

POSTER PRESENTATION

Open Access

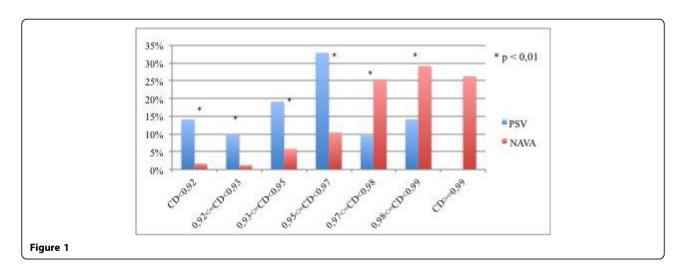
Validation of the least squares fitting method (lsf) during nava and psv ventilation

F Dalla Corte^{1*}, S Spadaro¹, S Grasso², V Cricca¹, G Biondi¹, A Fogagnolo¹, G Valpiani¹, R Di Mussi², S Bertacchini¹, MV Colamussi¹, E Marangoni¹, CA Volta¹

From ESICM LIVES 2015 Berlin, Germany. 3-7 October 2015

Introduction

The Least Squares Fitting (LSF) is a computerized method of analysis of respiratory system mechanics. It is based on applying a regression analysis for every sample points of the loop of pressure, flow and volume by fitting the equation $P_{aw} = R_{rs} \times V' + V_T/C_{rs} + PEEP_{tot}$ during inspiration [1]. This technique has been already validated in Controlled Mechanical Ventilation (CMV) and at high level of Pressure Support Ventilation (PSV) [2]. However this method gives unreliable values of resistance (R_{rs}) and elastance (R_{rs}) in presence of inspiratory muscle activity and in absence of an adequate neuromuscular coupling. We reasoned that NAVA (Neurally-Adjusted Ventilatory Assist) ventilation should assure a better neuromuscular coupling compared to PSV and hence the coefficient of


determination (CD) of the above equation should be much higher during NAVA ventilation.

Objectives

The aim of this study was to prove the efficacy of the LSF method in obtaining reliable respiratory mechanics data in two different ventilatory modes.

Methods

Twelve patients with acute respiratory failure were enrolled at the admission to the ICU and ventilated using in random order either PSV or NAVA for 3 hours with the same Positive End Expiratory Pressure (PEEPe) and tidal volume (VT) settings. Flow and pressure traces were recorded and subsequently analyzed using the LSF method

¹University of Ferrara, Morphology, Surgery and Experimental Medicine, Ferrara, Italy

Full list of author information is available at the end of the article

		PSV_Elastance (cmH2O/l)	NAVA_Elastance (cmH2O/l)
CD<0,95	MEDIAN	29,1	28,7
	IQR	0,2	1,4
0,95<=CD<0,97	MEDIAN	29,2	29,4
	IQR	1,4	2,0
CD >= 0,97	MEDIAN	29,1	29,2
	IQR	1,5	3,6

Figure 2

to obtain data of Rrs, Ers, PEEPtot and coefficient of determination (CD). NAVA and PSV were first compared in terms of CD during the 3 hours of recording. Furthermore, we selected 100 consecutive breaths for each patient in each ventilatory mode to compare the values of elastance (the only non-flow dependent of the equation of motion) obtained either in NAVA or PSV.

Results

The CD during NAVA ventilation was statistically higher than that obtained during PSV (Figure 1) (Chi-squared test: p < 0.001). CD intervals are based on the percentiles of CD distribution in the two ventilatory modes. E_{rs} values for PSV and NAVA are presented in Figure 2.

Conclusions

Our results seem to confirm that the neuromuscular coupling is much better preserved during NAVA than during PSV.

Authors' details

¹University of Ferrara, Morphology, Surgery and Experimental Medicine, Ferrara, Italy. ²University of Bari, Emergency and Organ Transplantations, Bari, Italy.

Published: 1 October 2015

References

- Volta CA, Marangoni E, Alvisi R, et al: Respiratory mechanics by least squares fitting in mechanically ventilated patients: application on flowlimited COPD patients. Intensive Care Med 2002, 28:48-52.
- lotti GA, Braschi A, Brunner JX, et al: Respiratory mechanics by least square fitting in mechanically ventilated patients: applications during paralysis and during pressure support ventilation. Intensive Care Med 1995, 21:406-413.

doi:10.1186/2197-425X-3-S1-A1005

Cite this article as: Dalla Corte *et al.*: Validation of the least squares fitting method (lsf) during nava and psv ventilation. *Intensive Care Medicine Experimental* 2015 **3**(Suppl 1):A1005.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com