

POSTER PRESENTATION

Open Access

0736. Role of _CAMP in PAF-induced intestinal endo-and epithelial dysfunction

I Lautenschläger^{1*}, K Zitta¹, J Sarau^{1,2}, H Dombrowsky^{1,2}, YL Wong¹, M Albrecht¹, S Uhlig³, I Frerichs¹, N Weiler¹

From ESICM LIVES 2014

Barcelona, Spain. 27 September - 1 October 2014

Introduction

Platelet activating factor (PAF) induces vascular barrier breakdown and intestinal failure that contribute to the development of sepsis. The exact cellular mechanisms are not well understood.

Objectives

We aim to analyse the role of cAMP in PAF-induced intestinal endo- and epithelial dysfunction.

Methods

An isolated model of the rat small bowel (1) was used. Intestines were stimulated with a 0.5 nmol PAF bolus via the mesenteric artery alone (PAF, n=5) or after pretreatment with IBMX (100 μ M) and forskolin (0.5 μ M) for 20 min (PAF+PDE/AC, n=4) to increase intracellular cAMP by inhibition of phosphodiesterase (PDE) and stimulation of adenylate cyclase (AC). The pressure responses, the vascular fluid loss and the transfer of FITC-labeled vascular dextran were monitored. cAMP was measured in PAF stimulated and untreated intestines (n=5) 3 min after PAF-stimulation or at the equivalent time point.

Results

The maximal pressure amplitude ($\Delta Pmax$), the time delay to achieve $\Delta Pmax$ (td $\Delta Pmax$), the vascular volume loss (Vloss) as well as the macromolecule transfer to the lymph (FITClym) and to the lumen (FITClum) were reduced significantly by inibition of PDE and stimulation of AC [Table 1].

Conclusions

While drugs that increase the intracellular cAMP concentration protect the intestine from PAF-induced endo- and

¹University Medical Centre Schleswig-Holstein, Dept. Anaesthesiology and Intensive Care Medicine, Kiel, Germany Full list of author information is available at the end of the article

Table 1

	PAF	PAF+PDE/AC	
ΔPmax (mmHg)	30.2±4.0	14.7±1.4	p<0.05
tdΔPmax (min)	1.45±0.15	0.77±0.11	p<0.05
Vloss (ml)	19.2±5.7	3.6±0.7	p<0.05
FITClym (mg/15min/g $^{\Psi}$)	0.407±0.078	0.026±0.011	p<0.05
FITClum (mg/15min/g Ψ)	0.671±0.169	0.013±0.010	p<0.05
Ψ , dry weight			

cAMP levels in control and PAF treated intestines were comparable (cAMPCON 4.99±1.76 nM vs cAMPPAF 4.98±0.88 nM, p>0.1).

epithelial dysfunction, all the cellular effects of PAF can not be explained by a deprivation of cAMP in the intestine.

Authors' details

¹University Medical Centre Schleswig-Holstein, Dept. Anaesthesiology and Intensive Care Medicine, Kiel, Germany. ²Leibniz Centre for Medicine and Biosciences, Priority Area Asthma and Allergies, Borstel, Germany. ³RWTH, Dept. of Pharmacology and Toxicology, Aachen, Germany.

Published: 26 September 2014

Reference

 Lautenschläger , et al: Am J Physiol Gastrointest Liver Physiol 2010, 298: G304-313.

doi:10.1186/2197-425X-2-S1-P58

Cite this article as: Lautenschläger et al.: 0736. Role of cAMP in PAFinduced intestinal endo-and epithelial dysfunction. Intensive Care Medicine Experimental 2014 2(Suppl 1):P58.