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Abstract 

Background The European Resuscitation Council 2021 guidelines for haemodynamic monitoring and management 
during post-resuscitation care from cardiac arrest call for an individualised approach to therapeutic interventions. 
Combining the cardiac function and venous return curves with the inclusion of the mean systemic filling pres-
sure enables a physiological illustration of intravascular volume, vasoconstriction and inotropy. An analogue mean 
systemic filling pressure (Pmsa) may be calculated once cardiac output, mean arterial and central venous pressure are 
known. The NEUROPROTECT trial compared targeting a mean arterial pressure of 65 mmHg (standard) versus an early 
goal directed haemodynamic optimisation targeting 85 mmHg (high) in ICU for 36 h after cardiac arrest. The trial data 
were used in this study to calculate post hoc Pmsa and its expanded variables to comprehensively describe venous 
return physiology during post-cardiac arrest management. A general estimating equation model was used to analyse 
continuous variables split by standard and high mean arterial pressure groups.

Results Data from 52 patients in each group were analysed. The driving pressure for venous return, and thus car-
diac output, was higher in the high MAP group (p < 0.001) along with a numerically increased estimated stressed 
intravascular volume (mean difference 0.27 [− 0.014–0.55] L, p = 0.06). The heart efficiency was comparable (p = 0.43) 
in both the standard and high MAP target groups, suggesting that inotropy was similar despite increased arterial load 
in the high MAP group (p = 0.01). The efficiency of fluid boluses to increase cardiac output was increased in the higher 
MAP compared to standard MAP group (mean difference 0.26 [0.08–0.43] fraction units, p = 0.01).

Conclusions Calculation of the analogue mean systemic filling pressure and expanded variables using haemody-
namic data from the NEUROPROTECT trial demonstrated an increased venous return, and thus cardiac output, as well 
as increased volume responsiveness associated with targeting a higher MAP. Further studies of the analogue mean 
systemic filling pressure and its derived variables are warranted to individualise post-resuscitation care and evaluate 
any clinical benefit associated with this monitoring approach.

Keywords Mean systemic filling pressure, Cardiac arrest, Haemodynamic management

Open Access

© Crown 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit 
http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Intensive Care Medicine
Experimental

*Correspondence:
Anders Aneman
anders.aneman@health.nsw.gov.au
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2096-5304
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40635-024-00657-0&domain=pdf


Page 2 of 9Aneman et al. Intensive Care Medicine Experimental           (2024) 12:70 

Background
The European Resuscitation Council 2021 guidelines 
for haemodynamic monitoring and management dur-
ing post-resuscitation care from cardiac arrest state that 
perfusion should be maintained with fluids, noradrena-
line and/or dobutamine depending on individual patient 
needs for intravascular volume, vasoconstriction or 
inotropy [1]. Multiple concurrent factors affect systemic 
perfusion in the post-cardiac arrest setting, emphasising 
the need for an adequate monitoring approach to guide 
therapy in individual patients. The venous return physi-
ology proposed by Guyton [2] provides a physiologically 
robust framework to evaluate the principal components 
of cardiac performance, combining the venous return 
and cardiac function curves [3]. The pressure gradient 
between the mean systemic filling pressure and the right 
atrial pressure represents the driving pressure for venous 
return, and thus determines the cardiac output [4]. The 
mean systemic filling pressure is the result of the elastic 
recoil pressure of the intravascular volume during no-
flow conditions, or more precisely the stressed intravas-
cular volume divided by the averaged systemic vascular 
compliance [5, 6]. Several methods exist to estimate the 
mean systemic filling pressure in the clinical setting [7]. 
The mathematical model developed by Parkin and Lean-
ing to calculate an analogue mean systemic filling pres-
sure (Pmsa) [8] has been experimentally validated [9–11] 
and is best aligned with measurements in humans [12–
14]. Haemodynamic monitoring in post-cardiac arrest 
patients often include mean arterial pressure (MAP), 
central venous pressure (CVP) and cardiac output (CO) 
making the calculation of Pmsa feasible. Once Pmsa is 
known, several variables to evaluate venous return, car-
diac function and the intravascular volume state may be 
derived. The application of measurable venous return 
physiology to evaluate haemodynamic post-resuscitation 
management has been very sparsely reported in the liter-
ature, with only one recent experimental study published 
[15]. In contrast, several studies of venous return physi-
ology based on Pmsa have been reported in postoperative 
cardiac patients [16–21], during anaesthesia [22–24] and 
intensive care [25–27], and in a review of the passive leg 
raising test to assess volume responsiveness [28].

This exploratory study utilised data previously collected 
in a randomised study of goal-directed haemodynamic 
optimisation compared to standard care (the NEURO-
PROTECT trial [29, 30]) in post-cardiac arrest patients, 
applying Pmsa and its derived variables to illustrate the 
venous return physiology. The aim was to use these vari-
ables to comprehensively describe the effects of volume 
administration, vasopressor and inotropic support in two 
different strategies of post-resuscitation haemodynamic 
management.

Methods
The original data were captured in the randomised 
NEUROPROTECT clinical trial (NCT02541591). The 
protocol [30], cardiac arrest characteristics and pri-
mary outcomes [29] have been published earlier and 
this study is an exploratory, post hoc analysis of venous 
return physiology centred on Pmsa in the haemodynamic 
management of comatose survivors of cardiac arrest. 
The study is reported according to the Strengthening 
the Reporting of Observational Studies in Epidemiology 
(STROBE) statement [31] (see Additional file 1).

The details of patient characteristics, the primary 
outcome of the extent of anoxic brain damage on dif-
fusion-weighted magnetic resonance imaging, and the 
secondary outcomes of favourable neurological status 
at ICU discharge and at 180  days have been published 
[29]. In summary, comatose survivors of out-of-hospital 
cardiac arrest of a presumed cardiac cause were ran-
domised to early goal directed haemodynamic optimisa-
tion (EGDHO) targeting a mean arterial pressure (MAP) 
of 85–100 mmHg and a mixed venous oxygen saturation 
(SvO2) of 65–75%, or to receive standard care with MAP 
maintained at 65  mmHg (MAP65) from admission to 
ICU and over the next 36 h. In the EGDHO group, flu-
ids up to 3 L/24 h were administered as guided by stroke 
volume variation or a passive leg raising manoeuvre 
with blood transfusions used to maintain haemoglobin 
> 100  g/L, and infusions of dobutamine and/or norepi-
nephrine added if necessary to achieve the haemody-
namic targets. In the MAP65 group, haemodynamic 
support was provided at the discretion of the clinical 
team. Standard care in both groups included sedation 
(propofol, remifentanil), mechanical ventilation and tar-
geted hypothermia at 33 °C for the first 24 h followed by 
rewarming at 0.3 °C/h until 36 °C.

Venous return physiological variables
The application of venous return physiological variables 
to interpret the haemodynamic status of patients admit-
ted to ICU has been detailed in previous reports, for 
example [17, 25, 28], and the concepts are illustrated in 
the Additional File 2. Pmsa was calculated according to 
Parkin and Leaning [8]:

where the constant c incorporates the venoarterial com-
pliance ratio and estimated venous resistance adjusted 
for age, height and weight [32]. The CO must equal the 
venous return (VR) to the heart which is regulated by 
the pressure gradient for venous return (VRdP) between 
Pmsa and the right atrial pressure, represented by CVP. 

Pmsa = CVP · 0.96+ MAP · 0.04 + CO · c
(

mmHg
)
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Together with the resistance to venous return (RVR), the 
CO is determined by

The resistance to venous return (RVR) is hence calcu-
lated as the VRdP over CO. The pumping action of the 
heart maintains the VRdP, and the efficiency of the heart 
(Eh) may thus be calculated as [8, 33]

where a value ~ 1 reflects a normal heart function with 
CVP close to 0 and a value of 0 is seen in circulatory 
standstill when CVP and Pmsa are equilibrated. In addi-
tion to the static Eh, the degree to which a volume bolus 
changes the pumping capacity of the heart is defined by 
the ratio of the change in driving pressure for VR to the 
change in Pmsa, providing a dynamic measure of volume 
efficiency (Evol) [16, 17, 19]:

An integrative measure of hydraulic pumping ability 
of the heart is represented by the product of MAP and 
CO, referred to as cardiac power, which correlates with 
clinical outcomes in cardiac patients [34–36]. The cardiac 
power (CP) was scaled to the volume state represented by 
Pmsa as [16, 17, 19]:

and further analysed as a dynamic variable following a 
fluid bolus by the change in CP over the change in Pmsa, 
referred to as cardiac power efficiency (ECP) similar to 
Eh and Evol. In addition preload and pump function vari-
ables, it is important to consider the external opposition 
to ventricular ejection represented by the arterial load. 
An integrative measure of cardiac afterload that includes 
steady and pulsatile components is given by the effective 
arterial elastance (Ea) calculated as [37, 38]

Finally, the stressed volume was derived from extrap-
olating the slope of the line connecting Pmsa before and 
after a fluid bolus of 500 mL to the x-axis intercept corre-
sponding to a Pmsa = 0 [17, 20], with the assumption that 
the administered volume remained in the intravascular 
compartment from the start of infusion to the next meas-
urement (30–40 min).

The potential confounding introduced by mechanical 
circulatory support on the equations for venous return 
physiology is unclear, and these patients were excluded in 
the analyses.

CO = VR = (Pmsa − CVP)/RVR (L/min)

Eh = (Pmsa − CVP)/Pmsa (0 ≤ Eh ≤ 1)

Evol = �VRdP/�Pmsa (0 ≤ Evol ≤ 1)

CP = ([MAP · CO]/451)/Pmsa

(

W/mmHg
)

Ea = 0.9 · systolic arterial pressure
/stroke volume

(

mmHg/mL
)

Statistical analyses
Data are reported as means ± standard deviation or medi-
ans and interquartile ranges [IQR, 25th–75th percentile] 
as appropriate for variables with normal or non-normal 
distributions as judged by inspection of the Q–Q plots, 
Levene’s test of equality of variances, and the Shapiro–
Wilk normality test. Categorical data are reported as 
counts and percentages. Longitudinal haemodynamic 
data were analysed using a generalised estimating equa-
tions (GEE) model that included factors for time, treat-
ment and their interaction. The model included an 
exchangeable working correlation matrix to account for 
within-patient correlations. A Gaussian distribution with 
log-link function was used for all variables, except for Eh, 
Evol, ECP and Ea that were analysed using a gamma dis-
tribution since these variables were positive only and 
skewed to the right. Longitudinal haemodynamic data 
are reported as the marginal means and their 95% confi-
dence intervals. The Wald test was applied to the robust 
standard errors in the GEE models and the robust z value 
reported as a p value from a normal distribution of the 
test statistic. In addition to the GEE model, data for the 
first 6 h were compared to the last 6 h using the Welch 
two sample t test with changes reported as mean differ-
ence including the 95% confidence interval. Correlations 
were assessed by Spearman’s correlation coefficient, rho, 
including the 95% confidence interval. Physiologically 
impossible data were deleted and similar to any miss-
ing data imputed using multiple imputation by chained 
equations with ten iterations, with the results from the 
calculated variables in each iteration pooled. Statistical 
analyses were performed using the R statistical software 
(v.4.0.3, R Foundation for Statistical Computing, Vienna, 
Austria) in RStudio using the ‘dplyr’, ‘mice’, ‘geepack’, 
‘emmeans’ and ‘ggplot2’ packages. Statistical significance 
was set at a two-sided p < 0.05.

Results
A total of 104 patients were included in this post hoc 
study with 52 patients in the EGDHO group and 52 
patients in the MAP65 group. Patient and characteris-
tics are presented in Table 1. One patient in each group 
was supported with intra-aortic balloon counterpulsa-
tion and excluded in the analyses. There were no differ-
ences in the fluid boluses administered with 28 patients 
given 54 boluses in MAP65 group, and 21 patients 
given 46 boluses in the EGDHO group. A similar and 
small number of patients received blood transfusions. 
Patients in the EGDHO group received more noradren-
aline and dobutamine, but less propofol and with no 
difference in the dose of remifentanil (Table 1).

The MAP was consistently higher in EGDHO com-
pared to MAP65 (p < 0.01, Fig.  1A). There was no 
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significant difference in CVP between groups (p = 0.77, 
Fig. 1B), while CVP decreased over time in both groups 
(mean difference 1.4 [0.4–2.3] mmHg, p = 0.004, in 
MAP65 and mean difference 1.9 [1.1–2.7] mmHg, 
p < 0.001, in EGDHO). The CO was higher in the 
EGDHO group (p = 0.02, Fig.  1C) with an increase 
over time in both groups (mean difference 0.60 [0.28–
0.92]  L/min, p < 0.001, in MAP65 and mean difference 
1.13 [0.82–1.45] L/min, p < 0.001, in EGDHO).
Pmsa was not different between groups (p = 0.76) but 

decreased over time (mean difference 1.88 [1.11–2.66] 
mmHg, p = 0.005, in MAP65 and mean difference 1.30 

[0.38–2.21] mmHg, p < 0.001, in EGDHO) (Fig.  2A). 
The VRdP was higher in the EGHDO group (p < 0.001), 
consistent with the higher CO, with no significant 
changes over time (mean difference 0.02 [− 0.14–0.11] 
mmHg, p = 0.80, in MAP65 and mean difference 0.00 
[− 0.11–0.12] mmHg, p = 0.90, in EGDHO) (Fig.  2B). Eh 
was not different between groups (p = 0.43) and did not 
change over time (mean difference 0.03 [− 0.01–0.06] 
mmHg, p = 0.10, in MAP65 and mean difference 0.02 
[− 0.02–0.05] mmHg, p = 0.30, in EGDHO) (Fig. 2C). An 
increased Evol (mean difference 0.26 [0.08–0.43], p = 0.01) 
for all bolus episodes was observed in the EGDHO group 

Table 1 Patient and treatment characteristics

MAP65 (n = 52) EGDHO (n = 52) p value

Age (years) 65 ± 10 64 ± 8.1 0.63

Height (cm) 176 ± 8.0 172 ± 7.8 0.28

Weight (kg) 81 ± 10 78 ± 12 0.24

Gender (male) 39 (75%) 40 (77%) 0.82

IABP (patients) 1 (2%) 1 (2%) 0.14

Fluid bolus (patients) 29 (56%) 26 (50%) 0.56

Blood transfusion (patients) 2 (4%) 4 (8%) 0.40

Noradrenaline (mcg/kg/min)

 Cumulative 1.85 [0.65–4.4] 3.3 [1.11–6.95] < 0.001

 Time-weighted average 0.14 [0.06–0.19] 0.22 [0.12–0.38] < 0.001

Dobutamine (mcg/kg/min)

 Cumulative 0 [0–28] 0 [0–40] < 0.001

 Time-weighted average 0 [0–1.66] 0 [0–2.49] < 0.001

Propofol (mg/kg/min)

 Cumulative 0.23 [0.10–0.49] 0.17 [0.08–0.35] < 0.001

 Time-weighted average 0.017 [0.009–0.030] 0.011 [0.006–0.022] < 0.001

Remifentanyl (mcg/kg/min)

 Cumulative 2.22 [1.04–3.75] 2.25 [1.12–3.48] 0.80

 Time-weighted average 0.15 [0.1–0.15] 0.15 [0.1–0.15] 0.87

MAP
p<0.01

CO
p=0.02
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Fig. 1 Changes in standard haemodynamic variables. Values are shown for the study period of 36 h from admission to ICU as marginal means 
and the 95% confidence intervals. A MAP, mean arterial pressure; B CVP, central venous pressure; C CO, cardiac output
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return; C Eh, heart efficiency; D CP, cardiac power indexed by Pmsa; E Ea, effective arterial elastance; F RVR, resistance to venous return



Page 6 of 9Aneman et al. Intensive Care Medicine Experimental           (2024) 12:70 

(0.42 [0.23–1.0]) compared to the MAP65 group (0.11 
[0.02–0.89]).

The CP was greater in the EGDHO group (p < 0.001) 
with an increase over time observed in the EGDHO 
group (mean difference 0.012 [0.004–0.024) W/mmHg, 
p = 0.04] as well as in the MAP65 group (mean differ-
ence 0.015 [0.008–0.021  W/mmHg, p < 0.001) (Fig.  2D). 
ECP was greater in the EGDHO group for all fluid boluses 
(0.17 [0.10–0.39]) compared to MAPG65 (0.08 [0.01–
0.17]), p = 0.04.
Ea was greater in the EGDHO group (p = 0.01) with a 

decrease over time only observed in the MAP65 group 
(mean difference 0.43 [0.11–0.75] mmHg/mL, p = 0.01) 
(Fig. 2E). Ea decreased after fluid bolus administration in 
all patients (mean difference 0.34 [0.23–0.45] mmHg/mL, 
p < 0.001) but with no significant difference between the 
treatment groups. Ea correlated with the RVR (0.81 [0.80–
0.83], p < 0.001) and SVR (0.81 [0.80–0.83], p < 0.001) in 
all patients. The RVR was higher in the EGDHO group 
(p < 0.01) and decreased over time in both EGDHO (0.18 
[0.09–0.28] mmHg/min/L, p < 0.001) and MAP65 (0.26 
[0.16–0.36] mmHg/min/L, p < 0.001) groups (Fig. 2F).

The stressed volume estimated from all bolus episodes 
during the study period was numerically greater in the 
EGDHO group (1.75 [1.43–2.04] L) compared to the 
MAP65 group (1.43 [0.72–1.82] L), although this differ-
ence did not attain statistical significance (mean differ-
ence 0.27 [− 0.014–0.55], p = 0.06).

Discussion
The main findings of this explorative post-hoc study of 
the NEUROPROTECT haemodynamic data were: (1) the 
analogue mean systemic filling pressure reflecting the 
intravascular volume state was within a normal range, 
while decreasing over the study period up to 36  h after 
cardiac arrest; (2) the driving pressure for venous return, 
and thus cardiac output, was higher in the group tar-
geting a higher MAP post-resuscitation along with an 
increased estimated stressed intravascular volume; (3) 
the heart efficiency was comparable in both the stand-
ard and high MAP target groups suggesting that inot-
ropy was similar; (4) the cardiac power was higher in the 
group targeting a higher MAP as a result of maintaining 
both higher MAP and cardiac output; (5) the efficiency of 
fluid boluses to increase cardiac output and power was 
increased in the higher MAP compared to standard MAP 
group; and (6) both the arterial load and the resistance to 
venous return were increased in the higher MAP group 
while still sustaining an increased cardiac output.
Pmsa over the first few hours following admission to 

ICU was similar to Pmsa reported in postoperative car-
diac patients [17] and patients with cardiogenic acute 

circulatory failure [25]. A decrease in Pmsa was subse-
quently observed that is likely to reflect the receding 
vasoconstrictive effects of acute resuscitation drugs 
including adrenaline and vasodilation from the insti-
tution of sedation in ICU. An absolute reduction in 
intravascular volume seems less likely given the similar 
incidence of fluid boluses in both groups. While Pmsa was 
not statistically significantly different between the two 
groups, it was numerically increased in the EGDHO with 
a less pronounced decrease over time.

A central finding of this study is the increased VRdP 
observed in the EGDHO group that sustained a greater 
cardiac output. This difference in VRdP was the com-
bined result of the Pmsa trending higher and the CVP 
trending lower in the EGDHO group. A composite vari-
able like VRdP contributes more information on the vol-
ume and compliance state of the cardiovascular system 
than the isolated values of Pmsa or CVP. The static nature 
of those latter variables limits any inference to vascular 
volume. This is often reported for CVP [39] but applies 
to Pmsa as well, while this acknowledgement should not 
be construed to dismiss their combined validity [33]. 
The VRdP around 3  mmHg in both groups was at the 
lower end of the normal range of 3–8  mmHg reported 
in humans [12, 40, 41], and corresponded to a cardiac 
output less than 4 L/min for most of the duration of the 
study. An increased VRdP in the EGDHO group is also 
supported by the increased, although statistically not sig-
nificantly different, stressed volume in this group com-
pared to MAP65. The estimated 1.7  L in the EGDHO 
group is similar to previous reports during hypother-
mic circulatory arrest [42] and in postoperative cardiac 
patients [17, 20]. It should be noted that the stressed 
volume was estimated by extrapolation of Pmsa changes 
before and after the administration of a fluid bolus. The 
number of bolus episodes were limited and dispersed 
over time. Thus caution is warranted when interpret-
ing simple relationships between stressed volume esti-
mates and Pmsa or VRdP. Supporting a greater stressed 
volume and VRdP in the EGDHO group overall is the 
corresponding increase in Evol, meaning that the 500 ml 
fluid boluses when given in this group more effectively 
increased VRdP and hence cardiac output. The increased 
dosing of noradrenaline in the EGDHO group plausibly 
mobilised volume from the unstressed compartment of 
predominantly large splanchnic veins [43] to the stressed 
portion of the intravascular volume, by reducing compli-
ance in these capacitance vessels.
Eh was not significantly different between the two 

groups and hence the increased cardiac output in the 
EGDHO group would not appear to be related to an 
increased pump efficiency of the heart. Targeting a 
higher MAP could in theory have improved the coronary 
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perfusion pressure with additional inotropic support 
from dobutamine, although low doses were used. The 
increased CP in the EGDHO group was proportion-
ally driven more by the higher MAP than the CO, while 
the increased ECP reflected the increased cardiac output 
response to a volume bolus. The three efficiency variables 
are useful as they provide a scalar, continuous measure 
within the interval 0 to 1, as opposed to the frequently 
used dichotomous description of patients being ‘respon-
sive’ or ‘non-responsive’ to haemodynamic interven-
tions [19, 25]. Viewing Eh, Evol and ECP together, the main 
effects of the EGDHO interventions were an increased 
responsiveness of cardiac output to the volume state.

The arterial load was increased in the EGDHO group 
as indicated by Ea and RVR variables, while no adverse 
cardiac effects from high MAP were reported in the 
original study [29] or in a subsequent meta-analysis 
[44]. The increased Ea is not unexpected given a higher 
MAP target in the EGDHO and it still represents a rela-
tively schematic measurement of a complex cardiovascu-
lar phenomenon [37]. The greater RVR in the EGDHO 
group targeting a higher MAP was associated with 
vasoconstriction by the increased dose of noradrenaline 
and reduced vasodilation associated with the decreased 
dose of propofol. The decreased dose of propofol in the 
EGDHO group may also have facilitated reaching the 
target variables by reducing the effects of decreased car-
diac output, myocardial depression and venodilation as 
reflected by increased VRdP in this group. The correla-
tion between Ea and RVR arguably incorporates a degree 
of mathematical coupling from the inclusion of cardiac 
output or stroke volume in both variables. The arte-
rial load represented by Ea is different from the average 
resistance to a blood corpuscular element represented by 
RVR.

This study has some important strengths and limi-
tations. The detailed haemodynamic evaluation using 
venous return physiology adds novel insights into post-
resuscitation management. The individualised approach 
to fluids, vasopressors and inotropes called for in the ERC 
2021 guidelines [1] may be facilitated by the comprehen-
sive set of continuous variables reported in this study, 
allowing an analysis of the main cardiovascular domains 
relating to intravascular volume, vascular resistance and 
heart pump function. The consecutive and granular data 
over 36 h of post-resuscitation management allowed car-
diovascular dynamics to be assessed in detail. The study 
is limited by its post-hoc nature with potential residual 
confounding and the results should be viewed as explora-
tory and hypothesis generating. The precision of cardiac 
output monitoring in the MAP65 (Vigileo, Edwards Life 
Sciences) and the EGDHO (pulmonary artery catheter 
thermodilution) groups may vary but is unlikely to have 

had a major impact given the scaling of CO in the Pmsa 
equation. Two tertiary-level hospitals contributed data to 
the original study, but the cohort is relatively small and 
its external validity may be challenged. Most data were 
obtained during hypothermia that may affect vascular 
tone and compliance and observations might be different 
in normothermic conditions.

In conclusion, applying venous return physiology to 
the analysis of post-resuscitation haemodynamic data in 
the NEUROPROTECT trial demonstrated an increased 
venous return and volume responsiveness associated 
with targeting a higher MAP improved systemic perfu-
sion. Further studies of the analogue mean systemic fill-
ing pressure and its derived variables are warranted to 
individualise post-resuscitation care and evaluate any 
clinical benefit associated with this monitoring approach.
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