blood cells in the capillary network to the mitochondria
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to fulfil their metabolic function [29]. In this process, the
high affinity of the cytochrome ¢ oxidase, the enzyme
that reduces oxygen to water, to oxygen plays an impor-
tant role in maintaining homeostasis by binding oxygen
over a wide range of local oxygen pressures in the mito-
chondria, as low as 0.3-1.0 kPa. This remarkable prop-
erty forms the basis for the oxygen conformance theory,
which states that only at the extremely low end of tis-
sue oxygenation, oxygen demand becomes dependent
on supply. In other words, the functionality of oxidative
phosphorylation as the basis of all life, can be maintained
in the most extreme of conditions [30, 31].

Physiologic adaptation to hypoxemia demonstrates

the adaptability of the pulmonary and systemic
microcirculation

In line with the importance of maintaining oxidative
phosphorylation, the physiological processes along the
oxygen supply chain are aimed at avoiding hypoxemia
and hypoxia, the former referring to low blood oxygen
content, and the latter, to low oxygen levels in the tis-
sue. Genetic and physiological adaptation mechanisms
to hypoxia ensure the maintenance of the homeostasis in
states of external limitation of oxygen supply, and inter-
nal causes of tissue mal perfusion due to systemic dis-
ease. However, before understanding the role of hypoxia
in disease, isolated models of tissue hypoxia were needed
to examine these intrinsic mechanisms. Early research
on adaptation to hypoxia was performed by Paul Bert in
his compression chamber at the University of Sorbonne
in Paris in the nineteenth century. In the following twen-
tieth century subsequent field research was extended to
high altitude locations around the world [32]. As par-
tial pressure of oxygen decreases with ascent to high
altitudes, the human body relies on an intricate system
to detect the lower oxygen availability and react to it to
maintain adequate tissue oxygenation. Some of these
mechanisms focus on the functioning of the lungs, oth-
ers on the systemic organs. In general, all animals express
hypoxia-inducible factor (HIF) 1, composed of HIF-la
and HIF-1f, and vertebrates also produce HIF-2 and
HIF-3. HIF-1 and HIF-2 can activate gene transcription
which in turn regulates systemic DO, and utilization,
the role of HIF-3 is less well known. HIF-1 is regulated
by oxygen-dependent hydroxylation by the von Hippel-
Lindau protein. The O,-dependent binding is inhibited
during hypoxic conditions and the HIF-1 activates some
and inhibits other genes. At the tissue level, hypoxia leads
to angiogenesis via the regulation of vascular endothe-
lial growth factor and to a shift to anaerobic metabolism
via the induction of glycolysis and glucose transporters.
At the same time HIF-2 regulates several genes that con-
trol erythropoiesis [33]. Moreover, HIF are crucial in a
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multitude of mechanisms protecting cells from oxidative
stress by increasing antioxidant production and decreas-
ing oxidant production [34]. While HIF effectively regu-
lates medium- and long-term responses on a cellular
level, immediate physiological adaptation is needed to
provide acute adaptation to hypoxia.

In order to regulate the function of the cardio-respir-
atory system during hypoxia, oxygen levels are sensed
rapidly at the glomus caroticum, which is located at the
bifurcation of the internal and external carotid arteries.
The chemoreceptor tissue, which contains type I neu-
ronal glomus cells and type II sustentacular, glia-like
cells, is sensory innervated by the carotid sinus nerve.
The exact mechanism to detect hypoxia in these cells is
not yet found and still under debate. It is assumed that
hypoxia depolarizes the glomus cells through a inhibition
of K+ cannels and that the subsequent calcium-depend-
ent release of excitatory neurotransmitters increases the
neuronal activity [35]. In this way, cardiovascular and
respiratory responses are triggered and / or modulated.
In addition, different parts of the circulatory system
have intrinsic regulation mechanisms. The pulmonary
circulation responds with vasoconstriction of the pre-
alveolar arterioles to a decrease of alveolar oxygen par-
tial pressure. The effect was first described by Bradford
and Dean in 1889 and was subsequently named Euler—
Liljestrand-reflex [36]. Its rapid onset results from con-
striction of the small intrapulmonary arteries, mainly the
pre-capillary vessels but also, to some extent, the post-
capillary venules [37]. The sensory mechanism to detect
alveolar hypoxia seems to be within the mitochondria
of the smooth muscle cells of the pulmonary arteries
[38]. Thanks to this mechanism, a ventilation-perfusion
mismatch can be avoided. In global hypoxia, such as at
high altitude or with diffuse lung damage, a diffuse Euler-
Liljestrand-reflex leads to an increase of pulmonary
artery pressure [39]. In the systemic circulation, on the
other hand, the focus is to optimize oxygen availability in
the tissues (Fig. 1B). Autoregulation of arterial tone plays
an important role in the regional distribution of blood
flow [40]. An increase in the activity of the sympathetic
nervous system during acute hypoxemia, and above all a
reduction of the activity of the parasympathetic nervous
system in the following weeks, appears to be responsible
for an increase in heart rate [41]. Simultaneously changes
in plasma volume appear to cause a decrease in SV which
ultimately leads to a constant CO [32]. These changes are
often confounded by additional factors such as exercise
or hypovolemia. Furthermore, systemic vascular tone
and systemic vascular hindrance have been found to
remain unaffected during ascent to high altitude. Recent
observations have led to a deeper understanding of the
mechanisms to increase DO, to the tissue during hypoxic
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Fig. 2 Sublingual microcirculation images. Representative images of the sublingual microcirculation before and after the topical application

of nitroglycerin, during exposure to extreme altitude, and in critically ill COVID-19 patients. The sublingual microcirculation shows a similarly
reaction to hypoxia in healthy volunteers at high altitudes, and critically ill COVID-19 patients. The application of a topical nitroglycerin in healthy
volunteers leads to an increase of capillary density that is similar to adaptation to high altitude. Adapted from [42, 45]

exposure. In a large study of healthy volunteers ascend-
ing to 7124 m, recruitment of pre-existing capillaries was
identified as the main physiological response to increase
microcirculatory oxygen extraction capacity at high alti-
tude [42]. A variability in the response of the microcir-
culation has been described in different organs [43, 44].
Dark field microscopy images of the sublingual microcir-
culation recorded in healthy volunteers at sea level and
after 2 weeks at 7042 m, representative for the response
mechanisms to hypoxia, are shown in Fig. 2A, B.

Effects and adaptation to hypoxemia in critically ill patients
Different to volunteers at high altitude, critically ill
patients in circulatory shock often present with insuf-
ficient tissue oxygenation due to impaired microcircu-
lation. In sepsis and septic shock, the microcirculatory
alterations also include primary damage to the micro-
circulation caused by the inflammatory processes
and changes to the coagulation system, resulting in a
reduced functional capillary density, more non-per-
fused and intermittently perfused capillaries and an
increase in perfusion heterogeneity [3] (Fig. 1D). Other
forms of circulatory shock can lead to similar altera-
tions due to secondary damage to the endothelial cells
and the tissue [18]. In critically ill patients, altered
microcirculation without improvement in disease

progression has been shown to be a strong predictor for
poor outcome with higher mortality [46]. Measurement
of microcirculatory function in critically ill patients
with severe hypoxemia and higher SOFA scores due
to COVID-19 ARDS showed increased microcircula-
tory diffusion and convection capacity this in contrast
to other viral disease [45, 47, 48]. Representative dark-
field microscopy of this population is shown alongside
healthy volunteers adapted to high altitude in Fig. 2C.
In these patients with isolated lung failure, it was thus
possible to study the effects of hypoxemia on an oth-
erwise functionally intact systemic microcirculation
and it was shown that adaptation mechanisms to tis-
sue hypoxia are similar to the adaption of healthy
volunteers at high altitude. These findings confirm a
physiological link between high altitude physiology
and critical illness, where in both conditions tissue
hypoxia is present. Furthermore, experimental data
indicate protective effects associated with adaptation to
hypoxia in states of disease, such as a reduced myocar-
dial infarction size in mice when subjected to continu-
ous normobaric hypoxia [49, 50]. These effects show
that the intrinsic mechanisms of microcirculation can
help the tissue to cope with hypoxemia, provided a suf-
ficient global blood flow and availability of Hb as oxy-
gen carrier.
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Hyperoxia may promote microcirculatory dysfunction

and cell death through reactive oxygen species (ROS)
production

In contrast to hypoxemia, hyperoxia, defined as excess of
oxygen in the tissue and hyperoxemia, being a high blood
oxygen content, are often caused by medical staff admin-
istering an overabundance of oxygen to the patient. Com-
pared to the macro- and microhemodynamic effects of
CO and Hb availability, the effect of differences in oxygen
saturation achieved by oxygen supplementation is more
difficult to quantify. Hyperoxia induced in the clinical set-
ting by lack of awareness [51] can harm patients through
production of ROS and induction of inflammation. At the
time of discovery, Joseph Priestley was already discuss-
ing possible negative effects of oxygen. Shortly thereaf-
ter, Antoine Lavoisier discovered the presence of lung
damage in guinea pigs after inhalation of pure oxygen
[52]. In 1958, a first report was published on lung dam-
age in humans detected after and possibly related to
long-term oxygen therapy [53]. Later research located
the main source of ROS within the respiratory chain of
the mitochondria in the pulmonary vascular endothelial
cells, where the precursor superoxide anion originates at
complex III at the inner membrane of mitochondria. The
superoxide anion in turn changes into hydrogen peroxide
and further turns into water or hydroxyl radicals, which
are the main ROS [54]. They are responsible for the
adverse effects in tissues across the body. The primary
effects of hyperoxia in the lung occur in the form of dam-
age to pulmonary capillary endothelial cells, followed by
destruction of pulmonary epithelial cells. Hyperoxia and
associated high levels of ROS destroy cellular macro-
molecules leading to cell death or initiating apoptosis
(Fig. 1D). The effect on remote tissues depends on the
inflammatory response with the secretion of chemo-
attractants and pro-inflammatory cytokines attracting
leukocytes. The leukocytes are thus indirect effectors and
at the same time another source of ROS with consecutive
inflammation and further destruction of lung and other
tissue [55]. High levels of superoxide anions can lead to
specific organ damage and ultimately, promote multi-
organ failure [56]. The hyperoxic microcirculation pri-
marily shows a decrease in capillary density, that may be
accompanied by an increased heterogeneity of capillary
perfusion as normally seen in septic patients [13, 57, 58].
Additionally, the mitochondrial oxygen tension (mitPO,)
decreased over a level of 26.6 kPa PaO, [59]. In the sys-
temic vascular bed, hyperoxemia can increase vascular
resistance and mean arterial pressure and may decrease
CO [60, 61]. Despite this in ovine models of acute peri-
tonitis hyperoxia lead to better macro- and microcircu-
latory parameters [62]. Whereas a systematic review of
hyperoxia in sepsis and septic shock in humans showed
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in 6 out of 10 included studies an increased mortality
[63]. A recent study with mechanically ventilated mice
could show time- and dose-dependent immune response
of hyperoxia with raised cytokines, neutrophils and
chemokines [64]. Knowledge of the relationship between
the fraction of inspired oxygen (FiO,) and the formation
of ROS particularly above a threshold FiO, of 0.6 [65],
and the mechanisms leading to the adverse effects have
increased awareness with oxygen supplementation.

Lower versus higher oxygenation targets in critically ill
patients

The recent advances in our understanding of the effects
of both tissue hypoxia and hyperoxia, have underlined
the importance of the level of oxygen supplementation
not only in terms of a risk—benefit ratio in critically ill
patients, but also because of potential protective effects
of adaptation mechanisms to hypoxia. Based on the
investigation of these pathophysiological mechanisms
related to tissue oxygen availability, several clinical stud-
ies have been conducted in critically ill patients (Table 1).
A trial published in 2014 compared different oxygen
saturation (SpO,) targets (SpO, 90-92% versus higher
SpO,) and showed only a decrease in lactate levels but
no other difference [66]. Another study comparing lib-
eral targets SpO, above 96% with a conservative group
target (SpO, 88-92%) pointed toward a slightly lower
90-mortality in the conservative group [67]. The Oxygen-
ICU randomized clinical trial, published in 2016, showed
lower ICU-mortality with less episodes of shock, liver
failure and bacteremia in the conservative group with an
SpO, target of 94-97% (PaO, 9.3-13.3 kPa) compared
to the conventional group with SpO, of 97-100% (PaO,
up to 20 kPa) [68]. The HYPERS2S-Trial was stopped
prematurely when no benefit of hyperoxia with a FiO,
of 1.0 for 24 h compared to a conservative group with
SpO, 88-95% could be found [69]. The IOTA review and
meta-analysis revealed a dose-dependent increased risk
of short- and long-term mortality of patients treated with
liberal oxygen [70]. The ICU-ROX investigators found
no significant difference in mortality comparing a con-
servative group with SpO,<97% and an usual-oxygen
group with no upper limits [71]. On the contrary the
LOCO, Trial was stopped early because of suspicion of
an increased risk for serious adverse events and higher
90-day mortality in the conservative group [72]. The big-
gest prospective study of the HOT-ICU investigators
comparing a lower-oxygenation group with PaO, target
of 8 kPa and a higher-oxygenation group with PaO, of
12 kPa with a total of 2928 patients showed no difference
in the 28-day mortality or serious adverse effects [73]. A
post hoc subgroup analysis of the cohort did not show
any difference in the 90-day mortality between the two
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groups [74]. Nevertheless, the lower oxygenation group
had a significantly higher percentage of days alive without
life support. Further a study from the Netherlands with
574 patients (low-normal group PaO, 8-12 kPa, high-
normal 14-18 kPa) also found no significant difference
in organ dysfunction at 14 days, nor significant differ-
ences in 90-day mortality, duration of mechanical venti-
lation and ICU length of stay [75]. The US PILOT trial,
involving 2541 patients, did now show any difference in
the number of ventilatory-free days by day 28 between a
lower (SpO, 90%), intermediate (SpO, 94%) and a higher
(SpO, 98%) oxygenation target group [76]. However,
despite the set oxygenation targets, each group in the
study experienced substantial periods of hyperoxia (SpO,
of 99-100%), accounting for 12.3% of the total measure-
ments time in the lower group, 14.7% in the intermediate
group, and 32.7% in the higher group. The ICONIC-trial,
involving 664 patients, did not find any reduction of the
28-day mortality between a low-oxygenation target (PaO,
6.6—-10.6 kPa, SaO, 91-94%) or a high-oxygenation tar-
get (PaO, 14.6-20 kPa, SaO, 96—-100%) [77]. The recently
published HOT-COVID-trial did show more days alive
without life support at 90 days in the lower oxygenation
group (PaO, 8 kPa) compared to the higher oxygenation
group (PaO, 12 kPa) [78] but the mortality at 90 days did
not differ between the two target groups. Furthermore a
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literature review with a meta-analysis of 16 trials could
not point out a significant difference in mortality in
higher or lower oxygenation target at maximum follow-
up [79]. The effect of the distinct oxygenation targets in
these studies are summarized in Supplementary Table 1.
Currently there are two big pending studies, the UK-ROX
trial with 16”500 patients and the MEGA-ROX trial with
40,000 patients.

These clinical trials show that oxygenation targets
might be an important determinant of outcome, but the
balance between risks and benefits may lie close together.
This leads to an even greater challenge to define targets
for oxygenation. Further studies should focus on explor-
ing oxygenation targets in subpopulations of critically ill
patients.

Integration of microcirculation measurements

in resuscitation of critically ill patients

Currently, the resuscitation of patients with circula-
tory shock is primarily focused on the macrocircula-
tion. Tissue perfusion is restored by using crystalloids,
inotropes, vasopressors and/or blood transfusions [8,
24]. For the primary assessment as well as the assess-
ment of treatment response pulse contour analysis, the
pulmonary artery catheter (PAC) and echocardiography
are used. However, as the microcirculation determines

[ Critically ill patient with circulatory shock ]

[ Oxygen availability in the tissue? ]

Assessment

Resuscitation
Volume
crystalloids or colloids

RBC transfusion

Macrocirculation

Cardiac output
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Hemoglobin
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(L

Laser doppler

Microcirculation

Resuscitation

Oxygen availability in
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Fig. 3 Resuscitation pathway. The oxygen availability in critically ill patients with circulatory shock should be assessed promptly. The
macro- and microcirculation should be evaluated and addressed in parallel and the effect of resuscitation interventions should be re-assessed
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the oxygen availability for the organs it should be
assessed and restored in parallel to the macrocircula-
tion [16] (Fig. 3). Bedside assessment of microcircula-
tion is not well established today but there are different
methods used in experimental settings which could also
be used in the clinic. One promising option is the hand-
held vital microscopy (HVM) that uses dark field imag-
ing technique and can be performed sublingually. HVM
enables to measure tissue red blood cell perfusion allow-
ing differentiation of the effect of resuscitation measures
on diffusion and convection capacity of oxygen carriers
in the capillaries independently. New developments are
underway to add two-wavelength measurements and
ability to measure hemoglobin oxygen saturation in indi-
vidual oxygen carriers as they move through the tissue.
Another interesting tool is the non-invasively cellular
oxygen metabolism measurement monitor (COMET),
that measures mitochondrial oxygen tension (mitoPO,),
being the real endpoint of the oxygen cascade. [59, 80].
Further, Near-Infrared Spectroscopy (NIRS) can give
insight into red blood cell oxygenation and laser Doppler
measures red blood cell velocity. It would be welcome if
in the future there were a combined tool to measure the
mitochondrial oxygen tension and other determinants
of the microcirculation. The microcirculation can be
influenced by conventional measures such as the manip-
ulation of FiO2, the administration of fluids, RBC trans-
fusions or vasoactiva but also modulation of the NO and
the arachidonic pathways as well as the endothelium are
discussed. Under certain conditions, the necessary meas-
ures for resuscitation of the macro- and microcirculation
may be contradictory, for example a desired vasodilata-
tion in the periphery with a need for vasopressors to
maintain sufficient organ perfusion. It is important to
develop appropriate schemes and test them in the clinic
to determine appropriate cut-off values for determi-
nates of the microcirculation. The goal would be a simple
assessment of the microcirculation bedside with a corre-
sponding algorithm for optimization.

Conclusion

The three main determinants of the global DO, are the
CO, the Hb concentration and SaO,. Although it remains
challenging to define targets for all three variables and
these must be individually adjusted, the emerging lit-
erature shows that avoiding hyperoxia is essential to
improve the risk—benefit ratio of hemodynamic stabili-
zation in critically ill patients with circulatory shock. In
absence of pulmonary disease, oxygen supplementation
to increase SaO, may be one of the least effective means
to increase oxygen availability in the tissue. Limiting oxy-
gen supplementation may provide a promising approach
to reduce adverse effects of oxygen and even promote
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protective adaptation mechanisms. Advances in the
direct measurement of tissue perfusion and mitochon-
drial oxygen tension could provide a novel approach to
bring tissue-centric, individualized resuscitation at the
bedside, increase awareness of the interplay of the SaO,
the CO and the Hb concentration and improve the risk—
benefit ratio of hemodynamic interventions.

For the definition of clear targets in critically ill patients
further studies are needed. Based on the current litera-
ture, we recommend a conservative approach providing
only the minimum necessary FiO, to effectively prevent
hyperoxemia and hyperoxia.
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