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Lactated Ringers, albumin and mannitol 
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Abstract 

Background Endothelial disorders with edema formation and microcirculatory perfusion disturbances are com‑
mon in cardiac surgery with cardiopulmonary bypass (CPB) and contribute to disturbed tissue oxygenation resulting 
in organ dysfunction. Albumin is protective for the endothelium and could be a useful additive to CPB circuit priming. 
Therefore, this study aimed to compare organ edema and microcirculatory perfusion in rats on CPB primed with lac‑
tated Ringers, albumin and mannitol (LR/albumin/mannitol) compared to 6% hydroxyethyl starch (HES).

Results Male rats were subjected to 75 min of CPB primed with either LR/albumin/mannitol or with 6% HES. Renal 
and lung edema were determined by wet/dry weight ratio. Pulmonary wet/dry weight ratio was lower in rats on CPB 
primed with LR/albumin/mannitol compared to HES (4.77 [4.44–5.25] vs. 5.33 [5.06–6.33], p = 0.032), whereas renal 
wet/dry weight ratio did not differ between groups (4.57 [4.41–4.75] vs. 4.51 [4.47–4.73], p = 0.813). Cremaster micro‑
circulatory perfusion was assessed before, during and after CPB with intravital microscopy. CPB immediately impaired 
microcirculatory perfusion compared to baseline (LR/albumin/mannitol: 2 [1–7] vs. 14 [12–16] vessels per recording, 
p = 0.008; HES: 4 [2–6] vs. 12 [10–13] vessels per recording, p = 0.037), which persisted after weaning from CPB with‑
out differences between groups (LR/albumin/mannitol: 5 [1–9] vs. HES: 1 [0–4], p = 0.926). In addition, rats on CPB 
primed with LR/albumin/mannitol required less fluids to reach sufficient flow rates (0.5 [0.0–5.0] mL vs. 9 [4.5–10.0], 
p < 0.001) and phenylephrine (20 [0–40] µg vs. 90 [40–200], p = 0.004). Circulating markers for inflammation (interleu‑
kin 6 and 10), adhesion (ICAM‑1), glycocalyx shedding (syndecan‑1) and renal injury (NGAL) were determined by ELISA 
or Luminex. Circulating interleukin‑6 (16 [13–25] vs. 33 [24–51] ng/mL, p = 0.006), interleukin‑10 (434 [295–782] vs. 
2120 [1309–3408] pg/ml, p < 0.0001), syndecan‑1 (5 [3–7] vs. 15 [11–16] ng/mL, p < 0.001) and NGAL (555 [375–1078] 
vs. 2200 [835–3671] ng/mL, p = 0.008) were lower in rats on CPB primed with LR/albumin/mannitol compared to HES.

Conclusion CPB priming with LR, albumin and mannitol resulted in less pulmonary edema, renal injury, inflamma‑
tion and glycocalyx degradation compared to 6% HES. Furthermore, it enhanced hemodynamic stability compared 
with HES. Further research is needed to explore the specific role of albumin as a beneficial additive in CPB priming.
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Introduction
Endothelial disorders with consecutive edema formation 
and microcirculatory perfusion disturbances are well-
known phenomena in cardiac surgery with cardiopulmo-
nary bypass (CPB) and contribute to a disturbed tissue 
oxygenation resulting in organ dysfunction [1–3]. CPB is 
associated with endothelial activation, hyperpermeabil-
ity and vascular leakage in rats [4, 5] and patients [6] as 
a consequence of, among others, systemic inflammation 
and hemodilution [7], both of which are  still inevitable 
with the use of CPB [2, 8, 9]. This results in accumula-
tion of interstitial fluid and edema, which can compro-
mise microcirculatory perfusion [10] and transport of 
oxygen and nutrients from blood to tissue [1], with kid-
ney and lungs as most vulnerable organs [2, 3]. Several 
strategies are discussed to reduce these complications. 
In rats, pharmacologically protecting the endothelium 
was promising in reducing vascular leakage and pre-
serving microcirculatory perfusion [4]. Interestingly, the 
choice of CPB priming might also play an important role 
in reduction of vascular leakage and consequently tis-
sue edema. Different prime fluid strategies have been 
used in order to reduce interstitial fluid accumulation. 
These strategies mainly focused on preserving colloid 
oncotic pressure (COP), an important determinant of 
interstitial fluid accumulation [11], with a crystalloid or 
colloid-based prime fluid strategy [12–16]. It has previ-
ously been shown that human albumin and hydroxyethyl 
starch (HES) prevented an increase in extravascular lung 
water index compared to crystalloids [12, 14]. Albumin 
could be beneficial in an optimal priming strategy due 
to its protective effect on the endothelial glycocalyx, its 
ability to preserve COP, and minimize interstitial fluid 
accumulation [17, 18]. Furthermore, albumin reduces 
the risk of myocardial injury during cardiac surgery [17, 
19]. HES has been withdrawn from the European market 
in 2013 by the European Medicines Agency’s (EMA) due 
to safety concerns. In the US, the Food and Drug Admin-
istration (FDA) issued in the same year a warning about 
the increased risk of mortality and renal injury and in 
Australia, the Therapeutic Goods Administration (TGA) 
restricted its use since 2018. Nevertheless, it is still used 
in many countries, such as New Zealand, mainly due to 
its cost-effectiveness compared with albumin, which was 
also shown in a recent meta-analysis [20]. Thus, com-
pared to HES, human albumin is more expensive, but 
appears to confer benefits in terms of endothelial protec-
tion. However, it is unknown whether the use of albumin 
in CPB priming is beneficial in the reduction of organ 
edema and preservation of microcirculatory perfusion. 
Therefore, we aimed to investigate the effect of lactated 
Ringer, albumin and mannitol priming on lung and renal 
edema formation and microcirculatory perfusion in rats 

on CPB compared to HES priming. We hypothesize that 
priming with lactated Ringer, albumin and mannitol is 
beneficial for organ edema and microcirculatory perfu-
sion in rats on CPB. Despite its higher costs, albumin 
may offer greater advantages in the context of cardiac 
surgery, compared with HES.

Materials and methods
Animals
All procedures were approved by the Institutional Animal 
Care and Use Committee of the VU University, the Neth-
erlands (Animal welfare number: AVD1140020172144), 
and conducted following the EU Directive (2010/63EU) 
on the protection of vertebrate animals used for experi-
mental and other scientific purposes and the Animal 
Research Reporting of In  Vivo Experiments (ARRIVE) 
guidelines on animal research [21]. Male Wistar rats 
weighing 350–425  g (8–10  weeks of age, Charles River 
Laboratories, Brussels, Belgium) were housed in a tem-
perature-controlled room (12/12 h light dark cycle, 
20–23 °C, 40–60% humidity) with food and water ad libi-
tum. Rats were not randomized between groups, the 
first rats (n = 9) were assigned to the CPB primed with 
HES, and the second (n = 9) to the CPB primed with a 
mixture of lactated Ringers, albumin and mannitol (LR/
albumin/mannitol). Rats were subjected to 75  min of 
CPB. One hour following weaning from CPB, rats were 
killed by blood withdrawal under 5.0% isoflurane inhala-
tion (Fig. 1). Kidneys and lungs were isolated and blood 
samples were collected and stored at −  80  °C for addi-
tional molecular analyses. Primary outcome was wet/
dry weight ratio of lungs and kidneys. Secondary param-
eters included hemodynamic and blood gas parameters, 
cremaster microcirculatory perfusion, plasma levels of 
inflammatory markers: interleukin-6 (IL-6), interleu-
kin-10 (IL-10), adhesion: intercellular adhesion molecule 
1 (ICAM-1), glycocalyx degradation: syndecan-1, and 
renal injury: neutrophil gelatinase-associated lipocalin 
(NGAL), and fluid requirements. All outcome measures 
were measured and analyzed by an investigator who was 
blinded for intervention allocation.

Priming
In the control group, the CPB circuit was primed 
with ± 10  mL 6% HES 130/0.4 (Voluven, Fresenius Kabi, 
Halden, Norway). In the intervention group, priming 
consisted of a mixture of lactated Ringer (LR; Baxter 
BV, Utrecht, the Netherlands), human albumin (Albu-
rex 200 g/L, CSL Behring, King of Prussia, Pennsylvania, 
USA) and mannitol (15%, Baxter BV, Utrecht, the Neth-
erlands) in a 85%, 10%, 5% ratio, respectively.
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Anesthesia and surgical preparation
All animals were anesthetized as previously reported 
[4, 5, 8] with 4.0% isoflurane (Ivax Farma, Haarlem, The 
Netherlands) in a plastic box filled with oxygen-enriched 
air. Following endotracheal intubation with a 14G cath-
eter (Venflon Pro, Becton Dickinson, Helsingborg, Swe-
den), lungs were mechanically ventilated (UMV-03, UNO 
Roestvaststaal BV, Zevenaar, The Netherlands; PEEP 
2–4 cm  H2O, respiratory rate of 65–75 breaths/min, tidal 
volume ~ 10 ml/kg) and anesthesia was maintained with 
1.5–2.0% isoflurane in oxygen-enriched air (40%  O2/ 60% 
 N2). Additionally, fentanyl (12  µg/kg, Janssen-Cilag, Til-
burg, the Netherlands) was administered as additional 
analgesia and repeated approximately every 45 min dur-
ing the experimental procedure. Respiratory rate was 
adjusted based on blood gas values to maintain pH and 
partial pressure of carbon dioxide within physiological 
limits. Depth of anesthesia was continuously monitored 
and adjusted if necessary based on heart rate and mean 
arterial pressure.

A 22G catheter (Venflon Pro, Becton Dickinson, 
Helsingborg, Sweden) was placed in the caudal (tail) or 
carotid artery for continuous measurements of arterial 
blood pressure and blood withdrawal for blood gas analy-
sis and hematocrit measurements (ABL80, radiometer, 
Copenhagen, Denmark). Arterial blood pressure, elec-
trocardiogram and heart rate were continuously recorded 
using PowerLab software (PowerLab 8/35, Chart 8.0; AD 
Instruments Pty, Ltd., Castle Hill, Australia).

The left cremaster muscle was isolated under warm 
saline superfusion, spread out on a heated platform 
(34  °C), and covered with gas impermeable plastic film 

(Saran wrap) for cremaster perfusion measurements as 
previously described [4, 5, 8, 22, 23].

Heparin (500  IU/kg, LEOPharma, Amsterdam, The 
Netherlands) was administered followed by cannulation 
of the right jugular vein with a modified multi-orifice 4.5 
French catheter (Desilets-Hoffman, Cook, Bloomington, 
IN, USA) for venous outflow of the CPB circuit. The right 
femoral artery was cannulated with a 20G catheter (Arte-
rial Cannula, Becton Dickinson, Helsingborg, Sweden) 
for arterial inflow of the CPB circuit. All catheter inser-
tions were preceded by local application of 1% lidocaine.

Before initiation of the study protocol, an additional 
dose of heparin (500  IU/kg) was given in combination 
with rocuronium bromide (1.5 mg/kg, Organon, Oss, The 
Netherlands).

Cardiopulmonary bypass
The protocol for CPB was performed as previously 
described [4, 5, 8]. In summary, the CPB circuit con-
sists of an open venous reservoir, a roller pump (Pericor 
SF70, Verder, Haan, Germany), and an oxygenator-heat 
exchanger with a three-layer hollow fiber membrane 
for gas exchange (Ing. M. Humbs, Valley, Germany). 
A 1.0-mm-diameter arterial line (LectroCath, Vygon, 
Ecouen, France) was connected to the femoral inflow 
catheter. During CPB,  CO2 and  O2 pressures of the oxy-
genator membrane of the CPB circuit were adjusted 
based on blood gas values to maintain pH and partial 
pressure of carbon dioxide within physiological limits.

To maintain target CPB flow rates > 150  ml/kg/min, 
additional doses of HES in the control group or human 
albumin in the LR/albumin/mannitol group were 

Fig. 1 Experimental set‑up. Rats were subjected to 75 min of CPB primed with LR/albumin/mannitol or HES. One hour after weaning from CPB, 
rats were killed to determine pulmonary and renal edema. Microcirculatory perfusion measurements were performed at baseline, 10 and 60 min 
after initiation of CPB and 10 and 60 min after weaning from CPB
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administrated when necessary. If necessary, boluses of 
phenylephrine (10  µg) were administered to maintain 
mean arterial pressure above 50 mmHg to sustain organ 
perfusion pressure.

Weaning from CPB occurred after 75 min of extracor-
poreal circulation. The venous cannula was removed and 
the jugular vein was clamped. Fifteen min after wean-
ing from CPB, protamine hydrochloride (2  mg/kg) was 
administered to neutralize heparin.

Renal and pulmonary edema
Kidney and lung tissue was harvested at the end of the 
experiment under terminal anesthesia. Wet tissue was 
weighed and dried at 37 °C. After 1 week, dry tissue was 
weighed and wet/dry weight ratio was calculated as esti-
mate for tissue water content.

Cremaster microcirculatory perfusion
Microcirculatory perfusion measurements were per-
formed using a 10× objective on an intravital microscope 
(AxiotechVario 100HD, Zeiss, Oberkochen, Germany) 
connected to a digital camera (scA640, Basler, Ahrens-
burg, Germany) with a final magnification of 640×, as 
described previously [4, 5, 8, 22, 23]. Briefly, three regions 
of the microvasculature (vessels up to 25  µm diameter) 
in the cremaster muscle with adequate perfusion qual-
ity were selected during baseline. These exact predefined 
regions were followed throughout the experiment: after 
surgical preparation of the cremaster muscle before onset 
of CPB (baseline), 10  min after initiation of CPB (10’ 
CPB), 60  min after initiation of CPB (60’ CPB), 10  min 
after weaning from CPB (10’ post-CPB) and 60 min after 
weaning from CPB (60’ post-CPB) (Fig.  1). For perfu-
sion analyses, two vertical lines were drawn in each video 
screen. The total amount of capillaries per screen was 
obtained by averaging the counted capillaries crossing the 
two vertical lines. These small vessels were categorized as 
continuously perfused, intermittently perfused (blood 
flow was arrested at least once or flow was reversed), or 
non-perfused capillaries (vessels without erythrocytes or 
non-flowing erythrocytes). Finally, the proportion of con-
tinuously perfused vessels (PPV) was calculated by the 
ratio of the absolute number of continuously perfused 
vessels and the total number of vessels.

Plasma analyses
Arterial blood was collected at baseline, 60 min after ini-
tiation of CPB (60’ CPB), and 60 min after weaning from 
CPB (60’ post-CPB). Plasma levels IL-6, IL-10, ICAM-1 
were measured using a luminex platform (Biotechne). 
Plate-to-plate variation was accounted for using nega-
tive and positive controls. Values below the detection 
limit were imputed with the lower limit of quantification 

given by the calibration curve for the univariate com-
parisons. Measurements were judged to be unreliable 
when less than 25 beads were counted or no extrapola-
tion outside of the reference standard concentrations 
and were therefore excluded for analysis. Plasma levels 
of syndecan-1 (MBS2703971, MyBioSource, San Diego, 
California, USA) and neutrophil gelatinase-associated 
lipocalin (NGAL; ab119602, Abcam, Cambridge, United 
Kingdom) as markers for glycocalyx degradation and 
renal injury, respectively, were measured with ELISA in 
accordance to the manufacturer.

Statistical analysis
Sample size was calculated based on pilot experiments 
in which rats on CPB primed with lactated Ringer, albu-
min and mannitol had a lower lung wet/dry weight ratio 
(4.6 ± 0.4) compared to rats on CPB primed with HES 
(5.6 ± 0.8). To detect a difference in wet/dry weight ratio 
of 1.0, the two-sided significance level was set at 0.05. 
Using an alpha of 0.05 and a power of 0.90, a sample size 
of 9 rats per group was calculated.

All data are expressed as median [interquartile range] 
and analyzed using GraphPad Prism 9.0 (GraphPad 
Software, La Jolla, CA, USA). Non-parametric tests 
were used for all analyses because of small group sizes. 
Two-sided (multiple) Mann–Whitney U tests were used 
to evaluate differences between priming groups. Time-
dependent (within group) differences were analyzed with 
a Friedman test with Dunn’s post hoc analyses. P val-
ues < 0.05 were considered as statistically significant.

Results
Hemodynamics and blood gas analysis
Body weight of rats receiving LR/albumin/mannitol 
priming was lower compared to rats receiving HES prim-
ing (LR/albumin/mannitol: 379 [359–396] vs. HES: 401 
[391–407] gram, p < 0.01). Initiation of CPB induced a 
drop in mean arterial pressure (LR/albumin/mannitol: 62 
[57–73] vs. 82 [76–93] mmHg, p = 0.369; HES: 65 [53–
73] vs. 89 [75–104] mmHg, p = 0.99; Fig. 2A), heart rate 
(LR/albumin/mannitol: 353 [309–388] vs. 398 [352–416] 
bpm, p = 0.369; HES: 330 [312–345] vs. 375 [366–398] 
bpm, p = 0.006; Fig.  2B) and hematocrit (LR/albumin/
mannitol: 24 [22–26] vs. 40 [38–44] mmHg, p < 0.0001; 
HES: 21 [18–27] vs. 39 [38–40] %, p = 0.018; Fig.  2C), 
without differences between priming groups. Mean 
arterial pressure and heart rate restored in rats on CPB 
primed with LR/albumin/mannitol, but not in control 
rats (Fig.  2A and B). Unless differences in body weight, 
hematocrit levels were higher in rats on CPB primed with 
LR/albumin/mannitol compared to HES (29 [27–34] % 
vs. 22 [21–23] % vs. p = 0.011) (Fig. 2C).
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In addition, onset of CPB reduced bicarbonate lev-
els, base excess and  pCO2, but not pH which decreased 
following weaning from CPB in both priming groups 
(Fig.  3A–D). Interestingly, one hour following wean-
ing from CPB, pH, base excess and bicarbonate lev-
els restored in rats on CPB primed with LR/albumin/
mannitol, but not in control rats on CPB primed with 

HES (Fig.  3A–C). Also differences were found in  pO2 
between priming groups, in which rats on CPB primed 
with LR/albumin/mannitol had higher  pO2 levels after 
CPB compared to HES (Fig. 3E), without alterations in 
 O2 saturation (98.0 [94.9–98.5] vs. 99.1 [96.5–99.6] %, 
p = 0.99).
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Microcirculatory perfusion
Onset of CPB decreased the number of continuously 
perfused vessels (HES: 4 [2–6] vs. 12 [10–13] vessels 
per recording, p = 0.037; LR/albumin/mannitol: 2 [1–7] 
vs. 14 [12–16] vessels per recording, p = 0.008; Fig.  4A) 
and PPV (HES: 21 [9–30] vs. 66 [54–71] %, p = 0.018; 
LR/albumin/mannitol: 13 [9–36] vs. 68 [64–75] %, 
p = 0.037; Fig.  4D) compared to baseline. Also, onset of 
CPB increased the number of non-perfused vessels com-
pared to baseline (HES: 12 [10–14] vs. 6 [5–7], p = 0.073; 
LR/albumin/mannitol: 14 [10–16] vs. 6 [4–7], p = 0.046; 
Fig.  4C). The number of continuously perfused vessels, 
proportion of perfused vessels and non-perfused vessels 
remained unaltered during and after CPB, without dif-
ferences between priming groups (Fig. 4). No differences 
were found in intermittently perfused vessels over time 
and between priming groups (Fig. 4B).

Lung and kidney edema formation and fluid requirements
Renal wet/dry weight ratio did not differ between prim-
ing groups (LR/albumin/mannitol: 4.57 [4.41–4.75] vs. 
HES: 4.51 [4.47–4.73], p = 0.813; Fig.  5A). Interestingly, 
rats on CPB primed with LR/albumin/mannitol had 
lower pulmonary wet/dry weight ratios compared to 
control rats on CPB primed with HES (4.77 [4.44–5.25] 
vs. 5.33 [5.06–6.33], p = 0.032; Fig. 5B). In addition, rats 
on CPB primed with LR/albumin/mannitol required less 
extra fluids (0.5 [0.0–1.4] vs. 9 [4.5–10.0] mL, p < 0.001, 
Fig.  5C) and less phenylephrine (20 [0–40] vs. 90 [40–
200], p = 0.004, Fig. 5D) to maintain adequate CPB pump 
flow and a mean arterial pressure above 50 mmHg com-
pared to control rats on CPB primed with HES. No dif-
ferences were found in CPB pump flow (LR/albumin/
mannitol: 69 [64–70] vs. HES: 62 [59–69] mL/min, 
p = 0.213) or administration of rocuronium (LR/albumin/
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mannitol: 0.9 [0.5–1.0] mL; HES: 0.8 [0.7–1.0] mL, 
p = 0.651).

Circulating markers of inflammation, adhesion, glycocalyx 
shedding and renal injury
Circulating IL-6 (16 [13–25] vs. 34 [24–51] ng/mL, 
p = 0.006), IL-10 (434 [295–782] vs. 2120 [1309–3408] 
pg/ml, p < 0.0001), syndecan-1 (4.7 [2.8–6.9] vs. 14.9 
[11.2–16.3] ng/mL, p < 0.001) and NGAL (555 [375–
1078] vs. 2200 [835–3671] ng/mL, p = 0.008) were lower 
in rats on CPB primed with LR/albumin/mannitol com-
pared to HES (Fig. 6A, B, D, E), but there were no differ-
ences in circulating levels of ICAM-1 (73 [54–91] vs. 69 
[38–117] ng/mL, p = 0.666, Fig. 6D).

Discussion
The main finding in this study is that CPB priming with 
LR/albumin/mannitol resulted in less pulmonary edema 
formation in rats on CPB compared with 6% HES prim-
ing, whereas priming strategy did not affect renal edema 
formation. In accordance, rats on CPB primed with LR/
albumin/mannitol required less additional fluids, had 
higher mean arterial pressures and received less phenyle-
phrine compared to rats on CPB primed with HES. Onset 
of CPB resulted in a rapid impairment of microcircula-
tory perfusion, which did not restore following weaning 
from CPB nor was affected by priming strategy. Inter-
estingly, LR/albumin/mannitol priming resulted in less 
CPB-induced inflammation, glycocalyx degradation and 
renal injury.

Edema formation is common in cardiac surgery with 
CPB. Tissue edema increases the distance between cap-
illaries which impairs oxygen delivery [24], and may 

contribute to organ failure. We found less pulmonary 
edema and fluid requirements in rats on CPB with LR/
albumin/mannitol compared to HES priming. Previ-
ous literature showed beneficial effects of both colloids 
(HES and albumin) on extravascular lung water index 
compared with crystalloids [12, 14]. Despite a difference 
in oncotic force, both colloid fluids—albumin and HES–
provide colloid oncotic force and thereby prevent edema 
formation [12, 14].

Explanation for the difference in edema formation 
could be the use of mannitol in the LR/albumin/manni-
tol priming strategy. Mannitol acts as a volume expander 
and is suggested to increase plasma osmolality [25]. 
This might explain why the LR/albumin/mannitol group 
required less fluids to maintain mean arterial pressure 
and CPB pump flow compared to the HES control group. 
Though, the beneficial effect of mannitol in CPB priming 
remains controversial. Endothelial cells might shrink due 
to fluid shifts from intracellular to extracellular, result-
ing in compromised wall integrity and increased per-
meability [25]. In a double-blind randomized controlled 
trial, the addition of mannitol to Ringers acetate did not 
influence osmolality [26], and its clinical impact on fluid 
balance in patients undergoing cardiac surgery remains 
debatable [27]. While it remains speculative, lungs 
might be more sensitive to inflammation and pulmonary 
edema, although no conclusive evidence supports this 
finding. In addition, during CPB, rats were ventilated—
a potential secondary hit to the lungs—potentially con-
tributing to increased inflammation and subsequent 
edema formation when compared to the kidneys. How-
ever, it is important to note that these statements remain 
speculative.
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Nevertheless, albumin might have an additional benefi-
cial effect by protecting the endothelial glycocalyx layer. 
In guinea pig hearts, albumin resulted after 4 h of cold 
ischemia in lower shedding of the glycocalyx [17]. In 
accordance, our study demonstrated that the use of LR/
albumin/mannitol was paralleled by less glycocalyx shed-
ding, as measured by lower circulating syndecan-1.

Importantly, NGAL, a marker released in the kidney 
in response to renal tubular injury, was higher in rats 
on CPB primed with HES. Renal NGAL increases rap-
idly after ischemia/reperfusion and has been described 
as a sensitive, specific and highly predictable marker of 
acute kidney injury after cardiac surgery [28]. Moreo-
ver, inflammation was lower in rats on CPB primed with 
LR/albumin/mannitol, which might explain the reduced 
pulmonary edema in this group. Interestingly, also the 
anti-inflammatory response was lower following LR/

albumin/mannitol priming, whereas levels of ICAM-1, a 
marker of endothelial activation, were comparable. The 
reduced inflammatory response in the LR/albumin/man-
nitol priming group might be attributed to the prospec-
tive properties of albumin on the glycocalyx [17]. Taken 
together, these data suggest that priming with LR/albu-
min/mannitol compared to HES has protective effects on 
both lungs and kidneys in rats on CPB.

Microcirculatory perfusion disturbances are commonly 
seen in patients undergoing cardiac surgery with CPB [1, 
6, 7, 10]. In the present study, onset of CPB resulted in 
a rapid fall of microcirculatory perfusion which persisted 
after weaning from CPB. These findings are in agree-
ment with previous studies [4, 5, 8]. Colloids increase 
blood viscosity and may preserve microcirculatory perfu-
sion through preservation of capillary pressure [29]. This 
could explain why changes in microcirculatory perfusion 
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was not affected by prime fluid strategy. Yet, there are 
several factors known to contribute to CPB-induced 
microcirculatory perfusion disturbances [9, 29, 30]. First, 
hypotension and hemodilution [8] can both decrease 
capillary red blood cell flow and capillary vessel density, 
respectively [24], resulting in impaired oxygen delivery to 
tissues. Interestingly, rats on CPB primed with LR/albu-
min/mannitol had higher mean arterial pressures and 
hematocrit levels after weaning from CPB, but microcir-
culatory perfusion remained equally disturbed. No other 
surrogate markers for microcirculatory oxygen uptake 
were measured. Second, microcirculatory perfusion 
disturbances during CPB are associated with increased 
glycocalyx degradation [31]. The normal endothelial gly-
cocalyx layer has the property to adjust its permeability 
to facilitate changes in red blood cell deformation and 
thereby counteract the increased heterogeneity of perfu-
sion [32]. As a consequence of glycocalyx degradation, 
the adaptive ability of the microcirculation to changes 
in microvascular flow can be affected [33]. HES prim-
ing resulted in more glycocalyx degradation compared to 
LR/albumin/mannitol. Nevertheless, this did not affect 
microcirculatory perfusion. Although unexpected, dif-
ferences in glycocalyx degradation without alterations 
in microcirculatory perfusion in cardiac surgery patients 
on CPB with different CPB circuit coatings have been 
reported earlier [31]. Although it is known that phar-
macologic reduction of the inflammatory response pre-
serves microcirculatory perfusion in rats during CPB, 
the inflammatory response was higher with HES without 
differences in microcirculatory perfusion [34]. In sum-
mary, CPB prime fluid strategies equally impair microcir-
culatory perfusion in rats independent of hemodynamic 
alterations, hemodilution and glycocalyx degradation.

Our study results suggest that the use of LR/albumin/
mannitol in CPB priming might reduce the inflammatory 
response, preserve endothelial integrity and organ edema 
following CPB compared to HES priming. On the other 
hand, microcirculatory perfusion did not differ between 
priming strategies, although groups were not powered to 
for this outcome. Further research is needed to explore 
the specific role of albumin as part of CPB fluid priming 
as a viable strategy to maintain glycocalyx integrity and 
reduce organ injury. Though, future studies in adult car-
diac surgery with CPB should elucidate whether albumin 
is a superior colloid to other colloids for CPB fluid prim-
ing regarding microcirculatory integrity and organ injury.

This study is performed in rats on extracorporeal cir-
culation, which is a unique technique worldwide and 
contributes to our knowledge in the field of microcir-
culatory disorders in cardiac surgery. We acknowledge 
several limitations. Prime groups differed on more 
than one prime fluid component, not only the colloids. 

Mannitol in the albumin group could have confounded 
the affected outcomes. Mannitol was added from clini-
cal perspective, consistent with our current clinical 
practice. Globally, its use is estimated at 30% in CPB 
priming [35]. Nevertheless, evidence regarding the 
mitigation of AKI [36, 37], the efficacy as free radical 
scavenger and its significance on fluids during cardiac 
surgery remains scarce (26). However, we acknowledge 
this a limitation to our approach. In addition, rats were 
not randomized between groups, this has potentially 
introduced bias.

In conclusion, priming of CPB with a mixture of LR/
albumin/mannitol resulted in less pulmonary edema 
and renal injury compared to priming with HES priming 
and was paralleled by less inflammation and glycocalyx 
degradation. Furthermore, priming with LR/albumin/
mannitol resulted in an improved hemodynamic stabil-
ity compared with HES. In view of these and previous 
results, it certainly makes sense to think that albumin 
may improve oxygen delivery to tissues due to reduced 
organ edema. Therefore, albumin could be more cost 
effective in its use in CPB priming. Future research in 
cardiac surgery patients is needed to create an evidence-
based prime fluid strategy to preserve microcirculatory 
oxygen delivery and thus organ function following CPB.
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