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Abstract

Background: Despite a genomic revolution in biological sciences, clinical medicine
has yet to integrate diagnostics based upon gene expression into practice. While
commonly used plasma protein assays rely on organ-specific origins, nearly all nucleic
acid in whole blood is derived from white blood cells limiting their utility to diagnose
non-immune disorders. The aim of the study was to use cell-free plasma to define
circulating messenger RNA sequences diagnostic of acute organ injury, including
myocardial infarction (MI) and acute kidney injury (AKI).

Methods: In healthy human subjects (N =4) and patients with acute Ml (N =4),

we characterized the concentration and nature of circulating plasma RNA through
spectrophotometry and chromatography. Through reverse transcriptase polymerase
chain reaction (RT-PCR) of amplicons up to 939 base pairs, we determined whether this
mRNA was intact but of insufficient quantity to sequence. In mice, we induced an acute
anterior myocardial infarction through 1 h of ischemia followed by reperfusion of the
left anterior descending (LAD) artery. We compared the cell-free plasma transcriptome
using cDNA microarray in sham-operated mice compared to ischemia upon reperfusion
and at 1 and 4 h. To determine organ specificity, we compared this profile to acute
ischemia-reperfusion of the kidney.

Results: In humans, there is more plasma RNA in those with acute Ml than in healthy
controls. In mice, ischemia-reperfusion of the LAD artery resulted in a time-dependent
regulation of 589 circulating mRNA transcripts with less than a 5% overlap in sequences
from acute ischemia-reperfusion injury of the kidney.

Conclusions: The mRNA derived from cell-free plasma defines organ injury in a time
and injury-specific pattern.

Background

Microparticles are released by activated, damaged, apoptotic, and necrotic cells into
the circulation [1-4]. In health, microparticles are most commonly platelet-derived, and a
class of procoagulant apoptosis-marker positive (annexin V) microparticles is also found
[1]. In a number of vascular disease states, endothelial-derived microparticles become
important [1]. The cellular source of microparticles can be determined by examining
the expression of cell-surface molecules. For example, platelet-derived microparticles
are identified by the expression of CD41 and endothelial-derived microparticles are
identified by their expression of CD146 [1]. Importantly, microparticles contain nucleic
acids from their cells of origin [5,6]. Plasma-derived microparticle mRNA has been

used to distinguish patients who have colon cancer from those free of the disease [5].
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Conceivably, the sequence and copy number of expressed genes (mRNA) derived from
cell-free plasma could function as cardiac-specific biomarkers in diseases such as
ischemia-reperfusion and acute heart failure. In a more limited (fewer sequences)
way, this has recently been found to be the case for miRNA contained in microparticles
following ischemic cardiac injury [7]. Of great interest to clinicians and scientists, analysis
of the circulating transcriptome following injury could identify important molecules or
pathways which are regulated as a result of the insult. Through the use of the cell-free
component of blood, we can eliminate the leukocyte-derived transcriptome, which to date
has limited the utility of organ-specific nucleic acid biomarkers.

Accordingly, we characterized plasma-derived mRNA with respect to concentration,
intactness, and chromatographic characteristics in humans. Next, we measured mRNA
expression patterns using DNA microarray over time in the cell-free fraction of blood
samples in mice after one hour ischemia followed by reperfusion of the left anterior
descending (LAD) artery. To determine whether these sequences were specific to
cardiac injury, we compared them to both sham-operated mice and to unilateral
ischemia-reperfusion of the kidney. We found that plasma-derived mRNA exhibits an
organ and time-dependent signature following ischemic injury.

Methods

Human studies

Blood samples

International review board (IRB) approval was obtained for this study from the Providence
Health Care IRB; written informed consent was obtained from all subjects. Whole blood was
collected from healthy control subjects and patients at primary angiography for acute
myocardial infarction (MI) in 5-mL EDTA blood collection tubes. The blood was centrifuged
at 1,000 x g for 10 min. Plasma (250 uL) was mixed with 750 pL TRIzol LS (Invitrogen,
Carlsbad, CA, USA) and was stored at —80°C. RNA was extracted as per the manufacturer's
instructions, cleaned on a minispin column (Qiagen, Venlo, The Netherlands), and was
treated with DNAse (Ambion, Austin, TX, USA). A spectrophotometer (Nanodrop,
Wilmington, DE, USA) was used to quantitate RNA for all samples, and chromatographic
characteristics were assessed using Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA).

RNA stability

Blood was drawn from healthy subjects in EDTA collection tubes (as above) and cooled
to 4°C. In the first set of experiments RNA was (1) immediately extracted, (2) extracted
after 6 h, or (3) extracted after 24 h. Total RNA was then measured. In subsequent
experiments, blood was immediately centrifuged at 4°C, and plasma was mixed with
TRIzol LS and stored at —80°C.

RNA integrity

The Invitrogen One-Step SYBR Green RT-PCR (Invitrogen) kit components were used
for the PCRs. Plasma RNA was used as a template for amplification of three different
sizes of amplicons for GAPDH (107, 506, and 939 bp) to assess the integrity of the
extracted RNA. DNase-treated RNA (100 ng) was added as template to SuperScript
One-Step RT-PCR using Platinum Taq protocols to yield the corresponding cDNA.
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RT-PCR conditions were 50°C for 30 min, 94°C for 2 min, followed by 40 cycles of
94°C for 15 s, 58°C for 30 s, and 72°C for 2 min, which was followed by 72°C for
5 min and 4°C as the final temperature. To analyze the final amplicons, 9 pL of each
PCR product was loaded into each lane of 1% agarose gel.

Linear amplification of cDNA

We used the SMARTer PCR c¢DNA synthesis protocol (Clontech, Mountain View, CA,
USA) to first generate cDNA and then amplify the cDNA with 40 cycles of thermal
cycling. To visualize the cDNA bands, 9 uL of the product was run on 1% agarose gel.

Murine studies
All animal studies were approved by the University of British Columbia animal ethics

committee.

Ischemia-reperfusion model

We chose ischemia-reperfusion (I/R) as a model of organ injury. Cardiac I/R injury was
performed as we have previously published [8]. Briefly, while intubated and ventilated, the
proximal LAD artery was clamped for 1 h followed by reperfusion. Ischemic myocardial
injury was verified using ECG monitoring. For kidney I/R injury in separate mice,
following midline laparotomy, renal arterial blood flow was interrupted for 1 h
followed by reperfusion. In each model, separate mice were sacrificed in a time sequence.
The time point immediately following reperfusion was 7'=0; 1 h after reperfusion, T'= 1;
and 4 h after reperfusion, 7'=4. Both normal mice (control) and sham-operated mice

(SHAM) for each procedure served as controls (N = 3 per condition and time).

Expression array measurements

The goal of these experiments was to determine whether Affymetrix small-sample
preparation could generate sufficient labeled RNA to successfully perform expression
microarray analysis on plasma-derived mRNA. Plasma RNA was extracted using TRIzol
LS followed by column purification. RNA was reverse-transcribed and hybridized as
per the Affymetrix gene 1.0 ST kit instructions (Affymetrix, Santa Clara, CA, USA).

Linear amplification of mRNA

The SMART mRNA (Clontech) protocol was carried out using PCR Primer IIA to help
with the amplification of the second strand cDNA, instead of just the extension. The
c¢DNA had gone through 40 cycles as previously performed using the SMARTer PCR
c¢DNA synthesis protocol, and 9 pL of the product was analyzed on 1% agarose gel. For
subsequent expression array hybridization, a minimum of 200 ng/pL final concentration
of labeled RNA was used.

Statistical analysis

Microarray data was normalized using Flexarray (Genome Quebec, Montreal, Canada)
robust spline RMA, and groups were compared using a ¢ test. Significance was set at
p <0.05, and biological significance was set at an absolute fold change of >2. Pathway
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analysis was performed using Ingenuity Pathway Analyzer (Ingenuity, Redwood City,
CA, USA).

Results and discussion

Results

In human subjects, RNA that contains intact species was increased in patients with acute MI
who were relatively stable for over 24 h. The final concentration of plasma RNA obtained
from control subjects (N=4) was 1.9 + 0.1 pg/mL blood, while in patients with acute
MI (N =4) who had plasma drawn at primary angiography, the mean concentration of
plasma RNA was 6.5+ 2.4 pg/mL blood. In two control subjects, the stability of RNA
was determined over 24 h. At 6 and 24 h, the mean concentration decreased to 44 +
24% and 40 +21% of baseline values, respectively. In contrast to RNA derived from
whole blood, plasma-derived RNA does not contain ribosomal bands (Figure 1) but
does contain intact mRNA species as we were able to amplify GAPDH products
sequentially up to 939 bp (Figure 2).

Phenol extraction followed by column purification was able to extract enough polyA
tailed mRNA for three to five PCRs, but intact mRNA species were not abundant enough
to allow DNA microarray. Modified template switching amplification allowed us to
perform DNA microarray. Usual Affymetrix small-mass RNA amplification to incorp-
orate fluorescent probe into the plasma-derived RNA for subsequent Affymetrix Gene
1.0 ST microarray was performed by reverse transcription followed by two rounds of
in vitro transcription with T7 RNA polymerase and final regeneration of fluorescently
labeled ¢cDNA. The quality of fluorescently labeled cDNA was analyzed using the
Agilent 2100 Bioanalyzer (Figure 3, upper panel). This process was unable to yield
adequate labeled cDNA for microarray, averaging 40 + 3.5 ng in total per sample (N = 13).
Using modified template switching resulted in a tremendous increase in useable labeled
c¢DNA to 2.0 £ 0.12 pg per sample (N = 30; Figure 3, bottom panel).

In a mouse model of ischemia-reperfusion of the LAD artery, there are time-dependent
plasma-derived molecular signatures of MI, which are distinct from sham operation or
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Figure 1 Plasma drawn from human controls and MI patients and from control and MI mice. It was
analyzed using Agilent Bioanalyzer. On each end, there are standard RNA ladders. Plasma-derived RNA does
not contain the dense ribosomal bands seen just below the 4,000 and 2,000 BASE standards (285 and 185
respectively) with whole blood RNA extraction.
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Figure 2 Following RT of RNA-derived from human plasma, PCR was performed for increasing
amplicon lengths of GAPDH. This was done to determine the integrity of the RNA. Lane 1 has a faint
amplicon of 107 bp, lane 2 has an amplicon of 506 bp, and lane 3 has the largest amplicon at 939 bp.

acute kidney injury (KI). Once we had proven that there was intact RNA in plasma and
that we could amplify it to a degree which would allow genome-wide interrogation,
we used mouse models of acute organ injury to identify differentially expressed genes
following injury. Heat maps (Figure 4A,B) demonstrate significantly regulated genes
detected with Affymetrix Gene 1.0 ST arrays at 7= 0, 1, and 4 versus sham operation.
Significant regulation was defined as a p value that is <0.05 and a fold change that is >2.
The heat maps demonstrate organ and time specificity. Immediately upon reperfusion of
the LAD artery (7T =0), the largest regulation of plasma-derived genes was observed,
with 589 significantly regulated versus sham operation. This number decreased to 63
genes at 1 h and 93 genes at 4 h. To identify whether circulating genes were increased
non-specifically during organ injury or conversely were specific for the heart, we used a
model of kidney ischemia-reperfusion injury as a comparator. Table 1 depicts overlapping
genes. At comparable times following injury, there is only a 0.5% overlap between the
genes found circulating as a result of kidney ischemia-reperfusion injury and those in
myocardial ischemia-reperfusion injury. Altogether, over the 4-h period, there is a 4%
overlap in differentially expressed genes comparing MI to KI. The complete gene lists with
fold change and p values are found in Additional file 1.

Transcriptome

In the MI model, we then used Ingenuity's (Qiagen) pathway analyzer to determine the
top canonical pathways for differentially expressed genes. There were four signifi-
cantly regulated pathways: (1) oxidative phosphorylation (15/166 genes, p value = 77'%),
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Figure 3 Representative fluorescently labeled cDNA prepared using the Affymetrix small-sample method.
[tis run on an Agilent 2100 Bioanalyzer both with and without previous template switching amplifications.
Amplification results in a greater area under the curve, representing the mass of incorporated cDNA (2 ug), are
compared to only 40 ng in an unamplified sample. The peak also shifts right with amplification, indicating larger
cDNA sequences.

(2) mitochondrial dysfunction (11/172 genes, p value = 2°), (3) ubiqionone biosynthesis
(7/119 genes, p value = 27°), and (4) inositol metabolism (4/98 genes, p value = 0.001).

Discussion

The pattern of expressed mRNA, the ‘transcriptome; is specific depending upon the cell
type and changes over time, reflecting the physiologic state of the cell. The enormous
advantage an mRNA diagnostic would enjoy over protein is that unlike the lengthy
optimization required for each protein assay, the ability to detect newly discovered
mRNA sequences is as easy as synthesizing complementary probes. This can be accom-
plished in a few hours. Furthermore, on numerous detection platforms (for example
RT-PCR, microarray, bead assays), measurement of mRNA sequences can be easily
multiplexed. This could greatly increase the sensitivity and specificity of a diagnostic test
using a panel of dozens or even hundreds of mRNA sequences rather than the current

Page 6 of 10
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Figure 4 Heat maps of differentially expressed genes comparing ischemia-reperfusion to sham
operation (group mean data). They visually demonstrate significantly regulated genes upon reperfusion
(T=0). Mouse (A) Ml and (B) KI. Significant regulation at T=0 was defined as p < 0.05 and an absolute fold
change 2 2. Gene expression is plotted with each gene as a unique horizontal bar and is expressed as log,;
therefore, compared to sham, a fold change of 0.5 represents a downregulated expression at an absolute
fold change of —2. The gene expression intensity legend is located in the upper right of each panel. Gene
expression is followed at 1 and 4 h following reperfusion. In A (M), there are 589 genes depicted in the
heat map, while in B (KI), there are 83 genes which contain easily visualized blocks of regulated genes
(both up and down) and identify the respective injuries.

Table 1 Overlap of genes between MI and Ki

MIT=0 MIT=1h MIT=4h

(589 genes) (63 genes) (83 genes)
KI T=0 (83 genes) 3 2 1
KI T=1 h (243 genes) 27 0 2
Kl T=4 h (30 genes) 2 0 1

Each organ injury was compared with its sham operation, and significant regulation of gene expression was defined by a
p value that is <0.05 and biological significance set at an absolute fold change >2. At the same time following ischemic
injury (bold), there is a maximum overlap of 0.5%. Altogether, there is a 4% overlap between MI and Kl during the first

4 h of reperfusion.
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system whereby clinicians base decisions on a single protein level. Cell-free plasma DNA,
elevated in numerous acute disease processes, has been proposed as a biomarker of organ
injury [9-11]. However, unlike the expressed genome (mRNA), DNA reflects the genes
one is born with rather than acute changes in physiology. Though there is a theoretical
advantage to mRNA-based diagnostics, transcriptome measurement has had little
impact on clinical medicine because it is extremely difficult to access useful mRNA.
It is not feasible to biopsy the diseased heart or lung to isolate mRNA biomarkers.
Within a clinical setting, mRNA must instead be assayed from the blood. While blood
is an abundant source of RNA, it is overwhelmingly derived from white blood cells.
However, the cell-free portion of blood (plasma) contains submicron-sized particles
containing mRNA derived from the tissue [5]. It is this mRNA fraction that we believe
holds the key to merging genomics and diagnostics. If one could measure tissue-derived
mRNA in blood, sequences could serve as both diagnostic biomarkers and a window into
complex biology.

Human plasma is known to contain cell-free nucleic acids, although the nature and
concentration of these molecules are not well understood. It is well established that
plasma contains circulating nucleic acids; however, until very recently, they were
assumed to be present at extremely low concentration and were highly degraded due
to the presence of circulating ribonucleases [9]. It is now recognized that there is a
relatively complex mixture of free nucleic acids in the plasma, including DNA [9,11],
fetal RNA in maternal plasma [12], and what is thought to be secreted RNA (RNA
which is enriched in mRNA compared to the usual total cellular RNA) [5,13]. Secreted
RNA appears to be protected against enzymatic degradation because it is encapsulated
in vesicle-like structures that are less than 1 pm in diameter [5]. These microparticles,
because of the active nature of their contents, have been found to be biologically active,
are procoagulant, and have atherogenic and immune-modulating effects [7,14-20]. While
exogenous or ‘spiked mRNA added to plasma is immediately degraded, the endogenous
mRNA is protected and thus relatively stable [5,21]. We found significant amounts of
RNA persisting in the cell-free fraction of whole blood for over 24 h when cooled to
4°C. As we have shown in Figure 2, secreted RNA lacks dense ribosomal bands usually
associated with intact cellular-derived RNA. This finding has also been reported by
other investigators [11,21]. It is believed that vesicles are actively secreted and that
messenger RNA is packaged preferentially over ribosomal RNA [9,22]. The evolutionary
reasons for this secretion of expressed genes are not currently known. Despite this, we
have been able to amplify sequences of nearly 1,000 base pairs using RT-PCR, indicating
that at least some of this mRNA are intact.

Not only is the cell-free plasma RNA concentration increased in acute illness, there
are disease- and time-specific regulations of expressed mRNA sequences. We compared
the circulating RNA levels in five patients with early ST elevation myocardial infarction
(MI) with age-matched healthy controls. We found that serum RNA levels were increased
over threefold in MI patients than in healthy controls, suggesting that acute illness
increases circulating RNA levels. When plasma mRNA is purified and extracted by
phenol and/or microspin columns, the mass of intact polyA mRNA in the total
mRNA mixture is too low (in picograms rather than the necessary 1 to 10 pg) to be
characterized using direct sequencing or microarray. To surmount this problem in a
cost-effective manner, we linearly amplified all mRNA species by adapting template
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switching PCR, allowing us to extract 5 to 10 pg of amplified polyA-tailed mRNA
from 1 ml of blood, sufficient for downstream sequencing or microarray analysis.

Once we found that there were indeed intact circulating mRNA species in plasma,
we went on to establish that organ injury is associated with unique transcriptome
profiles. We used separate mouse models of acute myocardial ischemia-reperfusion
injury and renal ischemia-reperfusion injury. Our goals were to (1) identify sequences
which could uniquely identify cardiac or renal injury (crucial to a sensitive diagnostic)
and (2) to establish the degree that sequences overlapped between organ injuries (low
overlap as key to diagnostic specificity). We chose to examine very early time points,
a time in which the need for novel diagnostics exists as it is well before traditional
protein assays such as troponin are generally elevated in MI. By sampling plasma at
three time points (immediately following reperfusion, 1 h post reperfusion, and 4 h
post reperfusion), we found differentially expressed genes (589 in the mouse model of
MI and 243 in renal injury; p <0.05 and fold change >2) defining both time-and
organ-specific patterns of circulating mRNA species. Less than 5% of sequences were
common to both cardiac and renal injuries, indicating high specificity. Pathway analysis of
the regulated circulating genes revealed a stress response with oxidative phosphorylation
and mitochondrial dysfunction, the two top canonical pathways.

Limitations to this study include the very small sample size (N =8 in human RNA
concentration and N = 3 in mouse studies). We feel that this report is hypothesis testing,
and while observational in nature, it opens the door to what is possible with this, as
yet, unexploited source of circulating mRNA. The regulated genes must be regarded
as having the potential to diagnose acute myocardial infarction rather than representing a
ready-made diagnostic panel. Further well-designed human studies are necessary for
proper validation.

Conclusions

Myocardial ischemia-reperfusion injury results in the release of mRNA into the systemic
circulation. This transcriptome can be detected and interrogated from the cell-free
fraction of peripheral blood samples. It appears to be informative regarding myocardial
signaling pathway activity in this pathologic state.

Additional file

[ Additional file 1: Complete gene lists with fold change and p values. ]
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