

POSTER PRESENTATION

Open Access

Extracorporeal selective chloride removal by electrodialysis: an innovative treatment for respiratory and metabolic ACIDOSIS

A Zanella^{1*}, L Caironi^{2,3}, P Castagna¹, M Giani¹, S Abd El Aziz El Sayed Deab¹, E Scotti², M Chiodi², F Zadek², S Colombo¹, D Salerno¹, L Gattinoni^{2,4}, A Pesenti^{1,5}

From ESICM LIVES 2015 Berlin, Germany. 3-7 October 2015

Introduction

Acidosis is a frequent disorder among critically ill patients. When patient compensatory responses fail to restore a normal pH, administration of sodium bicarbonate (NaHCO₃) or renal replacement therapy may be required. Intravenous NaHCO₃ increases plasma Strong Ion Difference ([SID] = [Na $^+$] + [K $^+$] - [CI $^-$]) and HCO₃ concentration by raising Na $^+$ concentration. Although effective, this treatment is not devoid of complications, such as hypernatremia, hyperosmolarity and fluid overloading[1]. Selective chloride (CI $^-$) removal, by increasing SID in an alternative way, may allow a rapid correction of acidosis without altering plasma osmolality and Na $^+$ concentration.

Objectives

In an experimental animal model of severe respiratory and metabolic acidosis, we aimed to assess the efficacy of an electrodialytic system, able to selectively remove anions from plasma ultrafiltrate, to normalize pH.

Methods

Seven sedated and paralyzed healthy swine were connected to a veno-venous extracorporeal circuit including a dialyzer and an electrodialysis unit. Animals underwent 2 randomly-ordered experimental sequences of respiratory and metabolic acidosis, obtained by reducing the respiratory rate or by continuous infusion of lactic acid, respectively, targeting an arterial pH of 7.15 \pm 0.02. The electrodialysis treatment was then started to restore

baseline pH. Hemodynamics, acid-base equilibrium, and laboratory parameters were recorded.

Results

An arterial pCO₂ of 91 \pm 11 mmHg and a lactate concentration of 13.2 \pm 1.4 mmol/L were required to achieve the targeted respiratory and metabolic acidosis, respectively. The electrodialysis treatment restored the baseline pH by reducing plasma Cl $^-$ concentration respectively from 105 \pm 4 to 79 \pm 8 mEq/L in 306 \pm 54 min (for respiratory acidosis), and from 105 \pm 3 to 91 \pm 5 mEq/L in 175 \pm 47 min (for metabolic acidosis) (p < 0.001 for both, see Figure 1). No adverse events ascribable to the treatment were recorded.

Conclusions

Selective extracorporeal removal of Cl⁻ by electrodialysis is a feasible, rapid and effective in-vivo treatment to completely reverse severe respiratory or metabolic acidosis.

Authors' details

¹Università degli Studi di Milano Bicocca, Monza, Italy. ²Università degli Studi di Milano, Milano, Italy. ³Ospedale Maggiore Policlinico, Milano, Italy. ⁴Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milano, Italy. ⁵Ospedale San Gerardo, Monza, Italy.

Published: 1 October 2015

Reference

 Cooper DJ, Worthley Ll: Adverse haemodynamic effects of sodium bicarbonate in metabolic acidosis. Intensive Care Med 1987, 13(6):425-427.

¹Università degli Studi di Milano Bicocca, Monza, Italy Full list of author information is available at the end of the article

Figure 1 Chloride removal. Panel A: Arterial pH, pCO_2 , HCO_3^- , and $C\Gamma$ concentration over time during respiratory acidosis. Panel B: Arterial pH, lactate, HCO_3^- and $C\Gamma$ concentration over time during metabolic acidosis. After induction of acidosis, the electrodialysis treatment started.

doi:10.1186/2197-425X-3-S1-A502

Cite this article as: Zanella *et al.*: Extracorporeal selective chloride removal by electrodialysis: an innovative treatment for respiratory and metabolic ACIDOSIS. *Intensive Care Medicine Experimental* 2015 **3**(Suppl 1): A502.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com