
Platts et al. Intensive Care Medicine Experimental 2014, 2:2
http://www.icm-experimental.com/content/2/1/2
METHODOLOGY Open Access
A novel echocardiographic imaging technique,
intracatheter echocardiography, to guide
veno-venous extracorporeal membrane
oxygenation cannulae placement in a validated
ovine model
David G Platts1,2,3*, Andrew Hilton4, Sara Diab2, Charles McDonald2, Matthew Tunbridge2, Saul Chemonges2,3,
Kimble R Dunster2,5, Kiran Shekar2,3,6, Darryl J Burstow1,2 and John F Fraser2,3,6
* Correspondence:
david_platts@health.qld.gov.au
1Department of Echocardiography,
Cardiac Investigations Unit, The
Prince Charles Hospital, Rode Rd.,
Chermside, Brisbane, Queensland
4032, Australia
2Critical Care Research Group, The
Prince Charles Hospital, Rode Road,
Chermside, Brisbane, Queensland
4032, Australia
Full list of author information is
available at the end of the article
©
L
p

Abstract

Background: Echocardiography plays a fundamental role in cannulae insertion and
positioning for extracorporeal membrane oxygenation (ECMO). Optimal access and
return cannulae orientation is required to prevent recirculation. The aim of this study
was to compare a novel imaging technique, intracatheter echocardiography (iCATHe),
with conventional intracardiac echocardiography (ICE) to guide placement of ECMO
access and return venous cannulae.

Methods: Twenty sheep were commenced on veno-venous ECMO (VV ECMO). Access
and return ECMO cannulae were positioned using an ICE-guided technique. Following
the assessment of cannulae position, the ICE probe was then introduced inside the
cannulae, noting location of the tip. After 24 h, the sheep were euthanized and cannulae
position was determined at post mortem. The two-tailed McNemar test was used to
compare iCATHe with ICE cannulae positioning.

Results: ICE and iCATHe imaging was possible in all 20 sheep commenced on ECMO.
There was no significant difference between the two methods in assessing access
cannula position (proportion correct for each 90%, incorrect 10%). However, there was a
significant difference between ICE and iCATHe success rates for the return cannula
(p = 0.001). Proportion correct for iCATHe and ICE was 80% and 15% respectively. iCATHe
was 65% more successful (95% CI 27% to 75%) at predicting the placement of the return
cannula. There were no complications related to the ICE or iCATHe imaging.

Conclusion: iCATHe is a safe and feasible imaging technique to guide real-time VV
ECMO cannulae placement and improves accuracy of return cannula positioning
compared to ICE.
2014 Platts et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
icense (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
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Background
Extracorporeal membrane oxygenation (ECMO) is a highly specialised form of ad-

vanced life support that can be utilised in critically ill patients who require short-term

respiratory and/or cardiac support [1-3]. Whilst there are numerous access and cannu-

lation options available for ECMO, they can be classified into two groups: central

access and peripheral access [4,5]. Transthoracic and transoesophageal echocardiography

play a fundamental role in the management of patients supported with mechanical support

devices, including ECMO [6-10]. Malpositioning of access and return cannulae or inflow/

outflow cannulae of any form of mechanical support can have significant adverse conse-

quences. It may cause ineffective delivery of haemodynamic support, haemolysis, increase

the risk of ‘suckdown’, acute pulmonary oedema or cardiac trauma. Imaging guidance

is important during cannulae insertion and optimal positioning of mechanical cardiac

support devices [11,12] and especially for peripheral cannulae for VV ECMO. Correct

access and return cannulae placement in this form of support is required to prevent recir-

culation and optimise oxygenation.

In contrast to the clinical setting, VV ECMO cannulae guidance using transthoracic

and transoesophageal echocardiography in sheep can be challenging, related to certain

spatio-anatomic limitations. Intracardiac echocardiography, due to its high spatial reso-

lution and location of the beam former within the right heart [13,14], has the potential

ability to address these limitations. However, during intracardiac echocardiographic

assessment of cannulae positioning, it can be difficult to visualise both cannulae clearly

due to an echocardiographic reverberation artefact from the initial cannula already in

place and from the pulmonary artery catheter in situ. This limits accurate assessment

of cannulae position. The aim of this study was to assess the feasibility of a novel

imaging technique, intracatheter echocardiography (iCATHe), with conventional intra-

cardiac echocardiography (ICE) to guide the placement of both cannulae in an ovine

VV ECMO model using post mortem cannulae position as the reference standard.

Methods
Following animal ethics approval from the University Animal Ethics Committee of the

Queensland University of Technology (approval no. 110000053), echocardiographic

imaging was performed in our validated VV ECMO ovine model. The investigation

conformed to the National Health and Medical Research Council (NHMRC) Code of

Practice for the Care and Use of Animals for Scientific Purposes [15]. Anaesthetised

sheep (18-month-old ewes, weighing 40 to 45 kg) were commenced on VV ECMO via

access (22 F) and return (19 F) cannulae inserted in their capacious right internal jugu-

lar vein (IJV). Anaesthesia was induced using intravenous midazolam (0.5 mg/kg) and

alfaxalone (3 mg/kg). No muscle relaxants were used. Anaesthesia was maintained with

infusions of alfaxalone (4 to 6 mg/kg/h), midazolam (0.25 to 0.5 mg/kg/h), and keta-

mine (3 to 5 mg/kg/h). An intravenous bolus of buprenorphine 0.01 mg/kg was given

for analgesia and subsequently every 6 h. For an extensive discussion regarding the

development and management of this ovine ECMO model used in this study, readers

are referred elsewhere [16].

The optimal position of the access cannula was in the inferior vena cava just below

the diaphragm. A guidewire was inserted into the inferior vena cava using ICE guidance

prior to insertion of the access cannula. ICE was performed to guide placement of the
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initial access cannula, over this guidewire, using a 10-F AcuNav™ probe and Siemens

Sequoia™ scanner (Siemens AG, Erlangen, Germany), via an ipsilateral 11 F IJV sheath.

The location of the cannula tip was documented. Following the positioning of the

access cannula, the ICE probe was withdrawn from the IJV sheath and then passed down

inside the actual ECMO cannula (which was fluid-filled to the elevated end and had a cap

with a small central lumen sufficient for passage of the ICE probe only) prior to connec-

tion to the circuit, noting the imaging of the distinct ECMO cannula tip and then the ana-

tomic location of the tip relative to surrounding cardiac structures. As the ICE probe was

10 F in size and the ECMO cannulae 19 and 21 F in sizes, there were no issues related to

insertion, manipulation or withdrawal of the ICE probe within the ECMO cannulae.

The return cannula was then inserted (over a guidewire) into the right atrium using

ICE as a guide to optimal positioning, considered as in the high right atrium or right

atrial-superior vena cava junction. Following the positioning of the return cannula, the

ICE probe was again passed down inside the return cannula prior to connection to the

circuit, noting the location of the cannula tip relative to the surrounding cardiac struc-

tures. If the cannula was not visualised with ICE but seen with iCATHe imaging and

identified to be incorrectly positioned, this was noted and then manipulated to a better

location, using iCATHe guidance. The cannulae were secured using cyanoacrylate

adhesive and intracutaneous stay sutures.

In light of the novel images obtained by passing an ICE probe down an ECMO

cannula, a water phantom model was developed to determine how the echocardio-

graphic image would appear from within an ECMO cannula. Figure 1 shows an ECMO

cannula ex vivo. The majority of the length of the ECMO cannula has circumferential,

flexible metal reinforcement, enhancing radial strength to help minimise cannula kinking.

This reinforced section had a distinct metallic reflective pattern during ICE imaging

(Figure 2). Once within the distal polyurethane tip of the cannula (the final 4 cm),
Figure 1 19 F ECMO cannula. Note the main body of the cannula with circumferential metal wiring for
radial structural support and the distal tip composed of polyurethane with multiple side holes and a main
central lumen at the end.



Figure 2 iCATHe image acquired whilst within the metallic component of the cannula. Note the
continuous linear metal reflective signal.
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there was a softer acoustic reflective pattern seen along with clear visualisation of

the numerous side holes (Figure 3). Figure 4 depicts the transition from metallic to

polyurethane construction of the ECMO cannula, as imaged by an ICE probe within

the cannula. Finally, as the ICE catheter passed out the end of the ECMO cannula,

a more conventional ICE image of the right heart was obtained. Figure 5 depicts an

ICE image with the tip just out the end of the ECMO cannula, which can be seen to the

right of the image. Video S1 in Additional file 1 shows the withdrawal of the ICE probe

from the inferior vena cava back into the ECMO cannula. Video S2 in Additional file 2
Figure 3 iCATHe image acquired whilst within the polyurethane tip. Note the perfusion/flow
side holes.



Figure 4 iCATHe image of an access cannula within the inferior vena cava. Note the transition from
the metallic component of the cannula (right side of image) to the polyurethane tip of the cannula (left
side of the image, with a side hole on view).
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shows passage of the ICE probe down through the ECMO cannula and out the end into

the right atrium.

Following cannulae placement, VV ECMO was commenced and continued for 24 h.

After 24 h, the sheep were euthanized and cannulae position was determined at post

mortem. Echocardiographic variables analysed were the ability to image the access and

return cannulae tip, location of the cannulae tip and presence of any air within the

right heart during cannulation. The two-tailed McNemar test (Medcalc®, Ostend,
Figure 5 An iCATHe image as the tip of the ICE probe just exits out the end of the ECMO cannula.
Note the clear visualisation of the tricuspid vale, right ventricle and end of the ECMO cannula.
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Belgium) was used to compare iCATHe with ICE cannulae positioning, with the refer-

ence standard being the location determined at post mortem.

Results
Cannula positioning in 20 sheep on VV ECMO was assessed using both ICE and

iCATHe. The guidewire for both the access and return cannulae insertion was visua-

lised in all cases. ICE and iCATHe imaging was technically possible in all cases. Table 1

represents the McNemar tabulations for the access and return cannulae positioning

(ICE versus iCATHe). Figure 6 depicts the ICE versus iCATHe result for the access

cannula. Figure 7 depicts the ICE versus iCATHe result for the return cannula. There

was no significant difference between the two methods in assessing the access cannula

position (proportion correct for each 90%, incorrect 10%).

However, there was a significant difference between ICE and iCATHe success rates

for the return cannula position (p = 0.001). The proportion correct for iCATHe and

ICE was 80% and 15% respectively. iCATHe was 65% more successful (95% CI 27% to

75%) at predicting the placement of the return cannula.

There were no complications related to the ICE or iCATHe imaging. There was no

entrainment of air into the circuit or the heart during any of the procedures. There was no

loss of circulating volume from the ‘open’-ended cannulae during the iCATHe imaging.

Discussion
ECMO is a form of extracorporeal life support (ECLS) that is used to treat refractory

respiratory and/or cardiac failure. The mechanism of action relies on gas exchange

(carbon dioxide removal, oxygenation) and hemodynamic support, which is mediated

via blood flow between the ECMO circuit and native circulation using large bore

cannulae [17]. The accurate positioning of these cannulae is paramount for effective

delivery of ECMO support. Echocardiography plays a key role in facilitating this [6] and

in humans, this takes the form of transthoracic and transoesophageal echocardiography

[18]. To date, there have been no published studies assessing the utility of ICE in guiding

ECMO in clinical setting.

In this study which used an ovine model, two different forms of echocardiographic

imaging were performed to determine cannula positioning, standard ICE and iCATHe.

Conventional transthoracic and transesophageal echocardiographic imaging in animal
Table 1 McNemar tabulations for the access and return cannulae positioning
(ICE versus iCATHe)

Access cannula
ICE

Correct Incorrect Total

iCATHe

Correct 17 1 18

Incorrect 1 1 2

Total 18 2 20

Return cannula
ICE

Correct Incorrect Total

iCATHe

Correct 2 14 16

Incorrect 1 3 4

Total 3 17 20



Figure 6 ICE versus iCATHe results for the access cannula.
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models can be challenging. Open-chested epicardial imaging can overcome this [19-21],

but with the significant limitation of its invasiveness. More recently, ICE imaging has been

used in animal models [22-24]. ICE was chosen as the conventional form of imaging to

guide cannulae placement due to its ready availability, high spatial resolution and lack of a

suitable alternative echocardiographic technique. Unlike in humans, transthoracic echo-

cardiography in sheep can be technically difficult due to the small acoustic window often

present and the shape of the chest wall, with modified parasternal long and short axis

views being the best reproducible images, neither of which would have helped significantly

with guiding cannula placement. Modified transoesophageal echocardiography is feasible

in sheep [25] but it may not provide consistent quality imaging due to the capacious

nature of an ovine oesophagus, limiting probe contact required to regularly generate satis-

factory images.

Conventional ICE imaging provided reliable and consistent imaging of the superior

vena cava, right heart and inferior vena cava. As such, ICE was used as the reference

standard to assess the feasibility of iCATHe imaging. Location of the guidewire was

possible in all cases, with confirmation of the wire in the inferior vena cava routinely

performed. ICE could also detect if the wire had prolapsed into the right ventricle. This

was important because during insertion of the introducer/cannula over the wire, dis-

placement of the wire from its original appropriate position in the inferior vena cava

(IVC) could and did occur. Without recognition of this via ICE imaging, the access

cannula could have been positioned within the right ventricle. This has the dual adverse

effects of recirculation and increased risk of cardiac trauma or perforation. Whenever the

wire was displaced into the right ventricle, the cannula was withdrawn and the guidewire

was reinserted into the inferior vena cava using ICE guidance. ICE could also detect any

thrombus formation on the guidewire or cannula during insertion and manipulation.
Figure 7 ICE versus iCATHe results for the return cannula.
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In our study, the access cannula was always inserted first, followed then by the return

cannula. This was done to minimise the impact of any possible cannula co-dependence,

in the light of both cannulae being inserted into the same jugular vein. If the return

cannula was placed first within the right atrium, subsequent insertion and manipulation

of the access cannula may have resulted in displacement of the return cannula, where

there is reduced margin for error for altered positioning. Additionally, prior to any

ECMO cannulae insertion, a pulmonary artery catheter was inserted via an internal

jugular vein route. It was the presence of this pulmonary artery catheter and the

already positioned access cannula which made it difficult to use ICE to image the

return cannula. As the ICE probe was in close proximity to the pulmonary artery cath-

eter and access cannula, it was difficult to obtain ICE images to manipulate and position

the return cannula. This was primarily due to reverberation artefact from the access

cannula. Video S3 in Additional file 3 is an example of ICE imaging during return can-

nula positioning, displaying this difficulty. By utilising iCATHe imaging, it was possible

in most cases to have a greater spatial awareness of the location of the tip of the return

cannula. This was particularly the case when the ICE probe was within the polyurethane

tip and then exited the cannula, where ICE probe manipulation just beyond the tip could

determine whether the cannula was in the superior vena cava or the right atrium.

iCATHe imaging did not offer any advantage over conventional ICE imaging for place-

ment of the access cannula. This could be anticipated as ICE provided a clear imaging of

the wire and then cannula positioning in the inferior vena cava. Consequently, additional

alternative imaging would not be expected of any incremental benefit. However, due to

the limited ICE imaging obtained to view the return cannula, as outlined above, the

addition of iCATHe imaging provided a clearer alternative to determine return cannulae

placement.

Despite the iCATHe imaging occurring as an open procedure with communication of

the circulation with the atmosphere via the ECMO cannulae, there were no air embol-

isation events or bleeding from the cannula. Blood loss from the cannula end did not

occur, as both cannulae were venous and the external end was raised slightly to prevent

retrograde flow of blood. Additionally, any possible entrainment of air was countered

by having the cannula fluid-filled, elevating the external tip and placing a cap on the

end, with a small aperture which would allow passage of the ICE probe only.

Echocardiography plays an important role in positioning of peripherally inserted

ECMO cannulae, especially for VV ECMO in respiratory failure. To January 2013, there

were 53,190 cases of ECMO listed on the Extra Corporeal Life Support (ELSO) registry

[26]. Of these, 35,622 (67%) were for a respiratory indication. Correct location and

orientation between the two VV ECMO cannulae are required to prevent a phenomenon

called ‘recirculation’. Recirculation occurs if the VV ECMO access and return cannulae

are too close to one another or if the access cannula is located more proximal than the

return cannula. Recirculation will then occur, with the oxygenated blood being returned

straight back into the circuit and not being delivered systemically to the patient. Addition-

ally, if cannulae are positioned incorrectly, this and the associated manipulation or surgery

to reposition them can increase the risk of infection, bleeding, cardiac trauma or sub-

optimal flows [27-29].

Imaging to guide and evaluate ECMO cannulae positioning has been studied in

the neonatal and paediatric population. These studies indicated that transthoracic
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echocardiography can be utilised to reposition cannulae [30], enhance accuracy of cannu-

lae positioning at insertion [31] and was more accurate than chest x-ray (CXR) in deter-

mining cannula positioning [32,33]. CXR to guide and assess cannulae location has

numerous potential advantages, such as it requiring little specific operator experience,

making it readily available and relatively economical [34]. However, limitations of using a

CXR to guide cannulae placement include that many ECMO cannulae do not have

a radio-opaque tip and exposure of staff to ionising radiation. Additionally, unless fluoros-

copy is used during actual insertion, it cannot offer real-time feedback on cannula manipu-

lation to optimise placement.

In our study, we did not routinely use CXR to assess cannula positioning. Figure 8

depicts a CXR of a sheep on VV ECMO. The thoracic anatomy of sheep, with apical

‘crowding’ of structures, reduced accurate visualisation of the return cannula. The

arrow points to the end of the radio-opaque tip of the access cannula, just above the

diagram. The actual cannula extends a further 4 cm beyond this, as it is constructed

with polyurethane and hence not visualised using a CXR. In light of the exposure to

ionising radiation and the inability to directly visualise the tip of the ECMO cannulae,

fluoroscopy was deemed as unsuitable as a gold standard in our study. Additionally, in a

clinical context within the critical care complex, where ECMO is often initiated, fluoros-

copy is limited by sub-optimal image quality and the requirement to protect a significant

number of staff members from ionising radiation.

Imaging is fundamental for insertion of the bicaval, dual-lumen cannula for VV

ECMO support. This single but dual-purpose cannula drains blood from proximal and

distal ports within the superior and inferior vena cava, respectively. The second central

lumen then returns blood back to the right heart where it exits the cannula from a central

port directed toward the tricuspid valve [27]. This dual-lumen cannula option offers the

advantage of a single cannulation site, enhancing the likelihood of patient mobilisation
Figure 8 Plain chest x-ray of a sheep during VV ECMO. Note the visualisation of only the access
cannula within the inferior vena cava.
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and reducing the likelihood of recirculation. However, in light of its triple-orifice design,

meticulous positioning is necessary and insertion and manipulation should be done using

appropriate imaging to confirm that all three ports are in the correct location [35-37].

This imaging is often performed by transoesophageal echocardiography [35,38]. Transtho-

racic echocardiography with or without using agitated saline injections has also been used

to help determine positioning [39-41]. iCATHe may offer an alternative imaging modality

to determine location of larger dual-lumen cannulae if there is a contraindication to trans-

oesophageal echocardiography or if transthoracic echocardiographic image quality results

in a non-diagnostic study.

Study limitations

As this was a novel echocardiographic imaging technique, just one operator (DP) per-

formed all the scanning to achieve an adequate skill and knowledge base for this tech-

nique. Hence, the widespread applicability and feasibility of this technique cannot be

assessed from this study. However, in light of the reported relatively quick learning

curve for this technique, it is likely that any operator with appropriate echocardio-

graphic skills, who is involved in guidance for ECMO initiation, would be able to per-

form iCATHe.

Cannula placement using the two echocardiographic techniques was compared to

post mortem analysis, which was 24 h after placement. Hence, it is possible that

cannula may have been inadvertently displaced during this 24-h period or during the

post mortem process. Whilst no sitting marks were placed on the cannulae following

insertion to counter this, the cannulae were firmly glued and sutured in place and care

was taking during the post mortem to minimise any possible cannula displacement.

The cannulation methodology of this animal ECMO model has two differences to

that of human ECMO. Firstly, in humans, the jugular vein approach for access and

return cannulae, a pulmonary artery catheter (PAC) and an ICE probe would usually

not be used. Secondly, this study was performed in an animal model with a PAC in situ

to enable monitoring of systemic and pulmonary haemodynamic parameters. Whilst in

the clinical setting there is variation in the use of a PAC in the critical care complex,

they may not be utilised in patients supported with VV ECMO. As such, the imaging of

the respective ECMO cannulae may have been improved in the absence of a PAC causing

acoustic shadowing.

This iCATHe technique was performed in an ovine ECMO model under controlled

experimental conditions. The question remains: can this research be translated to the

human clinical environment? Whilst the results of this feasibility study suggest that

assessment of return cannulae positioning is significantly improved using iCATHe

compared to ICE, there would be several clinical barriers that would limit or prevent

clinical introduction of this technique. A major limitation to this would be the per-

ceived risk of having an ‘open-ended’ cannula, potentially exposing the patient's circula-

tion to air entrainment or significant bleeding. However, utilising the preventative

measures employed in this study ensured that neither of these two complications oc-

curred. Compounding this would be the requirement for meticulous sterility techniques

to minimise any infection risk with an open technique. In our ovine study, no data was

collected involving microbiological cultures or any control group used, so no conclusions

can be drawn regarding the risk of systemic infection by using the iCATHe technique.
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Additionally, there may be a significant economic cost of intracardiac echocardiographic

probes, and in some countries or institutions, as these may be single-use only, further

increasing the cost of this technique.

This technique could have a role in a small sub-group of patients who are VV ECMO

candidates, where there is a concern regarding cannulae placement and in which con-

ventional imaging (such as transoesophageal echocardiography) has not been able to

satisfactorily guide cannulae placement. An additional potential benefit of iCATHe im-

aging in humans is that it neither requires any additional venous access or puncture

nor oesophageal intubation. The imaging probe is passed down inside the already

inserted cannula and this could then be manipulated to the correct position using real-

time guidance from the ultrasound image. In this regard, iCATHe may have a role

insertion of a dual-lumen cannula. The ICE probes are typically 90 cm in length, which

is sufficient to image the right side of the heart via a femoral approach. However,

iCATHe may not provide further detailed global assessment of the cardiac structure

and function, as compared to transoesophageal echocardiography, which is often of rele-

vance to clinical care. Additionally, iCATHe is also of no benefit in assessing cannulae

position once ECMO has commenced, as the circuit is closed and the cannulae are

inaccessible.
Conclusions
Echocardiography plays a fundamental role in guiding cannulae insertion during initi-

ation of VV ECMO. We report a novel echocardiographic imaging technique, iCATHe,

as being a safe and feasible imaging technique to guide real-time VV ECMO cannulae

placement and improves accuracy of return cannulae positioning compared to ICE in an

ovine model. Further safety and efficacy assessment of the iCATHe technique is required.

However, it has the potential to be utilised in other large animal models and in a small sub-

set of human patients on VV ECMO.

Additional files

Additional file 1: Video S1. iCATHe movie of an access cannula within the inferior vena cava. The ICE probe is
withdrawn back from within the IVC, passing through the polyurethane tip and finishes within the metal
component of the cannula.

Additional file 2: Video S2. iCATHe return cannula within the right atrium. The ICE probe is advanced through
the catheter, initially from within the metallic component, through the polyurethane tip and out of the end of the
cannula and imaging the central right atrium down to the tricuspid valve and right ventricle.

Additional file 3: Video S3. ICE of the middle right atrium during return cannula insertion. Note the difficulty in
determining cannula tip location.
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